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Abstract
Molecular motions are fundamental to the existence of life, and NMR spectroscopy remains one of the most useful and power-
ful methods to measure their rates and molecular characteristics. Multiple experimental methods are available for measuring 
the NMR relaxation properties and these can require different methods for extracting model parameters. We present here 
a new software application, RING NMR Dynamics, that is designed to support analysis of multiple relaxation types. The 
initial release of RING NMR Dynamics supports the analysis of exponential decay experiments such as T1 and T2, as well as 
CEST and R2 and R1ρ relaxation dispersion. The software runs on multiple operating systems in both a command line mode 
and a user-friendly GUI that allows visualizing and simulating relaxation data. Interaction with another program, NMRFx 
Analyst, allows drilling down from the derived relaxation parameters to the raw spectral data.

Keywords  NMR relaxation · Software · Macromolecular dynamics

Introduction

Molecular motions are fundamental to the existence of life, 
and NMR spectroscopy remains one of the most useful and 
powerful methods to measure their rates and molecular char-
acteristics (Palmer 2009; Kleckner and Foster 2011). Two 
features of NMR are responsible for this value. First, the 
NMR properties of individual atoms, rather than aggregate 
properties of an entire molecule, can be measured. These 
atoms can be of multiple types including commonly used, 
and structurally important, atoms like carbon, nitrogen, 
and hydrogen, or atoms used as probes such as deuterium 
or fluorine. Second, the measurements can be done over a 
vast range of time scales, from nanoseconds to seconds. 
These two important attributes mean that NMR can probe 
dynamics with atomic spatial resolution and with a tempo-
ral resolution matched to the biological process in question. 
This ability to examine different atomic types and different 
timescales has led to the development of a wide range of 
NMR experiments, each optimized for a different dynamics 

phenomenon and different time scale (Sekhar and Kay 2019; 
Stetz et al. 2019; Marušič et al. 2019).

An individual NMR property, such as the T2 relaxation 
rate constant, has contributions from multiple time scales, 
and different NMR pulse-sequences have been developed 
that are appropriate for these different time ranges (Kleck-
ner and Foster 2011). Even within a single NMR property 
and time range, multiple types of experiments can be per-
formed (cf. R2 and R1ρ relaxation dispersion etc. for chemi-
cal exchange measurements in the microsecond range). Each 
different experiment type may require a different method 
of analysis based on the fundamental equations describing 
the physical process as coupled to the evolution of nuclear 
spin magnetization. The complexity of these data has led to 
development of a wide variety of different software packages 
for NMR relaxation analysis by various research groups. 
Even for a single type of experiment, multiple packages 
exist. Someone analyzing R2 relaxation dispersion data can 
choose from, for example, NESSY (Bieri and Gooley 2011), 
GUARD (Kleckner and Foster 2012), GLOVE (Sugase et al. 
2013), ShereKhan (Mazur et al. 2013), relax (Morin et al. 
2014) ChemEx (Bouvignies 2017), catia (Hansen et al. 
2008), cpmg_fit (Korzhnev et al. 2007) and others. Ease 
of analysis and the ability to compare different relaxation 
parameters on a single system is improved when the applica-
tion, as with several of these existing programs, can analyze 
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different relaxation experiments. In this way, a user aiming 
to collect and analyze different relaxation experiments on 
their molecular system does not need to learn operation of 
multiple programs, convert their raw data into a variety of 
different data formats, and possibly run the software on a 
different OS than they normally use.

We have aimed to develop a new application that builds 
on advances made in the many existing programs and is 
designed from the beginning to support multiple types of 
relaxation experiments. Our new program is cross-platform, 
so it is functional on MacOS, Windows and Linux operating 
systems. It has a high-quality graphical user interface and 
supports multiple relaxation experiment types with a com-
mon GUI and data formats. At present it supports analysis 
of exponential decay experiments such as T1 and T2, as well 
as CEST and R2 and R1ρ relaxation dispersion. Additional 
experiment types such as DEST (Fawzi et al. 2011) and 
model-free analysis capabilities (Mandel et al. 1995) are in 
development.

Methods and implementation

The RING NMR Dynamics software is developed in the 
Java programming language. Using Java allows the software 
to run unchanged on standard computer operating systems 
(Windows, MacOS and Linux). An additional advantage of 
Java is that we are able to easily take advantage of multi-core 
computers to accelerate the application by running various 
calculations, such as Monte Carlo simulations, in parallel. 
Using the new JavaFX GUI toolkit (Weaver and Vos 2012) 
provides for a high quality, and cross-platform, graphical 
user interface. The software incorporates Jython, a Java-
based implementation of the Python scripting language, to 
allow for custom scripting (Juneau et al. 2010). Use of the 
Apache Commons Math library provides access to a variety 
of mathematical functions, including a variety of methods of 
numerical optimization. We also include Smile (Statistical 
Machine Intelligence and Learning Engine, https​://haife​ngl.
githu​b.io), which provides capabilities for adding additional 
analyses based on machine learning.

Parameter optimization

The primary information derived from the analysis of relaxa-
tion data are the parameters that characterize each model, 
such as relaxation rates, chemical exchange rates, popula-
tions, and chemical shift differences between states. These 
parameters are obtained by optimizing their values to mini-
mize the difference between values calculated from mathe-
matical models and the measured data values. Typical relax-
ation models contain the parameters as non-linear terms, 
which precludes the use of ordinary least squares analysis. 

Non-linear optimizers require initial values of the param-
eters to be optimized, and convergence of the optimizer to a 
global minimum may depend on the quality of these values. 
We have approached this issue in several ways. Previous 
programs for NMR relaxation analysis often utilize gradient 
minimizers using algorithms such as Levenberg–Marquardt 
though some, such as relax (Morin et al. 2014), include non-
gradient optimizers. Gradient-based algorithms often require 
guesses close to the global minimum. We have chosen to use 
more recent algorithms that tend to have a wider range of 
convergence. We have implemented both BOBYQA (Powell 
2009) and CMA-ES (Auger and Hansen 2005). The latter 
method, Covariance Matrix Adaptation-Evolution Strategy, 
is our primary optimizer. The CMA-ES algorithm samples 
a population of parameter sets and evolves that population 
towards values that have better fitness. Both of these opti-
mizers support bounds, allowing us to ensure that the mini-
mization converges with physically meaningful parameters. 
These two algorithms can be slower than gradient-based 
methods, but besides their good convergence properties, the 
lack of a requirement for implementing gradient calculations 
allows for quick implementations of new models.

While CMA-ES and BOBYQA both have good conver-
gence properties, it is still advantageous to start with reason-
able guesses. Typical algorithms for relaxation fitting use a 
grid or random search with bounds to find starting parame-
ters (see for example, GLOVE (Sugase et al. 2013)). We use 
two alternatives for directly calculating starting values. First, 
for some equations it is possible to use various approximate 
rules to come up with good guesses. This is trivial for expo-
nential decay, and reasonable guesses can be made for R2 
relaxation dispersion fast-exchange equations as well. For 
example, the lowest measured Reff is a good estimate of the 
relaxation rate in the absence of exchange, the difference 
between this value and the largest measured value is a good 
estimate of Rex, and the kex can be approximately calculated 
from the midpoint of the dispersion curve.

Neural network guessing algorithm

More complex relaxation models are less amenable to using 
this rule-based approach for obtaining initial model param-
eters. Instead, we have developed a new protocol for estimat-
ing the values of the parameters from the experimental data. 
This protocol uses a multi-layer neural network (Goodfellow 
et al. 2016) that is trained using simulated data as input and 
the parameters used to generate the simulated data as test 
data for output. Training yields a network that, given a set 
of input data, can generate output parameters close to those 
used to generate the input. The trained network can then be 
presented with an experimental data profile and the output 
values are then good guesses that can be used as input to the 
numerical optimizers.

https://haifengl.github.io
https://haifengl.github.io
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Separate neural networks were trained for the fast and 
slow R2 relaxation dispersion models and CEST. The R2 
relaxation dispersion model training was done using the B0 
field and R2eff calculated at 10 different values (10.0, 20.0, 
50.0, 100.0, 200.0, 400.0, 600.0, 800.0, 1000.0 and 1100.0) 
of the CPMG field strength (νCPMG) as input values. The net-
work was trained by optimizing the network to reproduce the 
parameters (kex, R0

2
 and �min

ppm
 for CPMG Fast, and kex, R0

2
 , pa 

and δppm for CPMG Slow) used to generate the input values. 
All input values were scaled to fall in a range of approxi-
mately 0.0 to 1.0. The CPMG field values were chosen to 
provide reasonable coverage of typical experiments. Because 
actual experiments are not necessarily performed at these 
values, we used interpolation of the measured R2eff values 
to estimate the R2eff values that would have been measured 
at the input values used in the training.

Instead of training the network used for CEST param-
eter estimation on the actual data points of CEST profiles, 
we used values derived from these profiles. These values 
were estimated from an analysis of the peak shapes of the 
CEST profile and included (for both the on-resonance and 
off-resonance peaks) the widths of the peaks at 25%, 50% 
and 75% of the maximum depth, the maximum depth, and 
the baseline (estimated by averaging values at the edges of 
the profile). The irradiation time (Tex) and B1 field strength 
were also used as inputs. As with R2 relaxation dispersion 
training, the input values were scaled to fall in a range of 
approximately 0.0 to 1.0. The parameters used to generate 
the input profiles (and used for validating outputs) included 
kex, pb, R2A and R2B.

For both the R2 relaxation dispersion and CEST networks, 
we synthesized 10,000 training examples, 3,333 validation 
data sets and 500 unique testing examples. Each training 
set was generated by randomly generating values (within 
appropriate ranges) of the input parameters. A total of 5 lay-
ers were used (including input and output layers). The three 
hidden layers used a ReLU (rectified linear unit (Goodfellow 
et al. 2016)) activation function and the output layer used a 
linear activation function.

The number of neurons in the hidden layers was opti-
mized by training five versions of the network and choos-
ing the model that produced the lowest root-mean-square 
error on the validation data. For each of the five models 
trained, the number of neurons in the hidden layers were 
randomly determined, with the constraint that each layer 
always contained a number of neurons greater than or equal 
to the number of neurons in the preceding layer. The model 
which contained the smallest error calculation was returned. 
The network topologies (number of layers and neurons), the 
activation functions used, and the weights and biases used to 
connect each layer were stored in text files that are delivered 
with the application and loaded on demand during parameter 
guessing.

Error analysis

The output of the numerical optimizers described above 
gives parameter values that best describe the experimental 
data, but it is also essential to provide information on the 
confidence of these parameters given the input data. Since its 
introduction to NMR relaxation analysis protocols in 1991 
(Palmer et al. 1991), a standard procedure to generate this 
confidence information is to use parametric bootstrapping 
(Hastie et al. 2009). In this protocol, simulated data sets are 
produced by evaluating the model with the best-fit param-
eters and then adding normally distributed random noise to 
the calculated values. These simulated data sets are then fit 
in the same manner as the original experimental data. For 
each simulated data set new values of the best-fit parameters 
are obtained. The distribution, from the set of fits to the 
simulated data, of each parameter is then used to estimate a 
confidence value for the parameters. Strictly speaking, with 
non-linear parameters, this information should be provided 
with confidence intervals (e.g. 5–95%), rather than a stand-
ard deviation which assumes symmetric distributions. We 
provide the standard deviation of the distribution of param-
eters, as this is customary in relaxation data fitting.

The above protocol is a parametric method of bootstrap-
ping and requires that some information about the error 
distribution of the measured values is available. Typically 
this is obtained by collecting one or more data sets with the 
same value of independent variable (relaxation time, CPMG 
strength etc.) (Palmer et al. 1991). The deviation between 
the replicate values is used to estimate the error distribution 
for all the values and this error distribution (typically rep-
resented as the standard deviation) is used when generating 
the simulated data sets.

The RING software also implements non-parametric 
bootstrapping (Hastie et al. 2009). In this method, simu-
lated data sets are generated by randomly choosing, with 
replacement, from the measured values. These new data sets 
therefore consist only of actually measured values, but some 
measured data values may be missing, and some measured 
values replicated, in any given data set. This protocol has 
the advantage that no assumptions are necessary about what 
the error distribution is, or that the error distribution meas-
ured at one or a few independent variable values applies to 
all values, and no experimental time is used in measuring 
duplicate data points.

The best fit values of the parameters are generally 
obtained in typical applications by optimizing the parameter 
values until the sums of the squared deviations between the 
calculated and measured values are minimized (least squares 
fitting). This criterion is a requirement of gradient based 
minimizers such as Levenberg–Marquardt, but is not neces-
sarily the best choice. In particular, least squares fitting is 
heavily influenced by outliers, as the square of their large 
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deviation contributes disproportionately to the fit. More 
robust methods, such as minimizing the sum of the absolute 
values of the deviations, are possible with the non-gradient 
based optimizers used here. We provide the option of mini-
mizing either the sum of squares or sum of the absolute 
values of the deviations. In both cases the deviation can be 
scaled by an error estimate for that value.

Graphical user interface

While the software can be run from the command line, and 
this is useful for batch processing of multiple data sets, a 
graphical interface provides convenience and data visuali-
zation. The GUI is designed to make it easy to set up data 
analysis and to allow the user to seamlessly see the connec-
tions between data values and results. For example, Fig. 1 
shows the graphical interface for analysis of R2 relaxation 
dispersion data for BPTI. Clicking on a bar in the residue 
plot shows the data values for that residue, while clicking on 
a data point in the XY plot shows the raw data values in the 

data table. NMR relaxation parameters are often correlated 
with the secondary structure of the macromolecule, and so 
we allow display of a graphical representation of protein 
secondary structures on the residue bar chart.

The visualization capability has been extended to allow 
the user to see the raw NMR data in NMRFx Processor 
(Norris et al. 2016) as well. A listener based on sockets was 
added to NMRFx, and the RING software can now commu-
nicate to this listener through the sockets. A data value in 
the RING data table, which also includes the NMRFx peak 
IDs, can be highlighted and the spectral region for the peak 
is displayed in NMRFx with the click of a button (Fig. 2).

Data can be loaded from several text formats. It is par-
ticularly easy to do the peak picking and measurement in 
NMRFx Processor, as the peak measurement files can be 
directly read, but data from other programs can be con-
verted into the RING input formats using simple scripts. 
Sample data sets are also provided for exponential decay, 
R2 relaxation dispersion, CEST, and R1ρ relaxation disper-
sion profiles.

Fig. 1   Example of the graphical user interface being used to ana-
lyze R2 relaxation dispersion data from BPTI. Data values are pre-
sent for all residues with gray bars, and the data for seven residues 
are selected for a simultaneous fit. A secondary structure diagram is 

shown at the bottom, with sheet residues indicated with blue arrows, 
helical residues with a red helical pattern, and cystine residues in 
disulfide bonds shown as connected by thin lines



13Journal of Biomolecular NMR (2021) 75:9–23	

1 3

Data fitting

Fitting data from individual residues is supported for all 
experiment types, and global fitting to multiple residues is 
also possible for R2 and R1ρ relaxation dispersion and CEST 
experiments. In global fitting, parameters such as kex and 
excited state populations can be shared by multiple residues.

For R2 relaxation dispersion, three models are available 
to describe the data for the following scenarios: no exchange 
( Reff

2
= R0

2
 ), exchange in the fast limit (kex >  > δω), and when 

exchange is not in the fast limit. Fast exchange is typically 
modeled with Eq. (1), where R0

2
 is the effective relaxation 

( Reff

2
 ) at infinite CPMG field strength (νCPMG) or where no 

exchange is present, kex is the exchange rate, and Rex repre-
sents the chemical exchange contribution to transverse relax-
ation. As seen in Eq. (2) Rex contains contributions from the 
populations, where pa is the ground or major state and pb 
is the excited or minor state (pb = 1-pa), the chemical shift 
difference between the two states (δω), and the exchange 
rate (kex). As the populations and shift difference only 
appear in Eq. (2) it is not possible in the fast-limit regime 

to individually extract their contributions. For R2 relaxa-
tion dispersion data outside the fast exchange limit, data can 
be fit to a model using the Carver and Richards equation 
(Carver and Richards 1972) with separate parameters for 
kex, pa, δppm and R0

2
.

(1)R
eff

2
= R0

2
+ Rex

[

1 −
4�CPMG

kex
tanh

kex

4�CPMG

]

(2)Rex =
papb��

2

kex

(3)Rex =

(

2�B
0
�
min
ppm

)2

4kex

(4)�
min
ppm

= 2
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papb

�

��

2�B
0

�

= 2
√

papb�ppm

Fig. 2   Example of the connection from the RING software to 
NMRFx Analyst. A residue is selected in the residue bar plot, which 
results in display of the intensity-time data. Selecting a data point 

then highlights a row in the Data table. Clicking the “show NMRFx 
Peak” button drives NMRFx to display the actual spectral data for 
that peak
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A limitation of fitting with Rex as a parameter is that 
the contribution from the chemical shift difference (in 
radians/sec) makes it field dependent. The reported value 
depends on the B0 field of the measurement, and when data 
are acquired at multiple fields Rex is typically reported at 
one field, making the reported value somewhat arbitrary. 
Rather than fitting Rex scaled by the field each data set is 
acquired at, we have chosen to fit to a field independent 
parameter. In our fitting, the Rex of Eq. (1) is calculated 
during fitting using Eq. (3), where B0 is the field (in MHz) 
for the measured nucleus and the actual fitted parameter is 
�
min
ppm

 . Substituting the right-hand side of Eq. (3) for Rex in 
Eq. (2) and rearranging yields Eq. (4). Equation (3) was 
normalized so that when pa = pb = 0.5 the term to the left 
of δppm in Eq. (4) is 1.0. Thus �min

ppm
 represents the chemi-

cal shift change that would be present if the populations 
were equal. If the actual populations are unequal the shift 
difference would be larger, so the value provides the users 
with an indication of the minimum shift change that must 
be present (hence the name �min

ppm
 ) and is a value that is 

independent of the measurement field.
During development of the software, we explored and 

included a wide variety of fitting models for CEST and 
R1ρ relaxation dispersion. These models are divided into 
two categories: those that involve an exact solution using 
integration of the Bloch–McConnell equations, and those 
that involve various approximations. The models involving 
approximations run much faster and are useful for explora-
tory analysis, while the exact solutions are more accurate, 
but slower. These models are summarized in Table 1. User 
choices for models can be selected in the user preferences 
interface and are preserved between sessions.

This preferences interface also includes options such as 
the choice of minimizer, bootstrap optimizer, number of 
bootstrap samples, and fit weighting and tolerances.

When the same data set is fit to multiple models (equa-
tions) we provide model selection using the Akaike Informa-
tion Criterion (AIC) (Cavanaugh and Neath 2019).

Data visualization

In addition to data fitting, the RING GUI also includes an 
educational tool to simulate T1, T2, R2 relaxation dispersion, 
CEST, or R1ρ relaxation dispersion profiles in the absence 
of experimental data. The shape of the simulated profile can 
be adjusted using the parameter value sliders, and exam-
ple data points can also be generated and subsequently fit. 
This allows the user to get a general idea of how various 
parameters affect the data profile without having to perform 
potentially time-consuming fits to actual data.

In order to use the data figures in publications, the RING 
software allows exporting of charts (both XY and the residue 
bar chart including the secondary structure) in PNG and 
SVG (a vector format that preserves full data resolution) 
formats. The user can also export data into plot files that 
can be read in the plotting program Grace, and that can be 
executed in the programming/plotting environments of R 
and Python. Using the latter two programs allows the user 
to have programmatic control over all aspects of plotting.

There can be a high degree of correlation between param-
eters used in some NMR relaxation models. This is espe-
cially true when data are only collected at one field, and 
it is useful to be able to observe this. One way to visualize 
parameter correlation is to plot the parameters obtained dur-
ing the bootstrap procedures described above. The RING 
software retains all the measured parameters generated in 
the bootstrapping process and any pair of parameters can be 
plotted with respect to each other as shown in Fig. 3.

All the RING software is released as open source, using 
the GNU Public License (GPL v3.0) and is available on 
GitHub (https​://githu​b.com/bruce​johns​on/ringn​mrdyn​amics​

Table 1   Models used for fitting CEST and R1ρ relaxation dispersion data sets

Models Description Constraint

Laguerre Calculates the Laguerre second-order approximation (Miloushev and Palmer 2005) to the eigenvalue and returns 
R1ρ and then CEST intensity ratio

R1A = R1B
R2A = R2B

Trott–Palmer Calculates the perturbation approximation to the eigenvalue (Trott and Palmer 2002; Palmer 2016) and returns 
R1ρ and then CEST intensity ratio

R1A = R1B

Baldwin–Kay Calculates a first-order approximation to the eigenvalue (Baldwin and Kay 2013) and returns R1ρ and then CEST 
intensity ratio

R1A = R1B

Trott–Palmer-SD Same as Trott–Palmer above, but varies B1 field over a specified range to approximate experimental variance R1A = R1B

EigenExact1 Performs an exact numerical calculation of least negative eigenvalue of Bloch–McConnell rate matrix and returns 
CEST intensity ratio. Uses matrices and eigenvalue decomposition

R1A = R1B

Exact0 Performs an exact numerical integration of thermalized Bloch–McConnell rate matrix and returns CEST inten-
sity ratio. uses matrices and matrix exponential

None

Exact1 Same as Exact0 except for R1 constraints R1A = R1B

Exact2 Same as Exact0 except for R2 constraints R2A = R2B

https://github.com/brucejohnson/ringnmrdynamics
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). Executables are available at https​://comdn​mr.nysbc​.org/
comd-nmr-disse​m/comd-nmr-softw​are.

Results

Figure 1 illustrates the software in action. As can be seen 
in the figure, the main GUI is divided into three regions. 
Across the bottom is a bar chart that plots data as a function 
of residue position. At top left is an XY plot for showing 
residue specific data. At top right is a tabbed pane with tabs 
for data display and interactive controls.

After loading in the data, the filled bars (gray fill) in the 
residue bar chart indicate residues with available data. After 
performing data fitting to all residues (one option from the 
Fitting menu), the bars are plotted with values relevant to the 
data type. For chemical exchange experiments (R2 relaxa-
tion dispersion, CEST, R1ρ relaxation dispersion) the plot 
values show the best fit values for the exchange rate. Val-
ues are only shown where the AIC model selection protocol 
has selected a model for the residue with exchange. For T1 
and T2 experiments the plotted value will be the relaxation 
rate. Bars have a line indicating estimated error for best-fit 
parameters (where relevant). While the default is to plot kex 
or relaxation rates, any residue specific parameters available 
after fitting can be displayed. These include other parameters 
from the fitted model as well as values such as the RMS 
(root mean square deviation of fit) or the AIC. By default, 

model specific parameters are plotted for the model that was 
selected (by AIC protocol) for each residue, but the user can 
choose to plot values for any of the fitted models. Multiple 
values can be plotted simultaneously either by adding addi-
tional rows of bar charts, or by plotting multiple values for 
each residue.

Macromolecular dynamics are correlated with secondary 
structure, so it can be useful to show a graphical representa-
tion of the secondary structure along with the residue spe-
cific values. An example is shown at the bottom of Fig. 1. 
The plot can represent helices, sheets and lines connecting 
residues in disulfide bonds. This example shows that the 
exchanging residues of BPTI are adjacent to a disulfide bond 
consistent with the dynamics being due to disulfide bond 
isomerization (Millet et al. 2000).

The data values in the XY plot are typically selected 
from the interactive simulation controls or, as shown here, 
by selecting residues in the bar chart. When the user clicks 
on a bar in the residue plot, the XY data for that residue is 
displayed. The exact plot depends on the experiment type. 
Here, the R2eff vs. νCPMG is plotted. Multiple residues can be 
selected (seven in this example).

Fitting can be done to all the residues that have data, or to 
the subset of residues that have been selected for display in 
the XY chart. When multiple residues are selected the fitting 
is done simultaneously to the data from the selected residues 
and appropriate parameters (in Fig. 1, kex and pa) are shared 
by all selected residues.

Fig. 3   Plots of parameter values generated during the parametric 
bootstrapping protocol. These plots can be generated interactively 
within the software after any fitting procedure. The sample data 
shown here is R2 relaxation dispersion data from the sample BPTI 
data set fit to the slow-exchange model. Data in the left panel was 
generated from a fit with data at 500 MHz. Data in the right panel is 
from a simultaneous fit to data at 500 and 600 MHz. The GUI allows 

the user to plot any pair of parameters. Here the plot of pA and kex 
is shown. The data at one field shows that these two parameters are 
highly correlated, making it difficult to establish a narrow confidence 
range for either one. Note that the plot limits for these two plots are 
different. The bootstrapping values at two fields are in a much nar-
rower, and non-overlapping range, compared with those values from 
the single field fit

https://comdnmr.nysbc.org/comd-nmr-dissem/comd-nmr-software
https://comdnmr.nysbc.org/comd-nmr-dissem/comd-nmr-software
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The tabbed pane at top right of the GUI has tabs for vari-
ous data values and controls. After fitting data, the Param-
eters tab shows a table of all fitted parameters with their best 
fit values and estimated errors. Using the mouse to click on 
a data value in the XY chart will update a table in the Data 
pane with the raw values for that plot.

A significant goal for development of this application was 
to make it educational for users new to NMR dynamics. One 
part of that was to provide the ability to simulate data with 
interactive controls so that users can observe the effect that 
changes in parameters have on the profile of experimental 
data. These controls are available in the Simulate tab and an 
example of its use is shown in Fig. 4. The user can select 
the experiment type (R2 relaxation dispersion, CEST etc.), 
the particular model (FAST exchange, SLOW exchange 
etc.) and nucleus. Appropriate sliders are displayed which 
can be used to set values for the parameters. As values are 
adjusted the XY plot will show a line calculated with the 
current parameters. Simulated experimental data values can 
be generated (Gen button) with added noise (shown as filled 
circles in plot). This is useful for testing the guessing (Guess 
button) and fitting (Fit button) algorithms. Values for the 
independent variable and amount of added noise can be set 
in the Options tab.

Relaxation models can be underdetermined by the avail-
able data and the model parameters can be highly corre-
lated as a result. Plotting the data from the bootstrapping 
can be used to visualize this. Figure 3 shows a plot of pa 
vs. kex from the 500 Monte Carlo replicates used in the 
bootstrap estimate of error (Millet et al. 2000; Kovrigin 

et al. 2006) values from the R2 relaxation dispersion data 
for one residue of BPTI. The left panel (4A) is data from 
only a single field (500 MHz). In this case the population 
and exchange rate are highly correlated. The right panel 
shows the results obtained when data from two fields (500 
and 600 MHz) are used. As is well known (Millet et al. 
2000; Kovrigin et al. 2006), data from the additional field 
can significantly constrain the data so, visually, essentially 
no correlation exists between the values. Importantly, as 
can be seen from the figure, the fit parameters are essen-
tially non-overlapping between the single and two-field 
fits. Fitting to two fields constrains the parameters to val-
ues that are not included with the single field fit. Thus, this 
tool provides an important guide to users in evaluating the 
sufficiency of their data.

Reaching the global minimum in fitting non-linear mod-
els is dependent on both the optimization algorithm and the 
quality of the starting guess. We have provided two optimiz-
ers, CMA-ES and BOBYQA, that have good convergence 
properties. We’ve also introduced a new protocol using an 
artificial neural network (ANN) for generating the initial 
parameters. Figure 5 shows a CEST data set with the lines 
showing the model with the initial parameters and final best-
fit parameters. As can be seen, the ANN is able to generate 
guesses that give a good representation of the data without 
needing to do grid or random searches over parameter space. 
The network is trained, and predicts, using measurements 
of the peak widths. These are incomplete representations 
of the full data, so we do not expect the network to provide 
best fits by itself.

Fig. 4   Example of the graphical user interface being used to simulate data. As the sliders in the right side are adjusted, the curve in the plot on 
the left is updated based on the selected equation and parameter values



17Journal of Biomolecular NMR (2021) 75:9–23	

1 3

To validate the software, we have relied on testing against 
real-world, previously published, data sets. In the sections 
below, we describe tests using CEST, R1ρ and R2 relaxation 
dispersion data sets.

CEST performance metrics

Given the wide variety of models available for CEST fitting, 
we conducted a series of tests to gauge the calculation speed 
and accuracy for each model. The tests were done using 
previously published 13C CEST data on a fluoride ribos-
witch (Zhao et al. 2014). All test fits were performed using 
the CMA-ES optimizer. The speed of the CEST data fitting 
obviously depends on the equation used. As expected, the 
equations using approximations were very fast, with best-
fit parameters obtained in less than 50 ms. The equations 
involving exact solutions to the Bloch–McConnell equations 
were much slower, taking 2–3 s to fit the data. The slower 
speed is not surprising given the much greater computa-
tional burden involved in the exact analysis. The current 
performance, though slower than the approximations, is 
significantly better than our original version due to careful 
optimization of the code.

To determine how the number of bootstrap samples 
affects the total time for the error calculation, tests were con-
ducted using a range of 10 to 500 bootstrap samples using 
the CMA-ES optimizer. The results are plotted in Fig. 6. 
Regardless of the optimizer or equation used, a near linear 
relationship is observed between the number of bootstrap 
samples and the error calculation time: doubling the number 
of bootstrap samples roughly doubles the time it takes to 
complete the error calculations. The bootstrap time is, how-
ever, significantly faster than expected based on the refine-
ment time. For example, the calculation using 100 bootstrap 

samples is done in approximately 20 times (rather than 100 
times) the time it takes to do one refinement. This is, in part, 
due to the fact that we use Java threads to run the bootstrap-
ping in parallel, taking advantage of multi-core processors 
that are typical of modern computers.

Fit accuracy for the CEST equations was also examined 
with the RNA CEST data (Zhao et al. 2014). To assess 
the accuracy of the various models we measured the fit 
quality (rms deviation) and compared the best fit values 
for all the model parameters to the reported literature val-
ues (Table 2). The different models fall into three groups 
determined by whether approximations are used and 
what parameters are constrained. The best fits, and clos-
est match to literature data, are obtained with two of the 
three exact models (EXACT0 and EXACT1). These do a 
numerical integration of the Bloch–McConnell rate matrix 

Fig. 5   Demonstration of the parameter guessing with the trained neu-
ral network. Sample data are CEST profiles from the sample RNA 
data (Zhao et al. 2014). The solid lines on the left panel are calculated 

from the parameters output from the neural network with the sample 
data as input. The solid lines in the right panel represent calculated 
curves from the best-fit parameters (using the guesses as input)

Fig. 6   Performance assessment of the CEST data fitting showing the 
significantly slower fitting obtained with the EXACT equations, and 
the near-linear increase in time with increasing number of bootstrap 
samples
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and allow independent values for the ground and excited 
state R2 values. The similar qualities for these two models 
indicate that constraining R1 values to be the same for 
the ground and excited states (as done in EXACT1) does 
not reduce the quality of the fit. Intermediate results were 
obtained with the Trott–Palmer and Baldwin–Kay approxi-
mation models, and the EIGEN-EXACT model. The rms 
deviations are nearly as good as the two exact models, 
but kex is larger, and pb a little smaller, than the literature 
values. The worst fits and largest deviations from literature 
values are obtained with the Laguerre approximation and 
EXACT2 models. Both of these models constrain the R2 
values for the excited and ground states to be the same and 
this is clearly, unlike constraining R1, a hindrance to good 
quality fits for these data.

Given the better quality fits, but slower performance, 
of the exact models, a reasonable approach is to use the 
approximate models like Trott–Palmer or Baldwin–Kay for 
exploratory analysis (or during use of the simulation tool), 
and then generate final results with EXACT0 or EXACT1.

Estimation of the uncertainty of the fitted parameters 
is also important, and we provide two ways of estimating 
this uncertainty. The values in Table 2 were generated with 
our non-parametric bootstrapping protocol. It can be seen 
that the estimated standard deviations are larger than the 
literature values. For example, the EXACT1 model gives a 
kex value of 111 ± 13 whereas the reported value is 112 ± 4. 
Estimating the errors with parametric bootstrapping using 
the authors’ error estimates yields values (111 ± 4) consist-
ent with the literature values. The rms deviation of the fit 
with the EXACT1 model is approximately 0.01. This value 
is larger than the published error estimates (0.003, 0.006 
and 0.007 for the three data series fitted). This suggests that 
those estimates might underestimate the errors and that the 
values obtained from non-parametric bootstrapping might be 
more realistic estimates of the uncertainty in the parameters. 
In any case, providing both methods of uncertainty estima-
tion is an important feature, and allows for data analysis 
without explicit measurement of the data errors.

While the exact equations yield more accurate values for 
the CEST parameters, optimization of model parameters is 
orders of magnitude slower than the fitting using the approx-
imate equations. These differences in timing are particularly 
pronounced when performing the bootstrap simulations to 
estimate the uncertainty in the parameters. To determine the 
number of bootstrap samples needed for accurate parameter 
error value estimates, we calculated the error values for the 
RNA CEST fit parameters using bootstrapping with 10, 25, 
50, 100, 200, 300, 400, and 500 samples. Figure 7 shows 
the kex error values as a function of the number of CMA-ES 
bootstrap samples for the nine CEST equations. Generally, 
the error estimates fluctuate up to 50 samples, after which 
the variability levels off. This suggests that using around 50 Ta
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samples is sufficient for reasonable error estimates, but the 
user may wish to run more to get final estimates.

R1ρ relaxation dispersion performance metrics

The R1ρ relaxation dispersion fitting was tested with the 
R1ρ data for the same RNA molecule as the CEST data 
(Zhao et al. 2014). We assessed the accuracy of the various 
models in the same way as for CEST. Examples of fitted 
parameters and the reported literature values are shown in 
Table 3. These data were collected with an experiment in 
which only ground state magnetization is present at the start 
of the spin-lock period. As noted by the original authors 
(Zhao et al. 2014), this leads to an apparent elevation of the 
baseline relative to what is expected for the R1 relaxation 
rate. Correction for this can be done in two ways. When fit-
ting with the EXACT0 equation, which uses integration of 
the Bloch–McConnell equations, one needs to ensure that 
the vector representing starting magnetization is set to be 
the ground-state population (based on the fitted population 
parameter). Alternatively, one can calculate a correction 
factor as previously described (Korzhnev et al. 2005). In 
that case, the apparent R1ρ is fitted as the sum of the cal-
culated R1ρ and this correction factor. In both these cases 

it is necessary to constrain the R1 relaxation rate to a value 
obtained by other methods (Zhao et al. 2014). The software 
described here has a preference value that can be set and 
controls whether the correction factor is applied.

For this sample R1ρ dataset, the best model, as selected by 
the lowest AIC value, is the EXACT0 model using integra-
tion of the Bloch–McConnell equations. The Trott–Palmer 
approximate model, however, also has a very good fit and 
the calculation time is much lower. Both methods give good 
agreement with the literature values, though R2B is some-
what underestimated with the Trott–Palmer model. As with 
the CEST and R2 relaxation dispersion fitting, it is possible 
to simultaneously fit multiple data sets. Figure 8 shows the 
fit to the sample RNA data with measurements from two 
residues and two atoms on each residue. Values of kex and 
pb are globally fit to all data along with 20 other individual 
parameters describing R1, R2 and offsets. The resulting 
parameters have good agreement with the literature values 
for a global fit.

R2 relaxation dispersion fitting tests

Validation of the R2 relaxation dispersion fitting was done by 
comparison to previously published R2 relaxation dispersion 
data for basic pancreatic trypsin inhibitor (BPTI) (Millet 
et al. 2000). All residues were fit, but Table 4 shows only 
results for residue 38 and some global fits of multiple resi-
dues. The values shown were chosen to make several points 
about R2 relaxation dispersion fitting. One of these is the 
ease with which the software can be used to explore fits with 
different models. The data were fit to both the fast-exchange 
and slow-exchange models, and at 500 MHz and 600 MHz 
individually and simultaneously. Comparing the simultane-
ous 500/600 MHz fits to the two models shows, based on 
the AIC values, that the slow-exchange model is appropriate 
for fitting data for this residue. Another point is that com-
monly used protocols for determining the errors in parameter 
estimation can be misleading. For example, the kex values at 
500 MHz and 600 MHz differ substantially, both for our fits 
and the literature values, and the differences far exceed the 

Fig. 7   Estimate of the error in the best-fit kex value for the CEST data 
as a function of the number of bootstrap samples

Table 3   R1ρ relaxation dispersion fitting parameters for the sample RNA data

The best fit to the data is shown in bold. Literature values are for the RNA C8 atom at 30 °C from (Zhao et al. 2014)

AIC RMS kex pb δA0 δB0 R1A R1B R2A R2B

NOEX 906.4 5.48 0.0 ± 0.0 0.0 ± 0.0 0.2 ± 0.08 0.0 ± 0.0 2.4 ± 0.04 0.0 ± 0.0 43.4 ± 4.6 0.0 ± 0.0
TROTT_PALMER 367.1 0.464 114.3 ± 2.3 0.1 ± 0.002 0.0 ± 0.01 4.0 ± 0.04 2.5 ± 0.03 2.5 ± 0.03 28.7 ± 0.4 81.2 ± 11.4
BALDWINKAY 408.3 0.558 105.2 ± 3.5 0.1 ± 0.002 0.0 ± 0.01 3.9 ± 0.04 2.5 ± 0.02 2.5 ± 0.02 34.2 ± 0.4 101.2 ± 17.2
LAGUERRE 571.2 1.178 117.7 ± 5.1 0.11 ± 0.004 − 0.3 ± 0.02 4.0 ± 0.07 2.5 ± 0.01 2.5 ± 0.01 28.5 ± 1.3 28.5 ± 1.3
EXACT0 310.8 0.36 111.6 ± 2.5 0.11 ± 0.002 0.0 ± 0.0 3.9 ± 0.02 2.5 ± 0.03 2.5 ± 0.03 29.0 ± 0.3 130.3 ± 20.0
EIGENEXACT​ 313.2 0.364 110.7 ± 1.6 0.11 ± 0.002 0.0 ± 0.01 3.9 ± 0.04 2.5 ± 0.03 2.5 ± 0.03 30.3 ± 0.3 67.2 ± 11.5
Literature 116.0 ± 2.0 0.11 ± 0.002 − 3.95 ± 0.02 2.4 ± 0.03 2.4 ± 0.03 28.8 ± 0.2 122.0 ± 15.0



20	 Journal of Biomolecular NMR (2021) 75:9–23

1 3

reported error limits using parametric bootstrapping. The 
table also shows, for data at 500 MHz, the fit using non-
parametric bootstrapping. This fit gives much larger error 
bars (± 225) than that using the parametric fit (± 11) and 
is probably a more realistic estimate of the uncertainty in 
the parameters. The use of parametric fitting requires good 
estimates of the errors in the measurements, and does not 
capture the effect of systematic deviations in data points. 
For example, visual inspection of the data suggests that the 
first data point of the 500 MHz data is displaced somewhat. 

Some of the bootstrap samples will not include this value, 
and some will have it replicated and its effect will therefore 
be manifested in the distribution of fits.

A significant contributor to the varied values of kex 
that are observed in the table is the correlation that is 
observed between parameters, as illustrated in Fig. 3. Per-
forming simultaneous fits to data at two or more fields 
significantly reduces correlation between parameters, and 
results in error estimates that are more realistic. As can 
be seen in Table 4, fitting can be done for data at multiple 

Fig. 8   Example of R1ρ profiles 
fit simultaneously for two atoms 
from two RNA residues at three 
different B1 field strengths

Table 4   R2 relaxation 
dispersion fitting parameters for 
the sample 15N data from BPTI

LitLiterature values (Millet et al. 2000)
a Errors calculated with non-parametric method
b Reported R2 value is the average of the R2 values at the two fields
c These parameters are residue specific so are not listed in this table when more than one residue is fit 
simultaneously

Residue Field (MHz) AIC kex R2
c δppmmin δppm

c pA

38 500 17.3 643 ± 11 8.18 ± 0.06 0.54 ± 0.01
38a 500 17.2 643 ± 225 8.2 ± 1 0.54 ± 0.09
38Lit 500 540 ± 10 8.26 ± 0.11 0.51 ± 0.01
38 600 9.6 824 ± 18 8.28 ± 0.07 0.54 ± 0.01
38Lit 600 766 ± 14 8.11 ± 0.11 0.53 ± 0.01
38 500, 600 44.8 729 ± 10 8.31 ± 0.05b 0.54 ± 0.01
38 500 31.8 195 ± 17 8.61 ± 0.04 1.56 ± 0.02 0.94 ± 0.003
38 600 8.7 461 ± 36 8.60 ± 0.06 1.42 ± 0.04 0.95 ± 0.001
38 500, 600 31.0 335 ± 12 8.61 ± 0.05b 1.45 ± 0.01 0.95 ± 0.001
38Lit 500, 600 380 ± 70 8.6 ± 0.1 0.91 ± 0.13 0.95 ± 0.004
38, 40 500, 600 61.7 322 ± 6 – – 0.95 ± 0.001
12,16,17, 36,38,39,
40

500, 600 342.1 308 ± 3 – – 0.95 ± 0.001
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fields and multiple residues. The two-field fit to the slow-
exchange model gives a good fit to the data with little 
parameter correlation and relatively low error bars. Add-
ing multiple residues further constrains the fit.

As a test of our ability to interactively simulate and 
fit data, we tested the software by trying to replicate fits 
done with NESSY (Bieri and Gooley 2011). R2 relaxation 
dispersion profiles were interactively simulated using the 
original parameters for the synthetic data models, one 
for fast exchange (Model 2) and one for slow exchange 
(Model 3) in the reference. To generate simulated data 
sets, the reference field was set to 800 MHz, the CPMG 
field strength values in the Options tab were set to the 
values used in the NESSY paper, and the error parameter 
was set to approximate one of the error levels used in the 
NESSY paper (5%). The sliders in the Simulate tab were 
then used to match the literature values for the parameters 
appropriate to each model. Simulated data sets were then 
generated by clicking the Gen button, and these were then 
fit using CMA-ES refinement and parametric bootstrap-
ping with 500 samples. This protocol was repeated four 
times, and the parameters reported here are the average 
values from those replicates. Table 5 shows the results 
with the NESSY parameters used to generate the data, 
and the fitted parameters obtained both in NESSY and the 
software described here. As can be seen the fitting repro-
duces, within error limits, the parameters used to generate 
the data for both the Model 2 and Model 3 data. The error 
limits are similar to those obtained with NESSY. Though 
not shown here, AIC model selection chose the appropri-
ate model (2 for the model 2 data, and 3 for the model 3 
data). This example shows how the interactive simulation 
tools can be used to readily generate and fit sample data.

Discussion

The software described here provides a unified system for 
analyzing multiple types of macromolecular dynamics with 
NMR spectroscopy. It combines, in a single package, tools 
for analyzing multiple types of relaxation experiments. 
Users do not have to choose from different programs for 
each type of experiment acquired. This is particularly impor-
tant for those users that are not experts in the large number 
of NMR methods used for these investigations. At present 
the software can fit T1 and T2 exponential relaxation data, 
and R2 and R1ρ relaxation dispersion, and CEST data. The 
software can analyze multiple types of data in one session 
and present the fits in a single window. The infrastructure 
is in place to expand this to other experiment types, such as 
DEST, and such implementation is in progress. The soft-
ware does not yet support a number of the variants of the 
experimental types that can be analyzed with other software 
applications. For example, multiple quantum R2 relaxation Ta
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dispersion, 3-site (or higher) exchange models, and account-
ing for pulse-sequence dependent artifacts are not yet sup-
ported. Still, for many users the software should provide 
a user-friendly way to analyze many data sets, and we are 
working towards a new release that will expand the range of 
models and experiment types that can be analyzed.

The program will become even more useful when the fits 
can be done simultaneously to different data sets where com-
mon parameters are constrained to be the same across the 
different experiment types. Having all the data and models 
in one program will facilitate this and is a major goal for a 
subsequent release.

An additional advance is the implementation of the tools 
in a user-friendly GUI-based program that runs on multiple 
platforms (Linux, Mac, Windows). Users are not forced to 
choose the software application based on their preferred OS. 
Installation is easy and does not require access to proprietary 
software such as MATLAB. While not necessary for use 
of the this software, we provide integration with NMRFx 
Analyst (the feature rich successor to NMRFx Processor 
(Norris et al. 2016)). Experimental data can be processed in 
NMRFx and appropriate data formats can be exported for 
analysis with the software described here. Together the two 
programs make for a rapid, integrated toolset for complete 
processing, visualization, and analysis of multiple types of 
NMR relaxation data.

The incorporation of simulation tools allows the software 
to be used in an educational setting where the influence of 
different relaxation parameters can be readily visualized. 
Availability of sample data allows users to test the software 
(and teach) with data that is known to work.
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