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Abstract
Many of the ubiquitous experiments of biomolecular NMR, including R

2
 , R

1�
 , and CEST, involve acquiring repeated 2D 

spectra under slightly different conditions. Such experiments are amenable to acceleration using non-uniform sampling 
spectral reconstruction methods that take advantage of prior information. We previously developed one such technique, an 
iterated maps method (DiffMap) that we successfully applied to 2D NMR spectra, including R

2
 relaxation dispersion data. In 

that prior work, we took a top-down approach to reconstructing the 2D spectrum with a minimal number of sparse samples, 
reaching an undersampling fraction that appeared to leave some room for improvement. In this study, we develop an in-depth 
understanding of the action of the DiffMap algorithm, identifying the factors that cause reconstruction errors for different 
undersampling fractions. This improved understanding allows us to formulate a bottom-up approach to finding the lowest 
number of sparse samples required to accurately reconstruct individual spectral features with DiffMap. We also discuss the 
difficulty of extending this method to reconstructing many peaks at once, and suggest a way forward.

Keywords Difference map · DiffMap · Sparse sampling · Reconstruction · Nonuniform sampling

Introduction

NMR experiments aiming to study molecular structure and 
dynamics will often require the acquisition of large, mul-
tidimensional data sets. While these nD experiments (n > 
1) can reveal more information than a 1D experiment, they 
also take much longer, with durations proportional to the 
number of sampled points in the n-1 indirect dimension(s). 
In order to use the discrete Fourier transform to generate the 
spectrum, the points are “densely-sampled,” i.e., measuring 
all time-domain points lying on a Cartesian grid of uniform 

intervals consistent with the Nyquist-Shannon sampling 
theorem.

Sparse sampling, also known as non-uniform sampling 
(NUS), is a common approach to speeding up the acquisition 
of nD NMR data sets. The speed-up comes from skipping 
over particular indirect-dimension data points (saving entire 
1D scans); the unmeasured points are typically set to zero to 
fill out the nD grid. Some alternative, non-Fourier process-
ing algorithm must then be used to reconstruct the spec-
trum. Examples of such reconstruction approaches include 
maximum entropy (MaxEnt) (Hoch and Stern 1996; Mobli 
and Hoch 2008; Hyberts et al. 2010; Paramasivam et al. 
2012), iterative soft thresholding (IST) (Stern et al. 2007), 
iteratively reweighted least squares (IRLS) (Schlossmacher 
1973; Kazimierczuk and Orekhov 2012), multidimensional 
decomposition (MDD) (Orekhov and Jaravine 2011), and 
compressed sensing (CS) (Kazimierczuk and Orekhov 2011; 
Bostock and Nietlispach 2018), among many others (Stanek 
and Koźmiński 2010; Ying et al. 2017; Billeter 2017; Rovn-
yak and Schuyler 2018).

Motivated by the need to accelerate 3D MRI of solids 
experiments, we recently developed one such alternative 
reconstruction method, the so-called iterated maps approach, 
which is based upon Elser’s “Difference Map” algorithm 
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(Fienup 1982; Elser 2003; Elser et al. 2007; Frey et al. 
2013). In that paper, the iterated maps method (or “DiffMap” 
for short) was successfully applied to existing 2D NMR 
spectra (both liquid state and MAS of solids) and 3D MR 
images of solids. Our iterated maps approach is related to 
SIFT (Matsuki et al. 2009, 2010, 2011), as well as to POCS 
(Haacke et al. 1991). All of these methods take advantage of 
the fact that in many NMR/MRI experiments, the user knows 
where spectral features “should” and “should not” appear, 
even if the precise details of the spectrum (e.g., point-by-
point amplitude) remain to be determined. This information 
can be exploited in a deterministic algorithm that nudges a 
sparsely-sampled data set towards its densely-sampled limit.

Many of the ubiquitous experiments of biomolecular 
NMR, including R2 , R1� , and CEST experiments (Palmer 
et al. 2001; Loria et al. 1999; Neudecker et al. 2009; Palmer 
and Massi 2006; van Zijl and Yadav 2011; Walinda et al. 
2018), are ideal targets for the iterated maps approach, since 
the series of ∼ 20 2D spectra that are typically collected 
tend to be very similar to each other. Moreover, even if a 
few slices are densely sampled, sparsely sampling the rest 
will greatly compress the total duration of the experiment.

In our earlier work, one of the 2D NMR examples was the 
�cp = 0 slice of a larger, pseudo-3D data set, acquired as part 

of an R2 dispersion experiment. For that �cp = 0 slice, we 
were able to lower the number of sampled indirect time 
points Nt1

 all the way down to an undersampling fraction of 
58.6% of the dense data ( Nt1

∕Ndense
t1

= 75∕128 ), while still 
obtaining a high-quality spectrum. As we will explain below, 
our approach to making the spectrum entirely real causes M, 
the number of f1 rows, to be given by M = 2Ndense

t1
= 256 . 

So, defining L = 2 × 75 = 150, we had clearly pushed L well 
below M (Fig. 1). While this was a significant advance, we 
did not have a deep understanding of why the method broke 
down at L. In fact, there seemed to be additional room for 
improvement, since counting the number of significant 
points in each f2 column n yielded even smaller values K(n) 
(i.e., M > L > K(n) , see Fig. 1). Could we find a way to push 
2Nt1

 below L, and perhaps all the way down to ∼ K(n) , with-
out hurting the quality of the reconstruction? In other words, 
what are the fundamental limits of this approach?

To answer this question, we first needed to develop an 
improved understanding of how the iterated maps recon-
struction method breaks down as Nt1

 is lowered, which 
included understanding the effects of multiple peaks, spec-
tral tails, noise, and other artifacts. The behavior is very 
complicated across the whole 2D spectrum. To make 

a b

Fig. 1  Background and motivation of this work. a Contour plot 
showing the central part of a M × N = 256 × 4096 2D spectrum 
from the pseudo-3D data set, with the mask(�) = 0 regions in gray. 
Axes show the frequency scaling (left and top) as well as the indices 
n = {0, 1,… , 4095} (bottom) and m = {0, 1,… , 255} (right). b Previ-
ously achieved and predicted limits to sparse sampling for the data 
set shown in a. Dense sampling corresponds to acquiring all M = 256 
complex points (dashed line), or 128 complex t1 ≥ 0 values. In prior 

work (Frey et al. 2013), we were able to push a global undersampling 
scheme down to L = 150 (dot-dashed line). However, for each f2 col-
umn of the spectrum, the number of “significant” mask(�) ≠ 0 points 
K(n) (solid line) is less than L, indicating that even better results may 
be possible. In this paper, we attempt to push our sampling fraction 
down towards K(n), by focusing on reconstructing individual peaks in 
individual columns
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progress, we decided to start with a simpler problem, by 
focusing on understanding the reconstruction of a single 
peak in a single f2 column. We then set out to answer two 
main questions: 

(Q.I)  For a high-quality reconstruction of a single peak p 
in a single f2 column, what is the minimum number 
of sparsely-sampled data points, Np

t1
?

(Q.II)  If we instead wish to reconstruct many (or all) 
peaks at once, what is the new minimum number of 
sparsely-sampled data points, N∗

t1
?

Answering question 1 will take us through most of the 
paper. As we will show, we can go very close to K(n) / 2 for 
most peaks, because we can predict what values of Nt1

 are 
susceptible to large errors, as well as the likely range of the 
“residual” small errors. Question 2 will be addressed briefly 
at the end, where we show that it is hard to beat L / 2 once 
the user tries to reconstruct many peaks simultaneously. 
A technique to get past this problem for certain types of 
pseudo-3D experiment is introduced in a companion paper 
(Rovny et al. 2019), which we will briefly discuss further at 
the very end of this paper.

Background

The NMR data set used to test our method

In this study of the DiffMap, we focus on reconstructing 2D 
slices drawn from an existing, pseudo-3D data set, which 
was previously studied in Frey et al. (2013). This particular 
pseudo-3D data set is a series of twelve liquid-state 2D 
NMR spectra, from a 13CH3 multiple-quantum CPMG relax-
ation dispersion experiment of an Isoleucine, Leucine, 
Valine 2 H, 13C-methyl labeled sample of imidazole glycerol 
phosphate synthase (IGPS) from T. maritima (Lipchock and 
Loria 2010; Lisi et al. 2018). The data was collected at 
14.1 T and 30 ◦ C with 120 t1 increments and 1889 t2 incre-
ments, using the sequence described by Korzhnev et al. 
(2004). We zero-fill the data in both dimensions to the next 
largest power of 2, giving us 128 t1 points and 2048 t2 points, 
which we treat as the set of “measured” points to simplify 
the reconstruction problem. The 1 H carrier was centered at 
0.75 ppm (not 4.7 ppm as incorrectly stated in Frey et al. 
(2013)) with a spectral width of 8500 Hz, while the 13 C car-
rier was centered at 19.5 ppm with a spectral width of 3200 
Hz. The twelve spectra correspond to �cp values of 0, 0.4167, 
0.5, 0.625, 0.7682, 1.0, 1.4286, 2.0, 2.5, 3.333, 5.0, and 10.0 
ms. We will refer to these below by their respective indices 
i
�cp

= 1, 2,… , 12 . The �cp = 0 ms slice ( i
�cp

= 1 ) of this data 
set was the subject of Figs. 2, 3 of our earlier paper (Frey 

et al. 2013). We subsequently noticed that the spectral tails 
of that i

�cp
= 1 slice are wider than all of the others, so we set 

that slice aside in the current analysis. Instead, we will 
assume the �cp = 0.4167 ms slice ( i

�cp
= 2 ) exists as a dense 

data set to make our P̂1 mask, which will then be used to 
reconstruct sparsely-sampled versions of that slice and the 
remaining ten slices, i

�cp
= 2, 3, 4,… , 12.

Iterated maps reconstruction (DiffMap)

The general approach to spectral reconstruction using iter-
ated maps has been explained previously (Frey et al. 2013). 
We quickly review how the method is applied to the 2D 
NMR data studied here, while noting a few differences from 
the prior work.

We define the complex vector �(�) to be the densely-
sampled data set in the 2D time-domain (� = (t1, t2)) , where 
t1 and t2 are the indirect and direct dimensions, respectively. 
We include the argument � to clarify that � is the time-
domain data, and will use T(�) to refer to the value of � at 
coordinate � . As acquired, a densely sampled “States”-like 
data set is typically used to fill only the first quadrant of the 
2D plane, with (t1 ≥ 0, t2 ≥ 0) . As in Frey et al. (2013), we 
instead use the same “States”-like data to fill all four quad-
rants of the time domain, such that the resulting M × N grid 
of complex data points has Hermitian symmetry about the 
origin (i.e., T(�) = T∗(−�) ) (Frey et al. 2013; States et al. 
1982; Mayzel et al. 2014). This ensures that the target dense 
spectrum, �̃(�) = Ph(FT[�(�)]) , in the 2D frequency-domain 
(� = (f1, f2)) is purely real following a 2D complex discrete 
Fourier transform FT and a known phase correction Ph (see 
Supplementary Information). As explained below, forcing 
the spectrum’s phase to be real strengthens the P̂1 mask used 
in our iterated maps approach, but the sharper spectral fea-
tures that result from this initial step will also help with other 
approaches (Zhu and Bax 1990; Mayzel et al. 2014; Ying 
et  al. 2017). For all of the 2D spectra in this paper, 
M × N = 256 × 4098 , where M = 2Ndense

t1
 and Ndense

t1
= 128 . 

In addition to specifying a point in the spectrum by the vec-
tor of frequencies � = (f1, f2) , we can also use the corre-
sponding indices m and n, which go from 0 to M − 1 and 
N − 1 , respectively.

To simulate the effect of skipping particular experiments 
(due to NUS of the indirect dimension in a “States”-like 
experiment), we construct an initial “sparsely-sampled” data 
set �0(�) = P̂0�(�) , where P̂0 is a projection that sets to zero 
all skipped points, leaving the rest alone (see Supplementary 
Information). Thus, for the t1 ≥ 0 rows of �0(�) , the number 
containing data is Nt1

 , and the number filled with zeros is 
Ndense
t1

− Nt1
 , where Nt1

≤ Ndense
t1

 . Moreover, the pattern of 
zero-filled rows is symmetric about t1 = 0 . For a given Nt1

 , 



548 Journal of Biomolecular NMR (2019) 73:545–560

1 3

the choice of which particular t1 rows are “measured” (i.e., 
left alone by P̂0 ) is specified by the NUS sampling schedule. 
Many of the popular NUS schedules, such as Poisson Gap 
sampling or exponentially-biased sampling, sample t1 rows 
more densely near t1 = 0 . However, since the iterated maps 
method appears to work better when the gaps between sam-
pled points are kept to a minimum size, we prefer to use 
NUS schedules that spread the sparsely-sampled points out 
as uniformly as possible across the densely-sampled grid. In 
Frey et al. (2013), we used a QUEST schedule (“QUasi-Even 
Sampling, plus jiTter”). In this paper, we turn off the small 
random jitter, and use deterministic quasi-even sampling, for 
reasons we explain below (see Reconstruction error source 
I: signal inside the mask).

As Nt1
 is lowered below Ndense

t1
 , the resulting sparse spec-

trum �̃0(�) = Ph(FT[�0(�)]) becomes a poor approximation 
of the dense spectrum �̃(�) , with pronounced sparse-sam-
pling artifacts that smear along the f2 columns (see Supple-
mentary Information). To do better than this, we use iterated 
maps to deterministically convert �̃0(�) → �̃

i(�) ≈ �̃(�).
The iterated maps method uses two projection operators, 

one in the frequency domain and one in the time domain, 
which enforce things that we know to be true about the dense 
data, similar to SIFT (Matsuki et al. 2009, 2010, 2011). In 
the frequency domain, the P̂1 projection makes use of a pre-
defined “mask function” mask(� ) . P̂1 sets to zero any points 
in the mask(� ) = 0 region, where we know that no signal 
exists. In addition, we exploit our knowledge of the signal’s 
phase and sign within the non-zero support mask regions to 
further strengthen P̂1 . Specifically, all imaginary parts are set 
to zero, and the negative (positive) real parts are set to zero 
where mask(� ) = +1 ( −1 ). Real signals of either sign are 
left alone in the “artifact regions,” where mask(� ) = 2 . The 
values of mask(� ) can either be defined manually, or using 
an algorithm like this:

• mask(�) = 0 if |Re(T̃(�))| < 𝜏

• mask(�) = +1 if Re(T̃(�)) ≥ 𝜏

• mask(�) = −1 if Re(T̃(�)) ≤ −𝜏

• mask(� ) = +2 if the sign of Re(T̃(� )) is uncertain, and

|Re(T̃(�))| ≥ 𝜏

where � is a positive threshold. In our case, the dense spec-
tra from slices 2–12 of our pseudo-3D data set are similar 
enough that any one of them can be used to create masks 
for the others. Here, we use slice 2 to create our mask, and 
take � to be ≈ 6 times the noise level of f2 columns far from 
any signal or artifacts. We will revisit this choice of � below 
(see Can Kp be lowered arbitrarily by increasing the P̂1 mask 
threshold �?). We also manually chose to use mask(� ) = 2 
for the signal at the f1 edges of the spectrum, because that 
signal is an artifact whose sign is inconsistent across slices.

In the time domain, the P̂2 projection resets measured 
points to their known values (i.e., the points in �0(�) that 
were not zeroed by P̂0 ). While these projections can be 
altered slightly to allow for noise-handling (Frey et al. 2013), 
we are not using noise-handling in this paper. This simplifi-
cation will be helpful later (see Reconstruction error source 
II: signal outside the mask), since it enables us to develop 
a quantitative prediction of the size of reconstruction errors 
that arise from non-zero signal in the mask = 0 region.

Rather than simply alternating between these two projec-
tions, we combine them in a particular form of Elser’s Dif-
ference Map algorithm (Elser 2003; Elser et al. 2007) which 
reproduces Fienup’s hybrid input-output map (Fienup 1982). 
Our map is given by D̂ = � + P̂1 ⋅ (2P̂2 − �) − P̂2 , where � is 
the identity operator (Elser 2003; Frey et al. 2013), and the 
iterative mapping becomes �i = D̂�i−1 . Fourier transforms 
and phase corrections are applied as needed to reversibly 
convert between time and frequency domains. The final out-
put of the iterated maps algorithm after i iterations is given 
by �i = P̂2�

i . Most of the reconstructions we calculated 
required somewhere between 100 and 10,000 iterations to 
converge (see Supplementary Information for details). The 
DiffMap calculations were all performed in Igor Pro 8. We 
have also ported the code to Python 3, and verified that the 
Python and Igor results agree to within numerical preci-
sion. The Python code is available on GitHub at https ://githu 
b.com/robby blum/DiffM ap-coDiff Map-Pytho n, and will also 
be available on the NMRbox platform at http://NMRbo x.org 
(Maciejewski et al. 2017).

Because the FT is a linear transformation, and because 
sparse-sampling is only used in the indirect dimension, the 
full 2D spectral reconstruction problem can be treated as 
a series of independent, 1D spectral reconstructions; i.e., 
each f2 column can be reconstructed independently of the 
others. We took advantage of this fact to speed up our study 
of how the iterated maps method breaks down at low Nt1

 . At 
a given Nt1

 , we refer to the reconstructed 1D spectrum of a 
particular f2 column with index n as �̃�

i,Nt1

n (f1) . Furthermore, 
if we reconstruct a particular peak at f1 index m well, then 
F̃

i,Nt1

mn ≈ T̃mn . We define the reconstruction error of a point as 
a function of Nt1

 as Emn(Nt1
) = F̃

i,Nt1

mn − T̃mn . For a particular 
peak p at indices ( mp, np ), we will refer to the reconstruction 
error as simply Ep(Nt1

).

What is a reasonable target to shoot for when using 
NUS?

In many papers that use an NUS approach, the authors 
report reaching a low sampling fraction Nt1

∕Ndense
t1

 (or its 
(n-1)-dimensional analog for nD experiments). However, 
as other authors have pointed out, a spectrum that has only 

https://github.com/robbyblum/DiffMap-coDiffMap-Python
https://github.com/robbyblum/DiffMap-coDiffMap-Python
http://NMRbox.org
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one narrow feature should be easier to reconstruct than one 
with multiple peaks, even when both have the same Ndense

t1
 

(Shchukina et al. 2017; Hyberts et al. 2014). Thus, a better 
metric to use when comparing the performance of NUS 
approaches is the ratio of the number of sparsely-sampled 
measurements to the number of significant points to be 
reconstructed. We can think of the number of significant 
points as the “information content” of the dense spectrum. 
We will adopt such a metric below.

Following the notation of Shchukina et al. (2017), we 
define K(n), the number of significant points (relative to 
a threshold � ) of the nth f2 column, as the information 
content of that 1D spectrum �̃n(f1) . We calculate K(n) by 
counting all of the mask = − 1 , + 1, and + 2 points in the 
nth column, and define Kp = K(np) for a particular peak 
p in column np . It is important to remember that K(n) is 
much larger than the total number of peaks in a column, 
since all real peaks have nonzero width. Because we fill 
all four quadrants of the time domain using the “States”-
like data, the relevant number of sparsely-sampled points 
to compare to K(n) is 2Nt1

 , where Nt1
 is the number of 

complex points sampled with t1 ≥ 0 . Thus, we can char-
acterize the compression achieved by NUS using the ratio 
C ≡ 2Nt1

∕K(n).
Even though most NMR spectra have a higher density 

of non-zero points than the test images typically studied in 
the compressed sensing (CS) literature, we can compare our 
results to CS benchmarks. If we insert our parameters into 
expressions from the CS literature (see Eq. 9.40 of Foucart 
and Rauhut 2013), we find that CS approaches are likely to 
yield high-quality reconstructions when:

For M = 256 , and an average Kp = 53.5 (over all 114 peaks), 
the corresponding CS limit on the achievable compression 
ratio is CCS > 3.1 . This is already a significant improve-
ment over the corresponding value for dense sampling, 
Cdense = 4.8 . Note that the only assumption made by CS 
approaches is that the spectrum is “sparse.”

We may be able to beat this CS limit if we know where 
spectral features should not appear, since this constraint 
provides more information about the spectrum. In fact, our 
iterated maps approach has the potential to push down to 
the limit imposed by linear algebra (LA): that the number 
of “constraints” M − Kp must be greater than or equal to the 
number of “unknowns” M − 2Nt1

:

To test this prediction, we tried to reconstruct an extremely 
simple, single-peak spectrum (Fig. 2a) that exactly satisfies 
the constraints of P̂1 and P̂2 . In this ideal limit, as we lower 
Nt1

 below Ndense
t1

 , there is essentially zero error in the recon-
struction of the peak, all the way down to the ideal LA limit 

(1)2Nt1
> 2Kp ln(M∕Kp) (�� �����).

(2)2Nt1
≥ Kp (�� �����).

of C = 1 (Fig. 2b). Thus, C = 1 seems to be a reasonable 
compression target to shoot for with this method.

Features of a realistic spectrum that challenge 
the iterated maps approach

Compared to the ideal case, a realistic 1D NMR spectrum 
has many additional features (e.g., Fig. 2c). The most obvi-
ous example is the presence of other peaks, which can 
be either positive or negative in sign, with their own cor-
responding mask regions ( mask(� ) = +1 or −1 , respec-
tively). There also can be artifact regions, which are usually 
unwanted spectral features that do not have a predict-
able sign, but which must be accounted for ( mask(� ) = 2 ). 
Finally, even in the regions “without signal” ( mask(� ) = 0 ), 
any real spectrum will have random noise, as well as spectral 
tails that fall below the mask cutoff � . All of these features 
make it harder for the iterated maps method to work as well 
as it does in the ideal case. This can be seen by comparing 
Fig. 2b–d: in the latter, even well above the C = 1 limit, the 
peak reconstruction error Ep(Nt1

) is clearly non-zero, and it 
can swing wildly over narrow regions of Nt1

 . In fact, these 
trends are even easier to see in Fig. 3, where we plot the 
reconstruction errors for the same peak used in Fig. 2c, d 
(Leu50 �2 ) but for all eleven slices of the pseudo-3D data 
set. Minor variations in the dense spectrum across different 
slices lead to large spreads in Ep(Nt1

) in certain regions of 
Nt1

 , but not in others.

Methods

In this section, we will discuss how the reconstruction error 
arises from two main categories of complications:

 I Signal inside the mask ( mask(� ) ≠ 0)
 II Signal outside the mask ( mask(� ) = 0)

In each case, we will present a metric that is able to describe 
the reconstruction error using available information. Cat-
egory I causes the largest errors, so we discuss this first.

Reconstruction error source I: signal inside the mask

As pointed out by Maciejewski et al. (2009), any NUS sched-
ule leads to intraband aliases of all spectral peaks. These 
intraband alias features appear to move along the f1 axis as 
Nt1

 is varied. As we studied the performance of our iterated 
maps method we noted a clear pattern: as Nt1

 is lowered, 
the biggest reconstruction errors for a given peak happen 
when there is a collision between its larger intraband alias 
features and the nonzero mask regions, or “mask collisions” 
for short. Qualitatively, at these Nt1

 values, P̂2 mixes up the 
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amplitudes at frequency points connected by intraband ali-
ases, AND P̂1 is unable to resolve the confusion. Mask col-
lisions seem to matter for any nonzero mask(� ) value (that 
is, +1,−1, or 2), so we will treat all these cases as being 
equivalent. The realization that mask collisions cause the 
worst errors motivated us to switch to a quasi-even sampling 
schedule.

To understand this further, recall that a non-uniform sam-
pling schedule in the time domain has a corresponding point 
spread function (PSF) in the frequency domain (see Sup-
plementary Information). The PSF determines how under-
sampling causes spectral information to be mixed among 
distinct f1 points, which results in the intraband aliases. A 
periodic sampling pattern results in a coherent PSF with 
sharp sidelobe features, separated by nulls. A randomized 

sampling pattern results in an incoherent PSF, smearing the 
sidelobes, and filling the nulls (Maciejewski et al. 2009). 
Most NUS reconstruction approaches prefer the less coher-
ent PSFs of sampling schedules with irregular spacings, 
because they tend to broaden and scramble the intraband 
alias features, which helps to reduce the extreme errors 
encountered as Nt1

 is lowered. Unfortunately, this broaden-
ing tends to fill in the nulls in the PSF, which increases the 
errors elsewhere. Nevertheless, this is a safe strategy that 
enables Nt1

 to be picked somewhat arbitrarily, as it smooths 
out the extreme errors in reconstruction.

However, because we are trying to push so aggressively to 
the lowest possible Nt1

 values, we will use the opposite strat-
egy. Namely, we turn off the random jitter of QUEST sam-
pling (Frey et al. 2013), in order to implement deterministic 

a b

dc

Fig. 2  a “Idealized” spectrum, made by setting most of an actually-
acquired spectrum, and its mask, to 0. b Error of the reconstructed 
peak amplitude for the “ideal” peak of interest shown in a. Vertical 
dashed line indicates Kp∕2 . The error is zero (within machine preci-
sion) until Nt1

< Kp∕2 . c The actually-acquired spectrum (for peak 
Leu50 �2 , i

�cp
= 2 ) that was simplified in a, indicating the important 

features. d Error of the reconstructed peak amplitude for peak Leu50 

�
2 , i

�cp
= 2 . Many complicated features appear that did not arise in 

the “ideal” case. Notice that Kp has increased because there are more 
features in the real spectrum than in the simplified spectrum, which 
increases the size of the non-zero mask region. Note that in b and d 
we are graphing the absolute difference between the reconstructed 
and dense amplitudes of the peak of interest. We use this convention 
throughout the paper
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quasi-even sampling, since this sharpens the sidelobes of 
the corresponding PSF (see Supplementary Information). 
As Nt1

 is lowered, this will increase the reconstruction errors 
due to mask collisions. However, these larger errors will 
now be restricted to smaller regions of Nt1

 , which makes it 
easier to avoid them (see Fig. 3). At the same time, quasi-
even sampling will also decrease the errors in the absence 
of mask collisions. As long as we can predict where the 
small errors will occur as a function of Nt1

 , this aggressive 
strategy should result in the best possible reconstructions of 
the peak of interest.

Given a mask, we can identify potentially dangerous Nt1
 

values for a particular f1 peak in a particular f2 column (e.g., 
the blue bands in Fig. 3 show the so-called danger zones). 
If we want to achieve a high-quality reconstruction of that 
peak, we should only use Nt1

 values in the complementary 
safe zones (e.g., the white bands in Fig. 3). We describe how 
we locate the danger zones next.

Finding the Nt1
 danger zones for a peak of interest

We expect the largest reconstruction errors for a given peak 
to occur in the danger zones of Nt1

 , i.e., when significant 
intraband aliases of that peak collide with the mask. For 
a single peak of interest, we first need to know where its 
intraband aliases end up at a given Nt1

 . We then use these 
intraband alias locations and the P̂1 mask function to define 
our mask-collision metric (MCM).

For a given Nt1
 , the t1 ≥ 0 points in all sampling schedules 

discussed here can be described with a single expression:

where k ∈ {0, 1,… ,Nt1
− 1} , �t1 is the dwell time in the 

indirect dimension, and toff
1

 can either be 0 or �t1∕2 . The case 
Ndense
t1

∕Nt1
= 1 is what we mean by dense sampling. A given 

t1 ≥ 0 sampling schedule provides the full sampling vector 
s(t1) of length M to match our four-quadrant data, which in 
turn provides the PSF after a Fourier transform (see Sup-
plementary Information for details) (Maciejewski et  al. 
2009).

We start by considering the simplest undersampled case: 
even undersampling (where Ndense

t1
∕Nt1

 is an integer greater 
than one) with toff

1
= 0 . For this case, sidelobes in the PSF 

appear at integer multiples of the sparse bandwidth 
( MNt1

∕Ndense
t1

 ) away from the central peak at m0 = M∕2,

(3)t1 ∈

{

toff
1

+ �t1Round

(
Ndense
t1

Nt1

k

)}

,

(4)m±h = m0 ± 2Nt1
h mod M,

Fig. 3  Error in the reconstructed amplitude for Leu50 �2 , shown for 
all 11 slices at each Nt1

 . The mask-collision metric (blue shading) 
indicates regions where significant errors are predicted to be possi-
ble (see description of “MCM” in main text). The linear algebra limit 
Kp∕2 is indicated by the dashed line, below which errors grow very 
quickly (gray shading). The dense peak amplitude for L50δ2 (aver-
aged over all 11 data slices) is 58.4 × 105 , and the mask cutoff is 
� = 0.9 × 105

a

b

c

Fig. 4  a Point-spread function of a purely-even undersampling pat-
tern for Nt1

= 32 and toff
1

= 0 (real part). b Point-spread function of a 
quasi-even sampling pattern for Nt1

= 34 and toff
1

= 0 (real part). More 
harmonics become differentiated. c Point-spread function of a sam-
pling pattern for Nt1

= 34 using quasi-even sampling and toff
1

= �t1∕2 
(real part). In all three plots, harmonics ±h = 0, 1, 2, 3 are indicated
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where this defines the harmonic number h = 0, 1, 2,… . For 
instance, in Fig. 4a, Nt1

= 32 , so each harmonic is 64 points 
away from the previous one. If m0 ± 2Nt1

h falls outside the 
spectral width, the modulus operation (“mod M”) brings it 
back in by “wrapping it around” to the far side of the win-
dow. Our earlier discussion of intraband aliasing (Frey et al. 
2013, S.I.) included the ±2Nt1

h term, but we failed to con-
sider the wraparounds, which will turn out to be important 
in what follows.

Truly even sampling is only possible for a few Nt1
 , so we 

are usually forced to approximate it with quasi-even sam-
pling ( Ndense

t1
∕Nt1

 is not an integer, so the rounding in Eq. (3) 
matters). The PSF for one such case, Nt1

= 34 , is shown in 
Fig. 4b. While the number of nonzero points is much greater 
in this case, the locations of the sidelobes are still given by 
the same m±h formula as before.

Finally, for our data set, we do not actually have toff
1

= 0 ; 
instead, we have toff

1
= �t1∕2 . This complication broadens the 

absorptive sidelobes of the PSF, making them appear some-
what more dispersive. Fig. 4c shows this effect at Nt1

= 34 . 
Because the harmonic sidelobes are no longer delta func-
tions at exactly m±h , we account for their nonzero width 
below.

Equation (4) gives us the location of the PSF sidelobes, 
but we are trying to find the location of the intraband aliases. 
The PSF, when convolved with a dense spectrum, generates 
a sparse spectrum. Thus, adapting Eq. (4), we know that the 
intraband aliases of a particular peak of interest at mp will 
occur at (mp ± 2Nt1

h mod M) (i.e., replace m0 with mp in 
Eq. (4)). From here, to see if an intraband alias is colliding 

with the mask, all we need to do is check whether the mask 
function (in the 1D column of interest) is nonzero at these 
locations. That is, for a given harmonic order h, we define 
a “hit function”

There are technically an infinite number of intraband alias 
harmonics, but in practice, a given harmonic’s mask colli-
sions do not seem to noticeably impact the quality of the 
DiffMap reconstruction until you get to a low enough Nt1

 , 
which seems to be proportional to Ndense

t1
∕h . Thus, for a 

given Nt1
 , we establish a maximum harmonic number to 

check for collisions, hmax , given by

where we used � ≈ 0.82625 in this study (see the next sec-
tion for further discussion).

Putting this all together, we are now able to define the 
Boolean mask collision metric (MCM). For a peak p at index 
mp , MCM(mp,Nt1

) predicts which Nt1
 are likely to result in a 

problematic collision between aliases and the mask:

(5)

Hit(mp, h,Nt1
) =

(
mask(mp + 2Nt1

h mod M) ≠ 0
)

+
(
mask(mp − 2Nt1

h mod M) ≠ 0
)
.

(6)hmax = Floor

(

�

Ndense
t1

Nt1

)

,

(7)

MCM(mp,Nt1
) =

([
hmax∑

h=1

+1∑

i=−1

Hit(mp + i, h,Nt1
)

]

> 0

)

.

Fig. 5  Schematic example of a mask collision metric calculation 
in a 1D spectrum, which requires only the peak-of-interest location 
(blue shading) and the P̂1 support mask (pink shading). We wish to 
check for mask collisions for Nt1

∕Ndense
t1

= 34∕128 . In this case, 
hmax = Floor(3.11) = 3 (see Eq. (6)), so we need to check three har-
monics. We start at the location of the peak of interest ( mp = 200 ) 
and go out (SW∗34∕128)∗h ( h = 1, 2, 3 ) in both directions, where 

SW is the sweep width. If this takes us off the edge of the spectrum, 
we wrap around to the far side of the spectrum. We then check each 
of the calculated locations for nonzero mask values. In this case, we 
find nonzero mask values at both the location of the second “up” 
harmonic (blue arrow) and that of the second “down” harmonic 
(black arrow), so Hit(200, 2, 34) = 2 (see Eq. (5)), and the Boolean 
MCM(200, 34) = 1 (see Eq. (7))
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Note that the sum over i = −1, 0,+1 is how we are account-
ing for the nonzero width of the harmonic sidelobes for the 
toff
1

= �t1∕2 case.
A schematic example of how this calculation works is 

shown in Fig. 5. The MCM divides the set of possible Nt1
 

into two categories: either a danger zone or a safe zone. 
Returning to Fig. 3, the blue bars show the danger zones, 
where MCM(mp,Nt1

) = 1 ; all other Nt1
 values are in safe 

zones, where MCM(mp,Nt1
) = 0 . Note that the MCM can 

be calculated as soon as the mask has been defined.

Testing the predictive power of the mask collision metric

Now that we have defined the mask collision metric, we 
can easily apply it to all 114 peaks in our spectrum. For 
example, the danger zones for three additional peaks are 
shown in Fig. 6. The blue points show the absolute error in 

the peak reconstructions, calculated for all 11 slices of the 
pseudo-3D data set.

We can see some patterns start to emerge across Figs. 3 
and 6. First, the reconstruction quality becomes terrible once 
Nt1

 goes below the linear algebra limit, Kp∕2 ( C = 1 ). This 
makes sense, because in that region we do not expect to 
have enough information to solve the reconstruction problem 
uniquely.

Second, above C = 1 , the metric does a very good job of 
locating dangerous Nt1

 values which result in large recon-
struction errors, which often appear as large variances in the 
error between the slices.

Third, above C = 1 , we can see that the mask collision 
metric is somewhat conservative: it has more false posi-
tives than false negatives. For experimentalists, false nega-
tives (predicted safe zones of Nt1

 that nonetheless lead to 
bad reconstruction) would be the more significant prob-
lem, so we tried to construct the MCM so as to make them 
as rare as possible. As we explained in the last section, 
our MCM checks 3 adjacent points at each intraband alias 
location, which was the most systematic way we found to 
eliminate almost all false negatives without adding enor-
mous numbers of false positives. We also wanted to limit 
false positives (predicted danger zones of Nt1

 that turn out 
to have good reconstructions), since they exclude more Nt1

 
values than necessary. This motivated how we set � for Eq. 
(6). In particular, we were able to eliminate a large number 
of trivial false positives at very high Nt1

 . There are still 
remaining false positives which seem very hard to exclude, 
at least within our current understanding of the method.

In principle, � can be any positive number, but in our 
model, we have restricted it to the range 0 < 𝛽 < 1 . To 
choose a value for � , we used a procedure based on the 
peak-to-sidelobe ratio of the PSF for a given harmonic (see 
Supplementary Information for details). We were able to 
tune � to improve the accuracy of the MCM for our data, 
but we do not know how much it might need to be adjusted 
for other applications. In general, it is prudent to err on 
the side of high � , as lowering it too far will introduce an 
increasing number of false negatives. It is actually per-
fectly acceptable to use a default value of � = 0.99 (see 
Supplementary Information for discussion of why we limit 
𝛽 < 1).

Before leaving this section, it is worth emphasizing two 
points. First, as we have defined it so far, MCM(mp,Nt1

) 
is only predicting dangerous and safe Nt1

 values for the 
reconstruction of a single peak of interest at f1 index mp ; 
it says nothing about reconstruction error elsewhere in the 
spectrum. For example, as Fig. 7 shows, good (bad) recon-
struction performance at mp can be accompanied by bad 
(good) performance elsewhere. Second, while the magni-
tude of the peak of interest at f1 index mp has to be larger 
than our mask threshold � , that is all that we have assumed 

a

b

c

Fig. 6  Examples of the MCM for three peaks, with reconstruction 
results. a Peak Val56 �2 , with average dense amplitude 1.46 × 107 . 
b Peak Val18 �1 , with average dense amplitude 5.72 × 106 . c Peak 
Ile52 �1 , with average dense amplitude 5.66 × 106 . In each graph, the 
blue shading indicates which Nt1

 the metric flags as potentially bad, 
and the dots represent the error in the reconstructed peak amplitude 
Ep(Nt1

) , for all 11 slices of the pseudo-3D data set. The black dashed 
line indicates the linear algebra limit Kp∕2 for the column
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to this point. It does not need to be an actual peak, such 
as a local maximum in the f2 column, or a peak picked in 
the 2D spectrum.

Reconstruction error source II: signal 
outside the mask

As the last section demonstrates, the metric is good at iden-
tifying danger zones, or Nt1

 values where the largest recon-
struction errors can occur, due to significant intraband ali-
ases colliding with the mask. The metric also picks out Nt1

 
values that fall in the complementary safe zones.

To understand DiffMap’s performance in the safe zones, 
we need to take into account a second, smaller source of 
reconstruction error. Our iterated maps method assumes that 
the mask we use in P̂1 is correct; that is, there is NO signal 
outside of the support regions. This is just an approxima-
tion, since all real NMR spectra have noise. For the 2D data 
sets under study, the noise is very small compared to the 
peaks, but it is still nonzero. Furthermore, by making a mask 
using a threshold � applied to a dense data set, you basically 
guarantee that there will be at least some tails of your peaks 

that fall outside the mask. Noise fluctuations and tails are 
actual spectral features of the dense spectrum, just like the 
significant peaks are. DiffMap treats them the same way as it 
does the large peaks, with one important distinction: the true 
location of these outside-the-mask features is disallowed by 
P̂1 . The P̂2 operation will try to put them back in the right 
spot, and for large Nt1

 , the final P̂2 will mostly fix these fea-
tures, but P̂1 will always be trying to drive them out of the 
mask = 0 regions. So where do they end up in the spectrum? 
These features have intraband aliases just like the large peaks 
do, so for a given Nt1

 , they will go into the nonzero mask 
regions which collide with their intraband aliases. Thus, the 
signal outside the mask gets folded into the mask.

To describe the impact of signal from outside the mask 
on the reconstruction of points inside the mask, we will 
use a model in which the spectral features at different 
points outside the mask are drawn from a normal distribu-
tion with mean �

�
 and standard deviation �

�
 . Note that this 

is not really a correct description of this signal, because 
random electronic noise and spectral tails are somewhat 
different in character. Noise is incoherent, has a mean of 
zero, and is present everywhere in the spectrum. Spectral 
tails are coherent, usually positive-amplitude, and local-
ized; in the context of a cutoff-generated mask, they will 
generally be found just outside the support regions. How-
ever, we have found that applying this model with �

�
 and 

�
�
 drawn from the calculated mean and standard deviation 

of the entire mask = 0 region in a given spectrum still 
gives us accurate bounding behavior for Ep . The main dif-
ference we see is that the fluctuations end up being more 
correlated in Nt1

 than they would be in a purely random 
case.

Here we briefly describe the results of our model. The 
full derivations are in the Supplementary Information. We 
consider a spectrum with a single delta-function peak of 
amplitude Adense at point mp , with a corresponding single 
non-zero mask point. For simplicity, we assume we are in 
the toff

1
= 0 case; simulations of the toff

1
= �1∕2 case do not 

show a significant change in behavior. We call the recon-
structed amplitude Arecon , and calculate the mean �E and 
the standard deviation �E of the peak reconstruction error 
E ≡ Arecon − Adense.

By considering the signal outside the mask in terms 
of its mean and standard deviation, we can consider the 
effect of each part separately. To calculate �E , we consider 
a delta-function spectrum with no noise and a DC offset 
�
�
 . Then, the mean error is

(8)�E(Nt1
) = �

�

(
Ndense
t1

Nt1

− 1

)

.

cb

a

Fig. 7  Reconstruction performance examined in detail. a Reconstruc-
tion error in the amplitude of the Ile73 �1 peak (dots), with danger 
zones predicted by the MCM (blue shaded region) and the limit Kp∕2 
(dashed line). The results for Nt1

= 32 and Nt1
= 34 (larger dots) are 

examined in more detail in b, c, respectively. b “Good” reconstruc-
tion example, Nt1

= 32 . This is a good result despite the significant 
errors elsewhere since we are only interested in the peak Ile73 �1 
(filled circle). c “Bad” reconstruction example, Nt1

= 34 . Most of the 
spectrum is reconstructed well, but this is a bad result since there is a 
noticeable error (more than 10%) at the location of the Ile73 �1 peak 
(filled circle)
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To calculate the standard deviation of the error �E , we again 
consider a delta-function spectrum, but now with added 
noise that has zero mean and standard deviation �

�
 . From 

this, we find that the standard deviation of the error is

Combining Eqs. 8 and 9, we predict that 95% of the errors 
for Nt1

 in the safe zones will lie within the range

If we plot this prediction band against the actual recon-
struction error for various peaks, we find that it does a very 
good job of explaining the observed error in the safe zones 
(see Fig. 8, as well as additional examples in the Supplemen-
tary Information). For the Nt1

 values in the danger zones, the 
reconstruction error can push well outside this prediction 
band, which is exactly what we expect.

It is worth pointing out that we have accurately predicted 
the reconstruction error for all of the 11 sparsely-sampled 
slices of the pseudo-3D data set, using just the informa-
tion from a single densely-sampled slice (slice 2). From this 
spectrum, we were able to calculate the mask, the MCM, and 
the ESZ prediction bands.

(9)�E(Nt1
) = �

�

√
√
√
√

Ndense
t1

Nt1

− 1 .

(10)ESZ(Nt1
) = �E(Nt1

) ± 2�E(Nt1
).

Can Kp be lowered arbitrarily by increasing the P̂
1
 mask 

threshold �?

Yes, but the reconstruction error tends to grow as well. The 
amount of systematic shift of the reconstruction error in the 
safe zones depends on how you construct your mask. If you 
set a higher positive cutoff � , more tails will fall outside the 
mask. This tends to increase �

�
 and �

�
 of the points out-

side the mask, which in turn increase �E and �E . If you set 
a lower cutoff, the opposite will happen. Thus, choosing a 
mask involves making trade-offs: a tighter mask (higher � ) 
will lower Kp and produce more safe zones (fewer intraband 
alias-mask collisions), but will have more error in those safe 

Fig. 8  ESZ prediction bands for peak Leu50 �2 . �E(Nt1
) is plotted as 

the red line, the ±1�E band is the darker red shading, and the ±2�E 
band is the light red shading. As in Fig.  3, the danger zones of the 
MCM are plotted as blue bars, and Ep(Nt1

) for all 11 data sets are 
plotted as blue dots

a

b

c

Fig. 9  Metrics for different choices of the mask cutoff � . a 
� = 90, 000 . For a lower mask cutoff, the nonzero mask region is 
larger (covers more features), increasing the number of alias over-
laps with the mask, and decreasing the amount of “noise” (includ-
ing tails) outside the mask. The linear algebra limit Kp∕2 is higher 
(dashed line) because the P̂1 operator can impose fewer constraints. b 
� = 500, 000 . Raising the mask cutoff decreases the number of alias 
overlaps, increases the amount of “noise” outside the mask, and low-
ers the Kp∕2 threshold. c � = 2, 900, 000 . Dramatically increasing the 
mask cutoff unreasonably removes almost all danger zones, sharply 
increasing the expected errors elsewhere. The dense peak amplitude 
is approximately 5.8 × 106
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zones. A wider mask (lower � ) will have higher Kp and fewer 
safe zones (more intraband alias-mask collisions), but will 
have tighter prediction bands. Figure 9 shows the effect of 
choosing different mask thresholds � on Kp , the mask col-
lision metric, and the ESZ prediction bands for the peak of 
interest shown in Fig. 2c. Going from Fig. 9a to 9c lowers 
the minimum “safe” Nt1

 for this peak by a factor of 12, but 
increases the mean and width of the prediction band at that 
lower Nt1

 by a factor of 36.
In some applications, using a tight mask may be pre-

ferred, e.g., when the speed-up due to the drop in Kp is much 
more important than the associated increase in the size of 
the prediction band.

We actually began our current study with a larger � inher-
ited from our previous work, but as we came to understand 
this issue better, we decided that lowering � to 6 times the 
noise level enabled us to reach the lowest possible Nt1

 while 
maintaining acceptable reconstruction error.

Results

Recipe for finding Np

t
1

 , and overall reconstruction 
performance

The success of the alias overlap metric for Nt1
≥ Kp∕2 sug-

gests a simple recipe for finding the lowest Nt1
 that will give 

an acceptable reconstruction of a given peak. You simply 
start at Nt1

= Kp∕2 , and step up in Nt1
 until you find the low-

est value in a safe zone of the MCM, which we call Np

t1
 for 

peak p. Alternatively, the recipe can be expressed as

Figure 10a shows the values of Np

t1
 found by applying this 

recipe for each assigned peak in the spectrum (blue points). 
Many of them are very close to Kp∕2 (gray region), and 
only one of them is above L / 2 (thick dashed line). Using 
these Np

t1
 values, we build up a histogram of the absolute 

reconstruction error Ep(Nt1
) across all 114 peaks, for all 11 

slices, as shown in Fig. 10b. Most of the errors are smaller 
in magnitude than one mask cutoff (90,000), and 88% of the 
reconstructed peak amplitudes are within 5% of their dense 
values. We also see a slight positive offset of the center of 
the distribution, as we expect due to the presence of net-
positive tails outside the mask.

Figure 10a plots the Np

t1
 values in absolute terms, which 

naturally suggests a sampling fraction. However, this is not 
an especially useful metric for comparing different recon-
struction methods, because of how much the sampling frac-
tion depends on the original sparseness of the test spectra 
(Shchukina et al. 2017; Hyberts et al. 2014). Thus, we also 
plot the “bottom-up” ratio Cbu = 2N

p

t1
∕Kp in Fig. 11a, as well 

as plotting 2Np

t1
 vs. Kp in Fig. 11b. From these plots, we see 

that even for complicated spectra, we have been able to push 
down to an average Cbu = 1.25 , which is almost all the way 
down to our expected limit of C = 1 (Eq. 2).

To further benchmark these results, we compare Cbu to 
values for dense sampling Cdense = M∕Kp , the CS prediction 
CCS = 2 ln(M∕Kp) , and the “top-down” limit reached in Frey 
et al. (2013) Ctd = L∕Kp , where the average value Kp = 53.5 
is used for all peaks (Fig. 11a). Every individual-peak Cbu 
achieved is lower than any of these benchmarks.

The prediction bands described in Eq. (10) can be 
combined with the recipe (Eq. 11) to predict the scale of 

(11)N
p

t1
= min(Nt1

) for

{
Nt1

> Kp∕2

MCM(mp,Nt1
) = 0

.

a b

Fig. 10  Performance of the overall metric. a Np

t1
 for each peak in 

the spectrum (blue dots), compared to the linear algebra limit Kp∕2 . 
The limit L∕2 = 75 achieved in the prior work (Frey et  al. 2013) is 
also shown (dot-dashed line). b Histogram of the reconstructed peak 
errors for all 114 peaks in the spectrum, and all 11 2D slices from 
the pseudo-3D data set. The histogram shows a slight positive mean, 
which is anticipated by the fact that the “noise” outside the mask has 
positive mean �E , due to the tails of the actual features. Most of the 
errors lie within one mask cutoff of zero (± 90,000)

ba

Fig. 11  Comparison between 2Np

t1
 and Kp using our metric. a The 

“bottom-up” compression Cbu = 2N
p

t1
∕Kp for each peak (red points). 

The average Cbu is 1.25 (blue horizontal line), and the standard 
deviation is 0.3. The dashed lines show Cdense = 4.8 , CCS = 3.1 , and 
Ctd = 2.8 . b Scatter plot of 2Np

t1
 vs. Kp for all peaks. A linear fit gives 

a line with slope 1.043 ± 0.046 and intercept 3.80 ± 1.34 (solid blue 
line)
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the peak reconstruction error you should expect at Np

t1
 . 

Whether that error level is acceptable depends, of course, 
on your experimental needs. A small modification to the 
recipe allows it to account for this: if the error range is too 
large at the initial “ Np

t1
 ,” simply keep going up through the 

safe-zone Nt1
 values until the error range is sufficiently 

small. This expanded recipe can be written as

where Emax is the maximum acceptable noise level. See Sup-
plementary Information for an example of a case when this 
might be necessary. That said, in Figs. 10 and 11, we simply 
used the lowest Np

t1
 above Kp∕2 (i.e., we applied Eq. (11) 

instead of Eq. (12)).

If we build up from the reconstruction of a single 
peak at a time, to many peaks in parallel, what 
happens to N∗

t
1

?

In order to answer (Q.I), we reduced the reconstruction 
problem to its smallest possible target: a single peak of inter-
est in a single f2 column. Using a deeper understanding of 
the iterated maps method, we pushed close to the theoretical 
minimum Np

t1
 for each peak.

Turning to (Q.II), we want to see if we can build upon 
these results to attack the larger problem of reconstructing 
many, or all, peaks at one time (using a single global sam-
pling number, N∗

t1
 ), as we did in our earlier study (Frey et al. 

2013).
The mask collision metric MCM is different for each 

(f1, f2) point of interest, but it is easy to extend it to apply 
to a group of adjacent points in the same f2 column: simply 
add together the metric for each point. Any Nt1

 values for 
which the combined metric is 0 should be safe for all of the 
points being considered. It would make sense to do this for 
a group of adjacent f1 points, for instance, if one wants to 
do curve fits to interpolate peak locations. In that case, the 
combined metric tends to resemble the metric of the center 
point of the peak.

Extending the metric method beyond this case, however, 
starts to get trickier. For other non-adjacent points in the 
same column (a different peak, for instance), the metrics 
may not overlap very well, even though they use the same 
mask. The most challenging case is typically peaks in differ-
ent f2 columns, since there is no guarantee that the safe 
zones in the metrics will line up at all. This is simply because 
the masks in distant columns of a complicated spectrum are 
not very correlated with each other, so there is no reason to 

(12)N
p

t1
= min(Nt1

) for

⎧
⎪
⎨
⎪
⎩

Nt1
> Kp∕2

MCM(mp,Nt1
) = 0

max(�ESZ�) < Emax

,

expect that you will be able to use the same Nt1
 for multiple 

peaks across the spectrum. Figure 12 shows an example of 
this issue, using just three peaks of interest. For two of the 
peaks, their respective mask collision metrics have a safe 
zone at the same value of Np

t1
 . But for the third peak, that 

same Nt1
 value is in its danger zone. Despite the fact that the 

third peak’s Kp and Np

t1
 are lower than that of the other two, 

the “combined Np

t1
 ” ( N∗

t1
 ) for all three peaks is much higher.

This problem means that, at least for the relatively com-
plicated spectra analyzed here, the insights we have gleaned 
into the dependence of the local reconstruction performance 
on Nt1

 cannot be applied to lower the global value of N∗
t1
 

below the already-reached level of L/2. In fact, a strict appli-
cation of the “union of sets” approach described above to the 
full set of 114 peaks would push N∗

t1
 well above the level of 

L/2. This is not reasonable, however, because we already 
know from the top-down approach in Frey et al. (2013) that 
pushing down to L/2 is, in fact, globally acceptable. This 
apparent contradiction is likely due to the fact that the false 
positive rate of the MCM grows with increasing Nt1

 . This 
shows that while false positives are slightly inconvenient for 
a single peak, they are crippling when considering a large 
number of peaks.

Fig. 12  MCM predictions for the three peaks in Fig.  6 (Val56  �2 , 
Val18 �1 , and Ile52 �1 ). Np

t1
 is highlighted for each peak (green dashed 

lines), calculated according to the recipe in Eq. (11). The peaks 
Val56  �2 and Ile52 �1 (top and bottom) both have Np

t1
= 30 , but in 

order to simultaneously satisfy the metric condition for those peaks 
and Val18 �1 (middle), one must go all the way up to N∗

t1
= 49 . This 

problem compounds with each added peak
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Discussion

This paper was motivated by a simple question about the 
iterated maps approach: could we use a greatly improved 
understanding of the action of DiffMap on a particular 2D 
data set to reach an Nt1

 below the previous minimum number 
of sparsely-sampled points ( 2N∗

t1
= L = 150 ) achieved for 

that data set (Frey et al. 2013)? Focusing on this question 
narrowed the scope of this study. For example, we worked 
with the data as acquired, so any optimization of our NUS 
sampling schedules had to be consistent with the existing 
dense grid of points. Thus, even though the sharper PSF for 
the case of a t1 = 0 point could lead to improved perfor-
mance of our method, the current study is limited to the case 
of a t1 = �1∕2 point (see Fig. 4b, c). As another example, we 
did not directly compare the performance of DiffMap to any 
other NUS reconstruction methods. Nevertheless, by report-
ing the minimum compression ratios C achieved (as opposed 
to the undersampling fraction, Np

t1
∕Ndense

t1
 ), we hope to make 

it easier to compare results across methods. The limited 
scope allowed us to do a deep dive into the performance of 
DiffMap.

We started by reducing the 2D problem to a much simpler 
one: understanding the reconstruction of a single peak of 
interest in a single f2 column. Using quasi-even sampling, 
we developed a metric to predict the danger zones of Nt1

 
values, regions which are correlated with the largest recon-
struction errors. We do not know how to predict the size of 
those errors, but we can avoid them altogether by using only 
Nt1

 values in the complementary safe zones.
While reconstruction quality is typically better in the safe 

zones, it does degrade as Nt1
 is lowered. We came up with 

a quantitative model for this smaller source of error, which 
can be traced back to the signal outside the mask folding 
back into the mask. Next, we made a recipe for defining and 
getting to the “minimum acceptable Nt1

 ” for a given peak, 
called Np

t1
 . We then applied this procedure to all 114 peaks, 

peak-by-peak, and it worked very well. In the end, we were 
able to get high quality reconstructions of each peak (for all 
11 slices), while pushing down to Cbu = 1.25 ± 0.31 across 
all 114 peaks, which is quite close to the fundamental limit 
on the compression ratio, C = 1.

To contextualize our results, we can compare to a nice 
recent study of NUS for pseudo-3D data done by Linnet and 
Teilum (2016). They did a very careful analysis of how many 
samples they needed to reconstruct a series of spectra, each 
with different amounts of information content. They define 
sparsity S as the fraction of data points in a contiguous (2D) 
region of the spectrum whose intensities (absolute value of 
amplitude) are less than six times the noise level, and cover-
age c as the minimum sampling fraction required to get an 
accurate reconstruction of a 2D spectrum using MDD. 

Conveniently, we also defined � to be six times the noise 
level when creating our mask, so S is equivalent to 1 − K∕M , 
where K is the average K over the same 2D region. Mean-
while, c is a sampling fraction, so it is equivalent to what we 
call Nt1

∕Ndense
t1

 . Therefore, we can calculate an effective CLT 
for their results which is very similar to C as we have defined 
it for our method: CLT = c∕(1 − S) . Across their four spectra 
(with sparsities ranging from S = 92% to S = 71% ), their 
average compression ratio was CLT ≈ 2.8 , which is compa-
rable to our previous Ctd . Our Cbu is much lower than any of 
their CLT values, but this direct comparison is not entirely 
fair, because Cbu is the average of a set of separate 1D calcu-
lations, each focused on reconstructing a different peak, 
which do not share the same Np

t1
 (or c) and Kp (or S ). How-

ever, this comparison does illustrate the benefit of focusing 
the reconstruction problem to a small portion of the 
spectrum.

Using the refined DiffMap approach we have described in 
this paper, a single peak of interest can be accurately recon-
structed, using a number of measurements that is close to 
the fundamental minimum value. This result is immediately 
applicable to experiments requiring a particular spectral 
feature in a 2D spectrum to be repeatedly analyzed, as is 
done in the CEST experiment. In another example, after run-
ning an R2 dispersion measurement, a user may want to get 
a higher density of �cp points for a particularly important 
residue. Examples such as these can take advantage of our 
understanding of the single peak reconstruction problem.

Our quantitative model for the smaller source of recon-
struction error has an interesting implication: the signal-to-
noise ratio (SNR) at the f1 point1 of a reconstructed peak of 
interest is always worse after using DiffMap, when com-
pared to the SNR of the dense experiment. To see this, con-
sider the ideal, best-case scenario of just “ideal noise” and 
no tails outside the mask, which in our error model implies 
�
�
= 0 and �

�
= �min , where �min is the standard deviation 

of the noise far from any peaks. In that case, if the SNR of 
the dense peak is A/�min , then the SNR of the reconstructed 
peak should drop to the lower value A/(�min

√

Ndense
t1

∕Nt1
 ). 

This expression is reminiscent of the SNR penalty suffered 
if fewer repetitions of an experiment are done. Of course, if 
the time saved by NUS is used to repeat the experiment 
Ndense
t1

∕Nt1
 times, then this boosts the SNR by a factor of 

√

Ndense
t1

∕Nt1
 . Unfortunately, even in this ideal case, the iter-

ated maps SNR would just match the dense value of A/�min , 

1 Note that we are not calculating this SNR by comparing signal 
amplitude of a peak to noise amplitude far from all peaks after recon-
struction, because this is known to be misleading (see e.g. Hyberts 
et  al. (2017)). Instead, we are considering the ratio of the recon-
structed amplitude to the expected variation in that amplitude, which 
we estimate using the E

SZ
 model explained above.
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in exactly the same time! In practice, a real spectrum has 
tails outside the mask, so �

�
≠ 0 and 𝜎

𝜈
> 𝜎min . Thus, the 

SNR of the iterated maps reconstruction is almost certainly 
going to be worse than the dense reconstruction. In our 
model, we assumed that P̂1 and P̂2 do not use noise-handling, 
so these conclusions should be checked if that is not the 
case. Still, we think it is safe to say that a peak of interest 
with the bare-minimum SNR in the dense spectrum is not a 
good candidate for iterated maps reconstruction.

The low values of Cbu presented here were achieved by 
analyzing individual features in particular 1D spectra. We 
tried to use our understanding of this case to find the mini-
mum 2Nt1

 required to reconstruct many, or all, peaks simul-
taneously. However, this bottom-up approach to finding a 
global N∗

t1
 did not work. Given the complicated spectrum 

under study, trying to reconstruct ∼3-4 peaks at once (out of 
114) can be enough to push our recipe for 2N∗

t1
 up to the 

previous value L = 150 found in the top-down approach 
(Frey et al. 2013). It is still possible that a broad search of 
the parameter space available to DiffMap (e.g., moving away 
from quasi-even sampling) could reveal new ways to 
improve global DiffMap performance for 2Nt1

< L , but such 
a search is beyond the scope of this paper.

For the original problem of global 2D spectral reconstruc-
tion using iterated maps, the failure of our bottom-up 
approach to do any better than our top-down approach left 
us wondering if we could ever do better. In the end, we 
decided that there simply is not enough information in a 
single 2D slice to push below our previous limit of L (Frey 
et al. 2013). However, the fact that these 2D slices are part 
of a larger pseudo-3D data set suggests a way forward: use 
the correlations across 2D data sets as additional informa-
tion that enables a global, high-quality reconstruction. In a 
companion paper, we develop a modified version of Diff-
Map, called coDiffMap (Rovny et al. 2019). Using coDiff-
Map, we show that we can improve results globally by 
exploiting the correlations that exist among 2D spectra in 
particular types of pseudo-3D experiment, adding informa-
tion to our reconstruction method. This extra information 
enables us to push global 2N∗

t1
 well below L, and even below 

C = 1 for certain cases (since the extra information across 
2D slices adds to the information content of Kp ). This alter-
nate method also changes the scaling of the error that we 
described earlier in this paper. See Rovny et al. (2019) for 
more details about coDiffMap.
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