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Abstract
NMR chemical shifts (CSs) are delicate reporters of local protein structure, and recent advances in random coil CS (RCCS) 
prediction and interpretation now offer the compelling prospect of inferring small populations of structure from small 
deviations from RCCSs. Here, we present CheSPI, a simple and efficient method that provides unbiased and sensitive 
aggregate measures of local structure and disorder. It is demonstrated that CheSPI can predict even very small amounts of 
residual structure and robustly delineate subtle differences into four structural classes for intrinsically disordered proteins. 
For structured regions and proteins, CheSPI provides predictions for up to eight structural classes, which coincide with the 
well-known DSSP classification. The program is freely available, and can either be invoked from URL www.​prote​in-​nmr.​org 
as a web implementation, or run locally from command line as a python program. CheSPI generates comprehensive numeric 
and graphical output for intuitive annotation and visualization of protein structures. A number of examples are provided.
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Introduction

NMR chemical shifts are very sensitive to the local struc-
ture of proteins, and can be measured and assigned routinely 
with great precision for both structured and unstructured 
proteins (Felli and Pierattelli 2012, Brutscher et al. 2015). 
The relationship between chemical shifts and local protein 
structure is well-established for folded proteins e.g. through 
simple index methods (Wishart et al. 1992; Wishart and 
Sykes 1994a, b) statistic and probabilistic methods (Egh-
balnia et al. 2005: Wang et al. 2007) or by methods relying 
more on sequence homology through neural networks or 
database searches (Jones 1999; Labudde et al. 2003; Shen 
and Bax 2013, 2015), and super-secondary structure pre-
dictions (Hafsa et al. 2015). Furthermore, CSs have also 
been used to aid the structural and dynamical characteriza-
tion of proteins (Wishart and Sykes 1994a, b; Wishart and 
Case 2001; Berjanskii and Wishart 2007; Cavalli et al. 2007; 

Mielke and Krishnan 2009; Kjaergaard and Poulsen 2012; 
Robustelli et al. 2012).

In stark contrast, intrinsically disordered proteins and 
regions (IDPs and IDRs) display no or very little regular 
secondary structure, are not folded into a globular structure, 
but rather constitute a dynamical equilibrium between sev-
eral conformations with less regularity. NMR spectroscopy 
is an ideal technique to study these dynamic IDPs (Tompa 
2009; Uversky and Longhi 2010). Intrinsically disordered 
polypeptides display population-averaged chemical shifts 
that provide an operational definition of random coil chemi-
cal shifts. Deviations from RCCSs contain information about 
structural composition, but also pose a challenge to deconvo-
lute induced from intrinsic structure. Fortunately, however, 
RCCSs have been predicted with increasing accuracy over 
time (Braun et al. 1994, Wishart et al. 1995, Schwarzinger 
et al. 2001, Simone et al. 2009, Tamiola et al. 2010, Kjaer-
gaard et al. 2011), culminating in the most accurate predictor 
to date, known as POTENCI (Nielsen and Mulder 2018). 
As a result, deviations from RCCSs (the secondary chemi-
cal shifts, SCSs) are now common parameters used to iden-
tify and quantitate order/disorder in IDPs (Berjanskii and 
Wishart 2007; Kjaergaard and Poulsen 2012; Nielsen and 
Mulder 2016, Sormanni et al. 2017). The improved accuracy 
has also permitted a benchmark of the performance of disor-
der prediction methods (Nielsen and Mulder 2019) and CSs 
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were recently used to train the disorder predictor ODINPred 
(Dass et al. 2020).

A yet more challenging task is to quantify the statisti-
cal composition of structural states for IDPs, since accurate 
reference experimental data with unique structural inter-
pretation do not exist; As this problem is ill-posed, astro-
nomical numbers of ensembles could be constructed that 
all give rise to the experimentally observed averages. One 
possible avenue to plausible solutions is to use physics-
based models of protein conformational sampling (by e.g. 
molecular mechanics force fields) coupled to parametriza-
tion of chemical shifts, and possibly other NMR observa-
bles, to conformation(Ozenne et  al. 2012, Varadi et  al. 
2015). Alternative empirical approaches adopt a heuristic 
treatment of CSs and secondary structure relationships 
in folded proteins to IDPs for the inference of secondary 
structure populations of α-helix, β-strand, random coil, and 
polyproline II (Camilloni et al. 2012). A more robust reduc-
tionist approach was taken with SSP (secondary structure 
propensity) (Marsh et al. 2006; Tamiola and Mulder 2012) 
where linear combinations of SCSs were aggregated into a 
scale between -1 (sheet) and 1 (helix) and interpreted as a 
structural propensity. Although such an approach implicitly 
remedies correlated CSs, information potentially contained 
in the individual CSs risks being lost by the reduction to a 
single value. For example, a rigid loop between a sheet and 
a helix will display near-zero propensity, and risks being 
falsely interpreted as disordered. Furthermore, neither of the 
above methods can so-far discriminate between disordered 
and ordered turns, whereas such information is potentially 
contained in the particular combination of SCSs.

Here, we introduce the linear analysis of signed SCSs, 
introducing Chemical shift Secondary structure Population 
Inference (CheSPI). This approach extends the previously-
introduced CheZOD Z-score for quantifying local order 
and disorder in proteins (Nielsen and Mulder 2016, 2020) 
derived from the statistical analysis of sums of squared 
SCSs. Technically, CheSPI applies multivariate analysis and 
dimension reduction techniques to generate linear combina-
tions (CheSPI components) of SCSs that optimally describ-
ing the variance: The first CheSPI component ensures the 
optimal distinction between secondary structure classes, 
whereas the second component accounts for the variance 
within the classes (which was found to be closely related to 
the local structure such as backbone conformation, flexibility 
and hydrogen bonding). CheSPI components offer an accu-
rate and comprehensive quantification of local dynamic and 
structural composition in structured as well as disordered 
proteins, being sensitive to local protein structure as well 
as dynamics. CheSPI components are presented to the user 
as a color scale, which conveys the information in a simple, 
intuitive, and visually appealing manner. As shown herein, 
CheSPI colors can be used to annotate 3D structures, and 

thereby highlight important and detailed structural changes 
in proteins.

The power of CheSPI to discriminate between second-
ary structure classes was exploited to derive estimates for 
the populations of helix, extended structure, turn, and “non-
folded” structures (CheSPI populations) through statistical 
inference, and these populations were validated through 
comparison to simulated ensembles for four distinct IDPs 
(vide infra). Contemporary methods for inferring secondary 
structure from NMR data typically provide only three-class 
predictions. A notable exception is CSI3.0, which offers a 
four-state prediction including turns, as well as the distinc-
tion between internal and external strands. CheSPI takes a 
stride further, and extends secondary-structure inference 
to encompass the prediction of the eight structural classes 
(SS8) defined by the popular DSSP classification algorithm 
(Kabsch and Sander 1983); α-helix (H), 310-helix (G), 
π-helix (I), extended β-strand (E), bridge (B; isolated single 
residue β-strand), turn (T), and—if no well-defined pattern 
can be found—“bend” (S) and “coil” (C).

Availability

CheSPI is available at www.​prote​in-​nmr.​org and source code 
can be obtained from https://​github.​com/​prote​in-​nmr. The 
CheSPI analysis output is summarized in text files as well 
as in a combined plot containing three panels visualizing 
for each residue along the sequence: (i) CheSPI colors and 
CheZOD Z-scores, (ii) CheSPI populations, and (iii) CheSPI 
8-state secondary structure predictions.

Results

Derivation of CheSPI components for secondary 
structure

NMR chemical shifts (CSs) are very sensitive to the local 
structure and dynamics in peptides. To analyze this cor-
respondence, we used two previously derived sequence 
databases with CSs for proteins deposited in the BMRB 
database. The first database contains primarily disordered 
residues used to parametrize POTENCI (Nielsen and Mulder 
2018), whereas the other, derived from the RefDB database 
(Neal et al. 2003), contains primarily structured residues. 
Secondary chemical shift (SCSs) were derived by subtract-
ing random coil shifts derived by POTENCI corresponding 
to the backbone atoms and Cβ, and Hβ. For the disordered 
database, residue data were labeled with “D” for disorder if 
their CheZOD Z-score (derived by CheZOD (Nielsen and 
Mulder 2016)) was less than 5.0, or else “O” for order. Anal-
ysis with DSSP (Kabsch and Sander 1983) was performed 
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for all proteins in the structured database, and here resi-
due data were labeled using the 8-class DSSP secondary 
structure designations. Subsequently, a supervised model-
ling approach was applied for dimensionality reduction, 
which optimizes the discrimination between the different 
classes (or equivalently, maximizes their separation). This 
procedure, called Orthogonal Projections to Latent Struc-
tures Discriminant Analysis (OPLS-DA), resembles PCA 
analysis (Worley and Powers 2016), but quantifies the vari-
ance between the classes with the first principal component 
whereas the variation within the classes is captured in the 
other dimensions (Trygg and Wold 2002, Bylesjö et al. 2006, 
Bradley and Robert 2013). The optimal weights for the prin-
cipal components were derived using Simca-P (Wu et al. 
2010) as defined in Eqs. 1–3, Methods.

Figure 1 shows the loading plot that visualizes the opti-
mized weights, scaled according to the gyromagnetic ratio 
for each nucleus. The relative magnitude of the optimized 
weights reflects the well-documented sensitivity of SCSs 

towards secondary structure (Hα/C’/Cα /Cβ » N/Hβ/HN), 
with Hα the hydrogen most sensitive to structure, and the 
three carbon-13 nuclei displaying a similar importance. In 
addition, N/HN/Hα/Cβ display opposite SCSs compared to 
C’/Cα/Hβ. HSCSs correlate with secondary structure as 
commented in Supplementary Results 1 and Supplemen-
tary Fig. S1. For the second component, all weights are 
positive and display the following sensitivity: (HN > C’/Cα/
Cβ > N > Hα > Hβ). It is noteworthy, that the two chemical 
shifts with the largest magnitudes, HN and C’, were previ-
ously found to undergo the largest chemical shift changes 
upon backbone hydrogen bonding (Nielsen et al. 2012). The 
third CheSPI component did not add any significant value 
to classification.

CheSPI components discriminate between local 
folded structures

CheSPI components were calculated for the 809 proteins in 
the structured database using the weights optimized by the 
OPLS-DA procedure (Eqs. 1–3, Methods). Figure 2 shows 
two-dimensional histograms of the combined observation of 
the first two CheSPI components for the three canonical sec-
ondary structure types helix, sheet, and coil as determined 
by DSSP. It is clear how the first component (P1) offers a 
near-perfect discrimination between helix and sheet whereas 
coil, placed around the middle of the score plot, overlaps 
with the helix and sheet classes, but has a lower average 
value for the second CheSPI component (P2) (see also Sup-
plementary Results 1 and Figure S1). For reference, it is 
noted that disordered residues have near-zero values for both 
of the first CheSPI components, as expected.Fig. 1   CheSPI component loading plot showing the weights (Eq.  1, 

Methods) scaled by gyromagnetic ratio for each nucleus

Fig. 2   a Experimental distributions of the first two CheSPI compo-
nents (Eq.  1–3, Methods) for the secondary structure classes; helix 
(H), extended (E), and turn (T) and non-folded backbone conforma-

tions (N, everything not helix, sheet, or turn) with ellipsoids marked 
by dashed lines. b overlay of ellipsoids from (a) merged with CheSPI 
color scheme
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Encouraged by the strong relationship to local struc-
ture, CheSPI components were converted to a color scale, 
using linear combinations of the first two components (see 
Eqs. 4 and 5, Methods). This CheSPI color scale provides 
a visual interpretation of the CheSPI components and an 
intuitive overview of the local structure and dynamics of 
proteins. The CheSPI application produces both bar plots 
and a script for 3D structure visualization based on CheSPI 
colors and several examples are discussed below (see Dis-
cussion). On this scale, well-formed strands and helices 
are defined by blue and red colors, respectively, coil can 
display multiple colors depending on context, turns are 
in green, and disordered residues are grey. The variation 
in CheSPI components along the secondary elements, as 
described above, is reflected in hues changing from red 
through orange to yellow at the C-terminal ends of helices, 
and green at the ends of β-strands, which sometimes have 
lighter blue or purple CheSPI colors (see Fig. 4a for an 
example of CheSPI colors).

To further demonstrate the power of the CheSPI compo-
nents to discriminate between different local structures and 
describe variation within structures, we analyzed the eight 
DSSP classes. These were further separated into subclasses 
based on hydrogen bonding or local backbone structure as 
visualized in Fig. 3 (see also Fig. S2 for individual histo-
grams showing the variability within each class). Average 
values of the first two CheSPI components for all subclasses 
are visualized in Fig. 3. First, it is seen how the first CheSPI 
component (P1) roughly segregates the average values for 
the 8 DSSP classes with E < B < C < S < T < G < I < H, with 
the more extended conformations having the most negative 
values, in general. Secondly, the second CheSPI component 
(P2) shows negative values for turns and positive ones for 
helices and strands. Notably, P2 accounts for the variation 
within the same DSSP class. For the helix and turn classes, 
it appears that in case of HN, hydrogen bonding reduces the 
value of P2, whereas for C’, H-bonding increases it. This 
tendency reflects the larger contribution from HN and C’ 

Fig. 3   Average values of the first two CheSPI components for all 8 
DSSP secondary structure classes with subdivisions. Average values 
were derived from the set of structured proteins. The average points 
are labelled with two letters (except I-helix and disorder), where the 
first letter indicates the DSSP classification (“C” indicates coil). The 
major classes E(β-sheet)/H(α-helix)/G(310-helix)/T(turn) are labeled 
to indicate presence of hydrogen bonds (HB) using: n/c/b/f corre-
sponding to NH hydrogen bonding only, C’ hydrogen bonding only, 
both NH and C’ hydrogen bonding, and none (free), respectively. 
For the remaining classes, B(bridge), S(bend) and C(coil), points 

are labeled according to the local backbone structure with: + /h/p/e 
corresponding to “positive”/”helical”/”poly-proline II”/”extended”, 
respectively, using the definitions in Table  1. The eight classes are 
shown with different marker symbols: circle, square, hexagon, trian-
gle pointing left (left triangle), right triangle, down triangle, diamond, 
and pentagon, respectively for classes H/E/G/T/B/I/S/C and visual-
ized using CheSPI color fills corresponding to CheSPI components 
(see Eq. 4 and 5, Methods). The corresponding point for disorder is 
indicated at the origin with a star, for reference
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chemical shifts in the definition of P2 as described above. 
Conversely, the effect of hydrogen bonding is less pro-
nounced for P2 in the case of strands. Here, strands with both 
HN and C’ hydrogen bonding (“Eb”) have larger magnitudes 
for both CheSPI components. Such “Eb” strands correspond 
to the inner strands of β-sheets and are identified by deeper 
blue CheSPI color (see Discussion below). The variation in 
P2 within strands likely relates to their variability in local 
structure, including twists, bends, and bulges, as witnessed 

by examples given below. Finally, the classes with lower 
tendencies to form hydrogen bonds, B (bridge), S(bend) and 
C(coil), have CheSPI components closer to zero. The more 
extended conformations “extended” and “poly-proline II” 
(PPII) (see legend to Fig. 3) show lower values for P1, while 
the more compact conformations, “helical” and “positive Ψ“, 
display larger values for P2. Markedly, “extended” and PPII 
conformations have almost indistinguishable CheSPI com-
ponents for bend and coil, whereas for bridges, “extended” 

Fig. 4   Output multi-panel plot produced by CheSPI using chemical 
shifts from BMRB id 6635 and validation from structural ensemble 
for PLCɛ-RA2 (Bunney et al. 2006) (PDB id 2BYF). a Bar plot with 
CheSPI colors (Eq. 5, Methods) with bar height equal to the CheZOD 
Z-scores. b Stacked bar plot of CheSPI populations of “extended” 
(blue), “helical” (red), “turn” (green), and “non-folded” (grey), local 
structures, corresponding to DSSP classes of sheet and bridge (E/B), 
all helix-types (G/H/I), turn (T) and, finally, the remaining bend and 
coil (S/-), respectively (see text). c Cartoon of the most confident 
CheSPI prediction of eight class DSSP secondary structure using red 
curved lines for α-helix (H), magenta for 310-helix (G), blue arrows 
for sheets (E) and bridges (B), green arcs for turns (T), and grey and 
black lines for coil (C) and bend (S), respectively. d Stacked bar plot 
visualizing the observed conformations in the structural ensemble 
2BYF for the 8 DSSP classes using same colors for helices, turns, and 
lighter and darker grey colors for coil and bend, respectively. e Bar 
plot for backbone angle conformation and variation. The heights of 

the bars were set to the geometrical average of the squared angular 
order parameters (Hyberts et al. 1992) for ϕ and Ψ backbone torsion 
angles (Eqs.  14–16, Methods) where values close to unity indicate 
local order and values close to zero indicate structural disorder (large 
angular variation). The colors were  taken from a 2D-color-scale (see 
Fig. S3) based on the position in Ramachandran plot of pairs of ϕ 
and Ψ backbone torsion angles using trigonometric averages of the 
ensemble values (see Eq.  16, Methods). With this scale, backbone 
angles in the helical domain of the Ramachandran map appear in 
red as before, and extended β-sheet-like conformations have blue 
colors. Furthermore, left-twisted β-strands as well as fragments with 
PPII structure appear with cyan colors, whereas conformations with 
positive ϕ have yellow and green colors, and finally, other conforma-
tion referred to elsewhere as “forbidden” in Ramachandran space are 
shown in black. Transparency is added to the bars using the above 
local angular order parameters as the “alpha value”. See also Figure 
S1
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displays slightly lower values for P2 in agreement with the 
closer resemblance to canonical β-sheet.

Prediction of secondary structure populations

Intrinsically disordered proteins are in a dynamic equilib-
rium between different local conformations. Encouraged by 
the discrimination power of the CheSPI components (Figs. 2 
and 3), we derived an estimate for the population of differ-
ent local structural states based on the relative likelihood 
for observing a given combination of the first two CheSPI 
components as defined in Eq. 6, in Methods. Chemical 
shift Secondary structure Populations Inference (CheSPI) 
are provided for classes referred to here as “extended”, 
“helical”, “turn”, and “non-folded”. This classification is 
based on inference from statistics of CheSPI components 
measured in the structured proteins set for DSSP classes 
for strand and bridge (E/B), all helix-types (G/H/I), turn (T) 
and, finally, the remaining non-folded bend and coil (S/-) 
classes, respectively.

We now turn our attention to a small number of exam-
ples for demonstrating the utility of CheSPI. First, we 
analyze in detail the NMR solution structural ensemble of 
the phospholipase c epsilon RA 2 domain (Bunney et al. 
2006) (PLCɛ-RA2, henceforth) as summarized in Fig. 4 
(see also Figure S1). PLCɛ-RA2 contains 5 β-strands, two 
α-helices and two shorter 310-helices which are modelled 
in some of the members of the deposited NMR ensemble 
(PDB id 2byf). The α-helices are predicted with close to 
100% population throughout. Although for the β-strands, 
populations of about 90% “extended” were predicted for 
the central residues, relatively lower estimates are obtained 
at both ends of the strands, echoing the fall-off in CheSPI 
component amplitudes at β-strand ends described above. 
At the same time, significant populations for "extended" 
were predicted in loop segments for residues flanking the 
β-strands, mirroring the gradual change from strand charac-
ter to flexible coil, bracketing β-sheets. More interestingly, 
disordered regions are characterized by a composition of 
different local structures, and the termini and the long loop 
region (residues 66–76) and classified as disordered, when 
judged by CheZOD Z-scores < 8.0. For these regions, larger 
“non-folded” populations (> 70%) were indeed predicted by 
CheSPI. Of note, residues 68–76 have missing density in the 
corresponding X-ray structure (Bunney et al. 2006) (pdb id: 
2C5L) suggesting that they may be dynamically or statically 
disordered. In the corresponding NMR structure ensemble 
(Fig. 5) (Bunney et al. 2006), a mixture of bend and coil 
conformations as well as a few turns are observed for this 
long loop. Averaging of the local backbone conformations 
in this loop leads to small angular order parameters (Hyberts 
et al. 1992; Nielsen and Mulder 2019) (Fig. 4e) indicative 
of increased local disorder. Average chemical shifts for the 

individual conformations lead to observations very close to 
random-coil chemical shifts for these residues, and thereby 
low CheZOD Z-scores. Interestingly, for the other long loop 
(residues 45–56), CheSPI estimated intermediate popula-
tions of α-helix (ca. 30–40% for residues 45–50 and 54–55), 
and comparison with the NMR ensemble reveals fractional 
populations of two 310-helices for residues 45–50 (15–20% 
of the members in the ensemble) and residues 54–56 (60%).

Validation of canonical secondary structure 
populations in disordered protein ensembles

Although the range of conformations in an ensemble of 
structures determined by NMR spectroscopy in solution is 
evidence of the dynamics of the system, the generated mod-
els also reflect the precision of the structure, and depend on 
the type, quality and number of geometrical constraints as 
well as the structure determination protocol. More advanced 
computational protocols (Bernadó et al. 2005, Jensen et al. 
2010, Marsh and Forman-Kay 2012, Ozenne et al. 2012, 
Camilloni et al. 2013, Varadi et al. 2015) use extensive 
conformational sampling, culled by data from NMR spec-
troscopy and small-angle X-ray scattering (SAXS). To 
gauge how well CheSPI-derived populations compare with 
the composition of local structure, we made comparisons 
for four protein systems: (i) The K18 domain from Tau, a 
human intrinsically unstructured protein implicated in Alz-
heimer’s disease pathology (Cleveland et al. 1977). K18 was 
previously investigated by NMR chemical shifts, residual 
dipolar couplings (RDCs), and paramagnetic relaxation 

Fig. 5   Structure visualization using CheSPI colors for the NMR solu-
tion structural ensemble of PLCɛ-RA) (Bunney et  al. 2006) using 
chemical shifts from BMRB id 6624 and PDB id, 2BYF
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enhancements (PREs) (Mukrasch et al. 2007), and an ensem-
ble of structures was computed (Ozenne et al. 2012) using 
a combination of the ASTEROIDS (Jensen et al. 2010) 
and Flexible Meccano (Bernadó et al. 2005) protocols (see 
also Discussion); (ii) The unfolded state of drkN SH3. A 
structural ensemble of this small domain has been gener-
ated with the ENSEMBLE software (Marsh and Forman-
Kay 2012) based on an extensive amount of experimental 
data (Marsh and Forman-Kay 2009) including CSs, RDCs, 
SAXS, PREs, and 15N R2 relaxation data. Here we compare 
CheSPI populations based on the assigned chemical shifts 
(Lee et al. 2015) (iii) The PaaA2 antitoxin. This protein con-
tains two partially formed helices, and was modelled based 
on a combination of NMR data, filtering with SAXS, and 
cross-validation with RDCs (Sterckx et al. 2014). These 
three ensemble structures were taken from the pE-DB pro-
tein ensemble database for IDPs (Varadi et al. 2014). (iv) 
The oncogene protein E7 of human papillomavirus type 
16 (Kukic et al. 2019), which contains both ordered and 
disordered domains with an ensemble of conformations 

similulated by replica-averaged metadynamics (RAM) 
simulations (Camilloni et al. 2013) based on assigned CSs 
and RDCs. In all cases, the local secondary structure was 
calculated by DSSP for each member of the ensemble. The 
latter was stratified into populations of helix (H/G/I DSSP 
classes), β-strand (E/B), and a coil class. "Coil" was fur-
ther divided according to the backbone conformations as 
described above (see legend to Table 1).

A good correlation between “observed” fractions of 
formed helix conformations in the ensembles is seen in 
Fig. 6, with Peason correlation coefficient 0.915, and a sim-
ilar degree of correlation for strand structures (R = 0.911). 
For comparison, the δ2D algorithm predicts populations of 
helix and strand with correlations to the observed fraction of 
populations in the ensembles of 0.85 and 0.78, respectively 
(see also Fig. S4 for the corresponding correlation scatter 
plot). Furthermore, ncSPC yields comparable correlations 
of 0.87 and 0.79 for helix and strand (Tamiola and Mulder 
2012), respectively, when interpreting positive secondary 
structure propensities (SSPs) as helix fraction and the abso-
lute of the negative SSPs as strand fraction (Fig. S4). The 
first CheSPI component is closely related to the ncSPC scale 
and gives correlations of 0.91 and 0.89 to helix and strand 
populations, respectively, which is close to the aggrement 
between CheSPI populations and observed fractions. When 
considering residues with local “helical” backbone struc-
ture as helix, and similarily, residues with local “extended” 
backbone structure as strand, the correlations between pre-
dicted and observed population decrease (between R = 0.63 

Table 1   Definitions of local backbone conformations

a All which is neither positive ϕ, helical, or poly-proline II

ϕ Ψ

positive ϕ 0° < ϕ < 150° all
helical ϕ < 0° or ϕ >150° –120° < Ψ < 50°
poly-proline II −105° < ϕ < −45° 115° < Ψ < 175°
extendeda n.a.a n.a.a

Fig. 6   Correlation between a helical and b sheet populations pre-
dicted by CheSPI and observed in experimental ensembles. Each 
residue data is indicated with a blue disk. Populations were using 
data from (BMRB id, pE-DB id) = K18 Tau: (19253, 6AAC), PaaA2: 

(18841 5AAA), DrkN SH3 unfolded; (25501, 8AAC), E7: (BMRB 
id´s 19442 and 26069 for residues 3–45 and 46–97, respectively, 
using coordinate data provided by the authors)
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and 0.77) but the ranking of the performance of the methods 
is preserved.

Prediction of secondary structure according 
to eight‑class DSSP

CheSPI provides estimates for the populations of local 
structure types, whereas folded proteins are more com-
monly described by segments of completely formed regu-
lar structure. The classical DSSP algorithm assigns each 
residue to one of eight classes (Kabsch and Sander 1983), 
which are more informative about the local structure than 
the traditional coarse-grained three-state canonical division 
of secondary structure. Unfortunately, to date no tool exists 
that can infer this 8-class DSSP structure from NMR chemi-
cal shifts and sequence alone. Therefore, we extended the 
CheSPI analysis to the prediction of secondary structure seg-
ments and 8-class DSSP secondary structure (SS8) using 
only protein sequence and assigned NMR chemical shifts 
as input. As presented above, CheSPI reveals clear trends of 
secondary structure in its principal components. To quan-
tify this dependence, we thus defined a linear approximation 
back-calculation of the CheSPI components (PCs) based on 
sums of contributions from the (four) nearest neighboring 
SS8 and amino acid types (see Eqs. 7–9 Methods), e.g. the 
first component would decrease if the center residue was 
strand and to smaller degree if the neighboring residues 
were strand. All weights were parametrized by linear regres-
sion, similar to the POTENCI implementation (Nielsen and 
Mulder 2018), using observed PCs derived from the struc-
tured database as targets and observed SS8 and sequence as 
input variables (see Methods). By this procedure, the first PC 
was predicted with an average error of 1.97, 3.63, and 2.94 
for helix, strand, and coil, respectively (the full span of PCs 
is almost one order of magnitude larger). This prediction of 
PCs was used together with the average error to estimate a 
likelihood of observing any PC given an SS8 assignment and 
the sequence (Eq. 10, Methods). Bayes’ theorem was then 
used to “invert” the probabilities, i.e. to give the probability 
of an SS8 given the observed PCs. By this procedure, the 
prior probability for the secondary structure is “updated” by 
multiplying with the likelihood of observing the PCs given 
the secondary structure and sequence (Eq. 11, Methods). 
Finally, the predicted secondary structure is the combination 
of SS8 states for all residues that give the maximal posterior 
probability (Eq. 12, Methods). Unfortunately, SS8 states for 
a residue cannot be optimized univariately, since the value 
of predicted PCs depends on the nature of the neighbor-
ing SS8s. Therefore, the posterior probability maximization 
algorithm was implemented using a genetic algorithm (as in 
POTENCI) to produce populations of SS8 assignments for 
the full sequence. The SS8 predictions are rapidly calculated 
(2–3 s). Finally, the SS8 assignment from the population 

with the lowest energy is considered the best prediction, and 
the variation within the population at each site, along with 
the agreement between predicted and observed PCs, is used 
to estimate a confidence for each SS8 prediction.

For PLCɛ-RA2 (Fig. 4), CheSPI detects all secondary 
structure elements and identifies the borders of these ele-
ments (Fig. 4c) with high accuracy when compared to the 
observed secondary structures (Fig. 4d). The disordered 
stretches are predicted as coil (majority). The fractionally-
occupied 310-helices are predicted as turns by CheSPI, 
which is not very surprising given the similarity between 
310-helices and type I β-turns (Shapovalov et al. 2019).

To derive a systematic evaluation of CheSPI SS8 pre-
dictions, a validation set was generated by considering all 
entries in the BRMB database published after the newest 
version of the RefDB database, which was used to derive our 
first structured database for optimizing the CheSPI weights 
and perform inference. We aimed for a small validation set, 
keeping only entries with (i) less than 30% sequence identity 
to all sequences in the structured database, (ii) all backbone 
chemical shifts available including Hβ, (iii) a high quality 
X-ray structure for the corresponding sequence (R < 2.0 Å) 
with exact sequence identity to the NMR study, (iv) no bias-
ing conditions in either the derivation of the NMR assign-
ments or the X-ray structure [e.g. standard buffer condi-
tions as before (Nielsen and Mulder 2016) and no large 
ligands present]. This procedure yielded 13 protein entries 
(see Table S1) with assigned chemical shifts, which were 
used to generate CheSPI SS8 predictions and comparison 
to the observed secondary structure classes, as calculated 
with DSSP from the high-quality X-ray structures. CheSPI 
achieves a good accuracy with 68.6% (between 53.2% and 
80.6%) correct 8-class predictions (Q8), and 84.6% correct 
for the classical three-class predictions (Q3), which is an 
improvement by 2.7% relative to the 81.7% (Q3) for CSI 3.0 
(see Table S1). Furthermore, considering only the CheSPI 
predictions with the highest confidence (28% of cases), 
CheSPI performs with 94% for SS8 accuracy. High con-
fidence is typically found in the middle of the secondary 
structure elements and in long disordered loops, whereas 
lower confidence is more likely to be observed at the borders 
between regular secondary structure and loop elements.

Discussion

In this paper, we have introduced CheSPI components—
derived from NMR secondary chemical shifts —that provide 
an aggregate descriptor of local structure and dynamics for 
both structured and disordered proteins. CheSPI components 
estimate the populations of secondary structure, and are 
visualized using color, rather than the previously-published 
SSP and ncSPC procedures (Marsh et al. 2006; Tamiola 
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et al. 2010; Tamiola and Mulder 2012), which present a scale 
bar to differentiate only the two most common secondary 
structure propensities (SSPs). The first CheSPI component is 
similar to the SSP scale in its power to discriminate between 
different secondary structures, and gives comparable val-
ues (see below). CheSPI, however, supersedes ncSPC by the 
introduction of a second component that affords to account 
for the variation within structural classes—and thereby 
offers a far more comprehensive discrimination of local 
structure and dynamics in proteins. Alternatively, second-
ary structure populations can also be predicted by δ2D in 
order to stratify residues as “helix”, “beta”, “poly-proline 
II” and “coil”. CheSPI takes this differentiation further by 
its sensitivity to discriminate distinct non-folded and folded 
“turn” coil types from NMR chemical shifts. This advance 
is possible, as CheZOD Z-scores facilitate the appropriate 
classification of non-canonical local structure and dynamics.

To feature the potential of CheSPI for detailed struc-
tural analysis using NMR chemical shifts, we provide a few 
examples below. These examples demonstrate that small, but 
important changes in solution structures can be character-
ized from NMR chemical shifts, which may otherwise be 
difficult or impossible to capture.

Metal binding and aggregation of Cu/Zn superoxide 
dismutase 1

As a first example, we focus on CS data for the protein Cu/Zn 
superoxide dismutase 1 (SOD1) (Milani et al. 2011) in the 
apo and metal-bound holo states. The misfolding of SOD1 
is linked to familial amyotrophic lateral sclerosis (ALS) 
(Rosen et al. 1993, Robberecht et al. 1994). SOD1 contains 
a double β-sandwich structure, where two long loops that are 
disordered in the apo form become structured upon metal 
binding (Rakhit and Chakrabartty 2006, Teilum et al. 2009, 
Sirangelo and Iannuzzi 2017). In Fig. 7, CheSPI analysis 
reveals a clear difference between the apo and holo forms. 
CheZOD Z-scores (Fig. 7a, b) confirm that the bound form 
is structured, whereas the two largest loops (IV and VIII) are 
unstructured in the apo form. The first CheSPI component 
(related to secondary structure propensity) remains close to 
zero and doesn’t change much between the two states of the 
protein. On the other hand, the second CheSPI component 
changes to negative for the bound state, indicative of the 
formation of turn structure. This change from non-folded to 
folded coil is apparent in the changes from grey to green on 
the CheSPI color scheme for loops IV and VIII (Fig. 7c,d). 
Structure determination (Banci et al. 2002) clearly shows 
how metal-ion coordination induces folding of these two 
large loops (Figs. 7h and 8), which become enriched in turn 
structure. Using NMR relaxation dispersion measurements, 
Teilum and co-workers identified a weakly populated exited 
state of apo-SOD1, which is believed to trigger deviant 

oligomerization (Teilum et al. 2009). They showed that the 
largest structural changes between the apo ground and exited 
states involves the flexible loops IV, VI, and VII, as well as 
β-strands 4, 5, 7, and 8. While native dimers form through 
association of pairs of β1, it was discussed how excited-state 
exposure of edge strands 5 and 8, which are protected by 
turn structures in the metal bound form, could initiate the 
oligomerization process. Extensive aggregation is avoided 
by negative design (Richardson and Richardson 2002) of β5 
and β8, which are more twisted and less hydrogen-bonded 
(Fig. 8b,c), contain less β-sheet in the structural ensemble, 
which is slightly higher for the apo form (Fig. 7h), and have 
fewer canonical β-sheet backbone angles (Fig. 7i). This is 
reflected in the lower populations of extended structure for 
these strands estimated by CheSPI (panels e–g). In con-
trast, β1 is fully formed in the ensemble with canonical 
backbone angles (Fig. 7h, i). Non-native inter-molecular 
contacts were identified for several residues in loop IV, in 
particular residues H63 and F64 (no data available for resi-
dues 65–66) through paramagnetic relaxation enhancement 
(Teilum et al. 2009). Intriguingly, CheSPI analysis pin-
points a small segment, residues 61–66, with noteworthy 
local order within this loop (Fig. 7a, c). Residues 61–63 
show significant “extended” CheSPI populations, whereas 
residues 64–65 have elevated helical population (Fig. 7e). 
Whereas H63 forms a β-bridge in the metal-bound structure, 
flanked by residues with extended conformations, residues 
65–66 mostly populate helical backbone conformations 
in the ensemble structure (Fig. 7h, i). Similarly, residues 
132–137 form a helix within loop VII of the holo form, with 
a pronounced peak of helical populations that is mirrored in 
the apo structure (Fig. 7e). CheSPI analysis suggests that 
the locally ordered residues 65–66 might initiate non-native 
oligomerization through contacts within preformed extended 
structure.

Poly‑proline II formation in an antifreeze protein

Poly-proline II helix (PPII) conformations (which are often, 
but not necessarily, rich in prolines) are relatively rare in 
folded proteins, although they appear to be important for 
certain molecular recognition events (Adzhubei et al. 2013). 
In contrast, PPII has been suggested to be more prevalent in 
IDPs (Shi et al. 2006) although it is not a generic conforma-
tion for IDPs, but part of the statistical composition of local 
structural states (Jha et al. 2005, Makowska et al. 2006). 
δ2D predicts populations of the classical folded α-helix and 
β-sheet states, and populations of either so-called “coil” 
or “PPII”, which are both considered as disordered by 
δ2D. Similarly, CheSPI predicts “helical” and “extended” 
populations, but separates the remaining states into “turn” 
(folded DSSP turn class) or “non-folded” (combined bend 
and coil DSSP states). In order to scrutinize the relationship 
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between CSs and PPII, and in particular the CheSPI/Che-
ZOD signatures possibly related to PPII, we analyzed 
spectroscopic and structural data for the left-handed heli-
cal bundle of Hypogastrura harveyi “snow flea” antifreeze 
protein (sfAFP), which is rich in Gly-Gly-X repeats (Graham 
and Davies 2005), and for which both an X-ray structure 

(Pentelute et al. 2008) as well as extensive NMR data includ-
ing CSs are available (Pentelute et al. 2008). sfAFP has a 
compact structure of a bundle of six PPII helices connected 
by hydrogen bonds alternating between inter-strand neigh-
bors with a three-residue periodicity (Fig. 9h). Relaxation 
measurement confirmed the rigid backbone—except for 

Fig. 7   CheSPI analysis of Cu/Zn superoxide dismutase 1 (SOD1). 
a and b CheSPI components and CheZOD Z-scores for apo-SOD1 
(see legend to Figure S1b) and using CSs from entry with BMRB id 
15711 and Cu/Zn-bound state of SOD1 (BMRB 4402), respectively. 
c and d CheSPI colored bar plot for apo-SOD1 and Cu/Zn-bound 
SOD1, respectively (see legend to Fig. 4a). Loops are labeled using 
Roman numbers. e and f CheSPI populations for apo-SOD1 and 
Cu/Zn-bound SOD1, respectively (see legend to Fig.  4b). g plot of 

CheSPI predictions for “extended” populations for apo-SOD1 (black 
curve) and Cu/Zn-bound SOD1 (green), respectively. β-strands are 
labeled consecutively with Greek letter and Arabic numbers. (h) 
Local structure observed population in structural ensemble for and 
Cu/Zn-bound SOD1 (PDB id 1ba9) (see legend to Fig. 4d). (i) Aver-
age backbone angles and angular order parameters for Cu/Zn-bound 
SOD1 (PDB id 1ba9) (see legend to Fig. 4e)
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residues 25–31, which had elevated backbone dynamics. 
CheSPI analysis reveals some fluctuation in SCSs although 
with the absence of a common sign when scaled with the 
weight for the first component (Fig. 9a). This is reflected in 
Z-scores that typically lie between 10 and 12, which would 
indicate order, although the score is not as high as for fully 
formed standard helices and sheets (these lie around 13–15 
typically). Residues 25–35 form an exception, and appear to 
be clearly more disordered, with Z-scores below 5. Further-
more, the PPII stretches feature CheSPI components much 
closer to zero (i.e. closer to random coil values with aver-
ages around ca.–2.0 and 0.0 for the first two components, 
and likewise near-zero secondary structure propensities by 
ncSPC) (Fig. 9b) than for ordered helices and sheets result-
ing in paler CheSPI colors closer to cyan-grey (Fig. 9c, i). 
The above ranges for CheZOD Z-scores and CheSPI compo-
nents may be considered hallmarks of PPII helices, but with 
the current algorithm, CheSPI predicts primarily non-folded 
conformations for sfAFP and typically around 10–25% 
extended structure for the PPII stretches (Fig. 9d). In com-
parison, δ2D predicts around 25% PPII for these stretches 
(Fig. 9g), which is very similar to the PPII populations pre-
dicted for the IDPs tested here and for the case of human 
Tau protein discussed below (Fig. 10). The peptide segments 
forming PPII are apparent from the figure with exclusively 
coil DSSP classes (barring a few bends) and backbone 
angles in the PPII domain (Fig. 9e, f). It could be suspected 

that the helical bundle in sfAFP might have peculiar and 
specific interactions, such as variations in twist along the 
PPII helices, as reflected here in the varying CheSPI colors, 
and both standard backbone and unusual H-C’ hydrogen 
bonds (Pentelute et al. 2008), that could potentially affect 
the CSs and thus the resulting CheSPI components. To 
address this systematically, our database of structured pro-
teins was searched for consecutive stretches of three resi-
dues in PPII conformation (and other conformations, for 
reference) within DSSP “coil” states. Distributions of the 
CheSPI components for PPII in the database were found to 
be similar to the sfAFP case but were also found to be rather 
similar for stretches of three consecutive “extended” con-
formations (first CheSPI component was -0.97 and -1.64 in 
the former and latter case, respectively, i.e., with difference 
within one standard deviation, and the second component 
close to zero) (see Figure S5 and see also Fig. 2). This was 
also the case for the PPII helix, residues 95–99, in the P. 
aeruginosa protein PA1324, protein (BMRB id 6343, see 
Fig. S6). Hence, it remains very challenging to discriminate 
between “extended” (β-strand like) and PPII stretches using 
chemical shifts alone.

Aggregation nuclei of the protein Tau

IDPs are most fittingly interpreted as a statistical ensemble 
of local structural states. Here we demonstrate the ability of 

Fig. 8   NMR structure ensemble of the Cu/Zn bound SOD1 colored 
with CheSPI colors derived from BMRB id 4402. a from “top” look-
ing down the metal binding pocket. b from bottom facing strands 1, 2, 

3, and 6. c from top “clipping through” the long loops to observe the 
top sheet of strands 4, 5, 7, and 8
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Fig. 9   CheSPI analysis of PPII helical bundle protein, the Hypogas-
trura harveyi “snow flea” antifreeze protein (sfAFP) a–d CheSPI out-
put derived from assigned chemical shifts for BMRB id 27473 (see 
legend to Figure S1 and Fig.  4a,b) and the ncSPC secondary struc-
ture propensity multiplied with 8 is shown with a green broken line in 
panel b. e DSSP classification and f local backbone conformation in 
structure of sfAFP determined by X-ray crystallography with PDB id 

2pne (see legend to Fig. 4d, e). g Predictions by δ2D visualized with 
stacked by plot showing helix, coil, PPII, and β-sheet using red, grey, 
cyan and red blue, respectively. h, i X-ray structure of sfAFP (PDB 
id 2pne) colored with CheSPI colors (as in panel c), hydrogen bonds 
are highlighted with yellow dashes. PPII and extended stretches are 
highlighted with standard β-strand cartoon rendering in h for visual 
purposes
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CheSPI to quantitatively infer the local structural composi-
tion from chemical shifts for a well-studied IDP, the K18 
domain from human Tau (K18-Tau). Tau is intrinsically dis-
ordered, implicated in the regulation of microtubule organi-
zation, and prone to aggregation with a pathology related to 
Alheimer’s disease. Tau aggregates as neurofibrillar tangles, 
containing paired helical filaments (PHFs) that adopt cross-β 
and β-helix conformation akin to other amyloidogenic pro-
teins (Berriman et al. 2003, Barghorn et al. 2004). The K18 
domain is directly involved in aggregation and consist of 
four imperfect 31–32 residue repeats, R1-R4. Hexapeptide 
segments within each repeat, residues, 275–280, 306–311, 
and 337–342, (HPF6, HPF6*, and HPF6**) are nucleation 
sites for aggregation, having a local β-sheet structure when 
forming multimers, and where HPF6 is at the core of the 
cross-β structure (Bergen et al. 2000, Eliezer et al. 2005, 
Daebel et al. 2012, Fitzpatrick et al. 2017). K18-Tau was 
studied by NMR spectroscopy (Mukrasch et al. 2007) and 
chemical shifts, RDCs, and PREs were used to calculate 
an ensemble of structures, accounting for the statistical 

composition of local structures, as outlined above (Ozenne 
et al. 2012). An algorithm for efficient sampling of con-
formational space was applied, while simultaneously sat-
isfying the diverse experimental constraints. Indeed, the 
simulations confirmed the unstructured nature of K18-Tau 
with very little regular secondary structure and revealed a 
mixture of compositions of primarily PPII and “extended” 
conformations, with fewer turns and helical formations. 
Although K18-Tau is largely disordered, the ensemble shows 
subtle sequence-specific variations in the local conforma-
tional composition with some similarities between its four 
pseudo-repeats.

Analysis by CheSPI (summarized in Fig. 10 and Fig. S7) 
reveals findings that agree very well with the earlier observa-
tions outlined above. SCSs display limited scatter (although 
with subtle variations) leading to low CheZOD scores < 8.0 
indicative of disorder (Fig. S7a). Concomitantly, the first two 
CheSPI components show values close to zero, again with 
some variation. For comparison, the ncSPC-derived sec-
ondary structure propensity shows a close correspondence 

Fig. 10   CheSPI output panels for K18-Tau and comparison to struc-
tural ensemble and δ2D. a CheSPI colors based on assigned CSs 
from BMRB id 19253. b CheSPI extended populations (blue curve), 
δ2D predictions of beta-strand (black broken curve), fractions of 
beta-strand or bridge formed in the ensemble structure of K18 Tau 

(black curve very close to zero) (PED id 6AAC). c CheSPI heli-
cal populations (red curve), δ2D predictions of helix (black broken 
curve), fractions of helix formed in the ensemble structure of K18 
Tau (black curve). d Average local backbone conformations in K18 
Tau ensemble (see legend to Fig. 4e). See also Fig. S7
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with the first CheSPI component (Fig. S7b). CheSPI pre-
dicts a preponderance of non-folded populations, albeit with 
important local biases (Fig. S7d). Firstly, elevated extended 
conformations are predicted by CheSPI for the hexapeptide 
HPF6(*/**) segments as shown in Fig. 10b. It is interesting, 
that segments that are responsible for aggregation and part 
of the core cross-β structure are already more extended in 
the unfolded conformation. Secondly, shorter 3–4 residue 
segments following the HPF6s had higher CheSPI popu-
lations for helical structure (Fig. 10c). Indeed, turn struc-
tures were assigned to these segments measured from RDCs 
(Mukrasch et al. 2007) DLKN (residues 253–256), DLSN, 
DLSK, and DKFD in repeats R1-R4). These turns are of 
type beta I, and two such consecutive turns correspond to a 
short 310 helix (Pal et al. 2003). In the ASTEROIDS ensem-
ble structure of K18-Tau (Fig. S7f), an excess of helical 
conformations and backbone angles were actually observed 
for these residues, in particular for the segment 313–315 
in R3. Regular β-strand formation was not observed in the 
ensemble. However, a higher content of extended and PPII 
backbone conformations was encountered for residues in the 
HPF6 segments having also the highest CheSPI extended 
populations (Fig. 10d and Fig. S7e). For comparison, δ2D 
(Fig. 10, black broken curve and Fig. S7g) identifies the 
same maximum for the helix conformation – but only with 
confidence for R3. Furthermore, δ2D identifies higher β-like 
conformation for the HPF6 segments, but also for other posi-
tions in the sequence that were found to have mixtures of 
helical, extended, and positive ϕconformations (e.g. resi-
dues 298–303) in the ensemble derived from experimental 
data. The level of PPII conformation for K18-Tau predicted 
by δ2D (Fig. S7g) was also almost constant throughout the 
sequence and even slightly higher than the predictions for 
the PPII helical bundle discussed above.

Misfolding of alpha‑synuclein

The protein alpha-synuclein (aS) is disordered under native 
conditions, but prone to misfolding forming cytotoxic aggre-
gates implicated in the pathogenesis of Parkinson’s disease 
(Singleton et al. 2003, Stefanis 2012). One of the physiologi-
cal functions of aS is its binding to synaptic vesicles where 
it adopts a semi-folded α-helical conformation (Davidson 
et al. 1998, Jensen et al. 1998). This spurred a range of stud-
ies related to the binding of lipids and engineered membrane 
mimics (Jensen et al. 1998, Tofaris and Spillantini 2005). aS 
is comprised of seven 11-residue adjoined pseudo-repeats of 
amphiphilic character (I–VII) with a small flanking N-termi-
nal four-residue insertion (between IV and V), and a longer 
acidic C-terminal region. A new variant with shuffled repeats, 
referred to as SaS, was designed previously to study the effect 
of sequence on vesicle binding and aggregation (Rao et al. 
2008). aS and SaS was studied together with beta synuclein 

(bS) by NMR spectroscopy, analyzing the effect of interac-
tion with sodium lauroyl sarcosinate (SLAS) micelles (Rao 
et al. 2009) and a structural model of aS-bound SLAS micelles 
was later derived based on NMR and EPR data (Rao et al. 
2010). CheSPI analysis confirms aS to be disordered under 
native conditions (Fig. 11a, e). In contrast, when interacting 
with SLAS micelles, all studied synuclein variants form struc-
tures with high helical content in the amphiphilic repeat region 
(Fig. 11b-d, f–h). Comparison with the ensemble structure 
model for aS reveals helix formation for residues 1–91 with 
partial interruption of the helical structure around repeat III 
and a small helix kink around residues 60–65 (Fig. S8c). The 
helix interruption region corresponds to the region with lowest 
CheSPI helical populations (repeat III, Fig. 11f) and the helix 
kink is located at a position in the sequence with less “canoni-
cal” CheSPI colors (end of repeat V, Fig. 11b), i.e. the colors 
transition to greener, which is found at the C-terminal end of a 
helix (see Results and Fig. 4a) suggesting partial disruption of 
hydrogen bonding. Concomitantly, lower helical populations 
were found for the end of repeat V. A similar dip in CheSPI-
derived helical populations and green colors were found at the 
end of repeat VII, although, in this case, no significant local 
irregularities were identified in the model structure (Fig. 11b, 
f). bS differs from aS by 14 mostly conservative mutations 
in the first 95 residues and the deletion of residues 73–83, 
disrupting repeats VI and VII. It is seen by the similarities 
of the CheSPI color profiles (Fig. 11b, d) that bS, despite the 
sequence modification, retains the local structural and dynami-
cal properties with e.g. similar transition to greener colors and 
deletion of residues 73–83 to display similar signatures for the 
end of the helical region. In analogy to the bS case, SaS and 
aS share the same positions for the last repeat VII, and similar 
CheSPI color profiles are observed, indicating near-identical 
local structural and dynamical properties. Furthermore, repeats 
I, II, IV and the insertion form canonical helices in aS as indi-
cated by red CheSPI colors and close to 100% CheSPI helical 
population. Concurrently, the same repeats also show strong 
signatures of helix structure when repositioned in the SaS 
sequence (Fig. 11c,g). On the other hand, the full repeat III 
and the end of repeat V, which feature lowered CheSPI helical 
populations (about 50%), and have partially disrupted helical 
structure or a kink in the SLAS-bound model, also indicate 
lowered helical strength for SaS – but in this case about 75% 
CheSPI helical populations for repeat III and ca. 30% for the 
end of repeat V when repositioned in SaS. aS and its variants 
binds micelles due to the amphiphilic nature of their sequences 
(see Figure S8a, b). Repeats III and V contain more charged 
and hydrophilic residues and fewer amino acids with hydro-
phobic side chains, when compared to their neighbor counter-
parts, suggesting a lower micelle binding affinity (Fig. S8a,b), 
hence explaining the lower CheSPI helical populations. This 
exemplifies how the local structure in proteins and their inter-
actions with substrates is mostly driven by the local sequence. 
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The relocated repeats in SaS are modulated by the surrounding 
sequence/structure so that repeat III is presumably less heli-
cally interrupted whereas the end of repeat V is more kinked 
compared to aS.

Conclusions

We have introduced the software CheSPI for the compre-
hensive inference of structural and dynamical properties of 
proteins from assigned NMR chemical shifts and sequence. 

CheSPI can be applied to decompose chemical shifts to 
reduced dimensions and visualize protein secondary struc-
ture preferences using CheSPI colors. CheSPI provides pre-
dictions for the fine-grained conformations of local structure 
through estimated probabilities for the eight commonly rec-
ognized DSSP classes. A strong correlation was observed for 
Q8 (to recognize the eight classes solely from chemical shift 
data) and this was even stronger for Q3. It was demonstrated 
with a small number of examples how CheSPI can quantify 
and display the degree of protein disorder, and detect small 
populations of local structures in IDPs.

Fig. 11   Alpha Synuclein variants. Only residues up to 100 are shown 
a–d CheSPI color bar plot (see legend to Fig. 4c). e–h CheSPI popu-
lations stacked bar plot (see legend to Fig. 4d). The individual panels 
show results for the following alpha synuclein variants and condi-

tions: αSyn native disordered (BMRB id 16300 panels a and e), αSyn 
SLAS-bound (BMRB id 16302 panels b and f), “shuffled” αSyn (sαS, 
see text) SLAS-bound (BMRB id 16303 panels c and g) βSyn SLAS-
bound (BMRB id 16304 panels d and h)
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Methods

CheSPI components: the chemical shift principal 
components

The CheSPI component of order, k, for residue i, is com-
puted as the weighted sum of truncated secondary chemi-
cal shifts (SCSs), Δ, for a 3-residue window as:

where

and

and τn are nuclei-specific values used to truncate SCSs 
to avoid extreme values caused by assignment errors or 
typos. Here N is the total number of available experimental 
CSs for the residue triplet and �n

obs
(i) and �n

ref
(i) are the 

observed and reference CSs, respectively, for residue, i, 
and nuclei, n, where the reference CSs are the “random 
coil” CSs computed by POTENCI (Nielsen and Mulder 
2018). Note that the universal weight of 8.0 was chosen 
arbitrarily to obtain component values comparable to the 
CheZOD Z-score ranges. The weights, wk

n
 , were derived 

by an Orthogonal Partial Least Squares Discriminant 
Analysis (OPLSDA) using SIMCA Umetrics (Wu et al. 
2010). This process identifies the linear combinations of 
the CSCs that best discriminates between the different sec-
ondary structure classes.

CheSPI colors

The first two CheSPI components are visualized as a unique 
color, first scaling a component, x, to be between 0 and 1 and 
truncated between threshold values ± τ using.

The color is then defined in terms of an RGB fraction 
vector, C, as:

This definition leads to primarily blue colors for sheets, 
red for helices, and green colors for turns whereas disordered 
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states with principal components close to zero correspond 
to grey colors.

CheSPI populations: secondary structure 
populations inferred from CheSPI components

Helix, sheet and coil all have rather distinct distributions 
of CheSPI components as seen for the correlated distribu-
tion for the 809 proteins with positive and negative values 
for the first component for helices and sheets, respectively, 
whereas there is more overlap for coil states with average 
values for both components near zero. The population of a 
3-state secondary structure type, s, is calculated based on the 
density,ρs, from the experimental correlated distribution of 
the two first CheSPI components.

The densities were estimated from histogram distribu-
tions from the 809 proteins set.

Prediction of 8‑state DSSP secondary structure 
classes from sequence and CheSPI components

A back-calculation prediction model was defined for the 
CheSPI component, P, from local primary sequence and 
8-state DSSP secondary structure class. The model is linear 
with a constant term corresponding to the DSSP class and 
corrections for the sequence, C, and secondary structure, D, 
values in a sliding window of four residues in each direc-
tion as:

where

and

where Ai denotes the amino acid sequence, and Si and 
t = �

(
Si
)
 the 8- and 3-state secondary structure types, 

respectively, all at residue position i, and τ maps the 8-state 
classes to 3 classes helix/sheet/coil. The correction term, C, 
constitutes 540 (= 9*20*3*2) predetermined constants for 
each CheSPI component whereas the secondary term, D, 
constitutes 384 (= 8*8*3*2) constants. These constants were 
derived from a multi-linear regression fit using the large set 
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of 809 protein sequences with known secondary structure. 
Some constants were set to zero in order to limit the number 
of free parameters (428 and 182 non-zero constants were 
used for the above two terms). The optimal balance between 
free parameters and goodness of fit was derived by minimiz-
ing Akaike’s Information Criterion (AIC) and varying the 
number of adjustable parameters using a genetic algorithm 
as described previously when parametrizing POTENCI 
(Nielsen and Mulder 2018).

The DSSP 8-state secondary structure classes are pre-
dicted using comparison between observed and back-calcu-
lated CheSPI components and by applying Bayes Theorem. 
First, based on the observed CheSPI components, Q, the 
likelihood, L, of observing the principal components, given 
a certain secondary structure and the sequence, is calculated 
as:

where ϕ (x, s) is the normal distribution density function 
with mean 0 evaluated at x with variance s2, and σ is the 
standard deviation of the prediction errors measured for the 
training set of the secondary structure S. The likelihood can 
be evaluated as a product of marginal probabilities for the 
individual component because they are orthogonal by defi-
nition of the OPLS-DA procedure. Secondly, the posterior 
probability for the secondary structure is calculated by mul-
tiplying the above likelihood with a prior probability for the 
secondary structure:

in other words, we use the CheSPI component data to 
update the prior probabilities for the secondary structure. 
The CheSPI application offers two procedures for estimating 
the prior probabilities: (i) simple per residue type frequen-
cies for secondary structure types or (ii) secondary structure 
prediction based on sequences alone using Xraptor (Wang 
et al. 2011, Källberg et al. 2012) Subsequently, the posterior 
probabilities for all 8 secondary structure classes are normal-
ized to sum to unity.

Finally, the secondary structure predicted by CheSPI is 
identified as the configuration with maximum combined pos-
terior probability for all residues:

This problem has a large dimensionally and cannot be 
optimized exhaustively, and therefore, the secondary struc-
ture optimization was implemented with a genetic algorithm 
solver as was the case for POTENCI (Nielsen and Mulder 
2018). The algorithm is initiated with random secondary 
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structure conformations sampled based on the secondary 
structure predictions from sequence.

Definition of backbone torsion angle averages order 
parameters

The dihedral angle order parameter, S, of Hyberts, Wagner 
and co-workers (Hyberts et al. 1992) is defined by averaged 
trigonometric values for backbone torsion angles:

for an ensemble of N structures, where θi is the value of a 
particular dihedral angle θ in the ith member of the ensemble 
and Sbb is the combined order parameter for the backbone 
torsion angles ϕ and Ψ. The corresponding averaged angles 
are found by renormalizing with the order parameter and 
calculating inverse cosine:

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10858-​021-​00374-w.

Data availability  The datasets generated during and/or analysed dur-
ing the current study are available from the corresponding author on 
reasonable request. Python code for CheSPI is available for download 
at GitHub: https://​github.​com/​prote​in-​nmr.
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