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Abstract
Chemical shifts contain important site-specific information on the structure and dynamics of proteins. Deviations from 
statistical average values, known as random coil chemical shifts (RCCSs), are extensively used to infer these relationships. 
Unfortunately, the use of imprecise reference RCCSs leads to biased inference and obstructs the detection of subtle struc-
tural features. Here we present a new method, POTENCI, for the prediction of RCCSs that outperforms the currently most 
authoritative methods. POTENCI is parametrized using a large curated database of chemical shifts for protein segments 
with validated disorder; It takes pH and temperature explicitly into account, and includes sequence-dependent nearest and 
next-nearest neighbor corrections as well as second-order corrections. RCCS predictions with POTENCI show root-mean-
square values that are lower by 25–78%, with the largest improvements observed for 1Hα and 13C′. It is demonstrated how 
POTENCI can be applied to analyze subtle deviations from RCCSs to detect small populations of residual structure in 
intrinsically disorder proteins that were not discernible before. POTENCI source code is available for download, or can be 
deployed from the URL http://www.prote in-nmr.org.
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Introduction

The chemical shift is the single most easy obtainable param-
eter from NMR experiments, can be measured with very 
high precision, and carries important information on molec-
ular structure and dynamics. The chemical shift of a nucleus 
in a random coil polypeptide will depend on intrinsic fac-
tors, such as the identities of the nearest residues, as well as 
extrinsic factors such as pH, ionic strength and temperature. 
All these aspects affect the electronic and spatial structure of 

the peptide chain, and thereby alter the chemical shifts of the 
affiliated nuclei. As a consequence, a segment of a protein 
chain that is devoid of any structure imposed by long-range 
non-bonded interactions, such as hydrogen bonds, burial of 
hydrophobic side chains, and Coulombic interactions, can be 
considered to have a random coil structure, and the chemical 
shifts observed for this particular segment of amino acids 
across different proteins would be identical. The chemical 
shifts for the nuclei in the segment would then be consid-
ered random-coil chemical shifts (RCCSs), as these reflect 
the dynamically averaged chemical shifts experienced by 
rapid conformational dynamics on the free energy landscape 
governed by local interactions. Concurrently, deviations 
from RCCSs can be used to detect the presence of second-
ary structure formation (Williamson 1990; Spera and Bax 
1991; Marsh et al. 2006; Camilloni et al. 2012; Kjaergaard 
and Poulsen 2012).

Intrinsically disordered proteins (IDPs) constitute a 
hitherto little-recognized, but important part of the protein 
universe (Ward et al. 2004; Dyson and Wright 2005; van 
der Lee et al. 2014; Wright and Dyson 2015). Due to the 
dynamic nature of IDPs, the single most powerful structure-
determination technique, X-ray crystallography of crystals, 
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is disqualified and NMR spectroscopy has become the prime 
tool for their investigation. Chemical shifts have become 
a prime source of information on IDP structure, as these 
characterize the protein at the residue level, and chemical 
shifts can be obtained by the simple and effective process of 
sequence-specific resonance assignment (Felli and Pierat-
telli 2012; Brutscher et al. 2015). To capture random coil 
chemical shifts, there are several sets of reference values 
in use, which have quite disparate origins: First, guest-
host substitutions in small peptides, such as GGXGG were 
employed to obtain reference chemical shift values for the 
nuclei of the amino acid X (Richarz and Wüthrich 1978; 
Bundi and Wüthrich 1979; Braun et al. 1994; Wishart et al. 
1995; Schwarzinger et al. 2000; Kjaergaard et al. 2011). 
However, these peptides do not sample conformational 
space in a representative way for all peptides (Kjaergaard 
and Poulsen 2011) and small differences between GGXGG 
(Schwarzinger et al. 2000) and GGXAG (Wishart et al. 
1995) were responsible for divergent interpretations in the 
propensities of a fragment of the human protein tau, involved 
in human neurodegeneration (Eliezer et al. 2005; Mukrasch 
et al. 2005), clearly showing that nearest neighbor effects 
need critical evaluation (Tamiola et al. 2010). An alterna-
tive approach presented in the literature is the collection of a 
database of chemical shifts for proteins of known structure, 
and to classify those regions outside canonical secondary 
structure and loop regions as ‘coil’ (Wang and Jardetzky 
2002; De Simone et al. 2009). Lamentably, this approach 
suffers from the heterogeneity of conditions used for protein 
structure determination and NMR data acquisition, as well 
as the lack of a clear definition of which regions would clas-
sify as representative of a total lack of structure, beyond that 
dictated by the sequence. As a potential solution, Tamiola 
et al. (2010) published a curated database of chemical shifts 
for IDPs, and used a statistical method to exclude chemical 
shifts that would mark local deviations from random coil 
behavior. Their method, called ncIDP, took into account 
the importance of neighboring residues in the sequence, as 
demonstrated by others (Braun et al. 1994; Wishart et al. 
1995; Schwarzinger et al. 2001), and proved to be more 
appropriate for predicting the RCCSs of IDPs than exist-
ing methods at the time (Tamiola et al. 2010; Kjaergaard 
and Poulsen 2011; Kragelj et al. 2013). However, the small 
number of IDPs used to derive the ncIDP reference chemi-
cal shift database resulted in very little data for amino acids 
with low abundance, such as Trp and Cys, and ncIDP suf-
fered from substantial variation in NMR sample conditions 
of the used entries. We demonstrated previously (Nielsen 
and Mulder 2016) that IDPs are a complex concatenation of 
regions with various magnitudes of order and disorder, and 
the ncIDP database might therefore still inadvertently suf-
fer from heterogeneous composition by including fragments 
with residual order. To remedy this situation, we therefore 

devised a statistically robust procedure for assessing the 
degree of disorder for each residue (coined the CheZOD 
Z-score), and this metric is used herein for the compilation 
of a database containing exclusively disordered residues. In 
addition, others have previously shown that the effects of 
temperature and pH are highly significant (Merutka et al. 
1995; Kjaergaard et al. 2011), and that these need to be prop-
erly accounted for, in order to arrive at an adequate reference 
dataset for RCCSs.

Herein we present POTENCI—Prediction Of TEmper-
ature, Neighbor and pH Corrected shifts for Intrinsically 
disordered proteins—which predicts the RCCSs for the 
backbone nuclei as well as 13Cβ and 1Hβ for IDPs with a 
significantly higher accuracy than currently available meth-
ods. The algorithm takes pH and temperature explicitly into 
account, and includes sequence-dependent nearest and next-
nearest neighbor corrections. A first such an empirical data-
base, presented by Tamiola et al. (2010) in 2010, contained 
6903 chemical shifts (reduced to 4439 after removing chem-
ical shifts that were judged to be outliers) obtained for 14 
proteins, and these were used to derive a model consisting of 
20 random coil reference chemical shift values (with GXG 
as reference) and 40 (assumed independent) nearest neighbor 
corrections to predict the chemical shifts for backbone and 
13Cβ nuclei from sequence for the central amino acid in any 
given tripeptide. The POTENCI database presented herein 
now contains 47,757 unique chemical shifts obtained from 
137 proteins, comprising 9810 residues that are soundly 
classified as disordered under native conditions. The roughly 
ten-fold extension of the database size has allowed us to take 
a number of aspects into account, which was not possible 
previously. First, next-nearest neighbor corrections were 
included in the model, such that the prediction is based on 
pentapeptides, rather than tripeptides. This is especially 
relevant to account for ring current shifts due to aromatic 
side chains. Second, neighbor corrections no longer need 
to be assumed independent of the central amino acid, and 
center-type-specific corrections were extracted. Such cor-
related corrections were found to be important for Gly and 
Pro, in particular. This result was anticipated, as Gly and Pro 
sample backbone dihedral angle space very differently from 
the remaining amino acids (Ramachandran et al. 1963), and 
the resulting correction effects therefore vary significantly. 
Third, we used an electrostatic model (pepKalc; available 
from http://www.prote in-nmr.org) (Tamiola et al. 2018) to 
compute the average protonation state of all titratable side 
chains along the sequence at a given pH and ionic strength, 
in order to apply appropriate corrections for Asp, Glu, His, 
Tyr, Cys, and Lys side chains (Arg can safely be considered 
to always be protonated in IDPs). Fourth, a correction for 
temperature is explicitly included, and this considerably and 
predominantly affects 15N chemical shift prediction. Using 
POTENCI, we are able to predict 1Hα, 1HN, 13Cα, 13Cβ, 13C′, 
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and 15N RCCSs better than the current prominent approaches 
ncIDP by Tamiola, Acar and Mulder (TAM) (Tamiola et al. 
2010) and RCCSs computed from the QQXQQ peptide data-
base of Kjaergaard, Brander and Poulsen (KBP) (Kjaergaard 
et al. 2011; Kjaergaard and Poulsen 2011). Root-mean-
square (rms) values are lower by 25–78% in comparison to 
the TAM and KBP approaches, with the largest improvement 
observed for 13C′ and 1Hα. More importantly, many devia-
tions from RCCSs observed with ncIDP and the QQXQQ 
reference sets that might be considered signs of structuration 
are absent with POTENCI. The strong improvement afforded 
by POTENCI makes it a more reliable tool for detecting 
small, but relevant RCCS deviations in IDPs that may be 
correlated with functional outcomes.

Methods

Parameterization of predicted random coil chemical 
shift

The sequence-corrected RCCS for a nucleus in a pentapep-
tide, p = (i − 2, i − 1, i, i + 1, i + 2), with amino acid type, 
ai for position, i, at a given pH, with known pKas for the 
central triplet, t = (i − 1, i, i + 1) and temperature, T (in K), 
is calculated as:

where

and

where

here �RC
(
ai, 298 K, pH 7

)
 is the random coil chemical shift 

for residue type, ai, at position i, for the reference condition 
298 K and pH 7, Δ(p) is the sum of the linear correction fac-
tors for the nearest and next-nearest amino acid neighbors, 
�(p) is a correlated correction term (second-order effect) for 

(1)
� = �RC

(
ai, 298 K, pH 7

)
+ Δ(p) + �(p) + �T (i, T) + �pH(t, pH)

(2)Δ(p) =
∑

k=−2,−1,1,2

Δk

(
ai+k

)
,

(3)�(p) =
∑

k=−2,−1,1,2

�k

(
ai, ai+k

)
,

(4)�T (i, T) = �i(T − 298),

(5)�pH(t, pH) =

1∑
k=−1

�k
(
ai+k, pKai+k, pH

)

(6)

�k
(
ai+k, pKai+k, pH

)
= Δ�k

HA−A

(
ai+k

)(
f HA(pH) − f HA(pH = 7)

)
,

f HA =
10nH (pKa−pH)

1 + 10nH (pKa−pH)

the combination of amino acid types for the center residue 
and its nearest/next-nearest neighbor. The N- and C-terminal 
residues were not included in the dataset, but residues next 
to the termini were included. For these, next-terminal resi-
dues, the next-nearest neighbor past the N- and C-termini was 
treated as an extra type of amino acid in the calculation of Δk 
(for k = − 2 and 2). While, exhaustively, χk would need 1600 
constants for parameterization, in practice most are negligi-
ble and some can be grouped (see below), meaning that only 
between 17 and 56 unique non-zero parameters were neces-
sary here. The variation of the random coil chemical shift with 
temperature is accounted for by using linear temperature coef-
ficients, βi, (for the residue type ai) derived in Kjaergaard et al. 
(2011). �pH(t, pH) corrects for the effect of non-neutral pH 
for titratable amino acid side chains in each triplet, t, where 
the correction for each residue, εk, is derived using the differ-
ence between the chemical shift of the fully protonated and 
deprotonated states, Δ�k

HA−A
 , as determined in Platzer et al. 

(2014) (which is non-zero only for titratable amino acids and 
residue neighbors to titratable amino acids) and the fractional 
population of the protonated state, fHA, at the specified pH. 
fHA depends on the pKa and cooperativity constant, nH, which 
were both estimated using pepKalc (http://www.prote in-nmr.
org) (Tamiola et al. 2018) and the estimation of pKa and nH in 
pepKalc depend on the ionic strength.

Fitting of amino acid neighbor corrections

The chemical shift from a submitted sequence-specific 
assignment is first calibrated for temperature and pH as 
follows:

where �obs(i, I) is the observed chemical shift for residue i 
for the protein with id, I, and λ(I) is an offset correction for 
protein I, while the other terms are as defined above. The 
left-hand side of Eq. 7, containing only observed values and 
fixed parameters, is used to fit to the parameterization on 
the right-hand side containing the free variables. To prevent 
over-fitting of the experimental data, the smallest possible 
set of free parameters that provides an adequate fit of the 
experimental data is used. e.g. the reference offset correction 
is parameterized as:

e.g. only a subset of all proteins (the ones with id, I ∈ Λ , 
where Λ is a subset of all protein ids) are reference corrected 
with offset ρI. Hence, the values of �I for I ∈ Λ are to be 
determined in the fitting procedure. In addition, the exact 
nature of the subset, Λ , is determined through optimization 

(7)
�corr = �obs(i, I) − �T (i, T) − �pH(t, pH)

= �RC
(
ai, 298 K, pH 7

)
+ Δ(p) + �(p) + �(I)

(8)�(I) =

{
�I if I ∈ Λ

0 else

http://www.protein-nmr.org
http://www.protein-nmr.org
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of repeated fits with different definitions of the subset (see 
below).

Rather than determining a weight for each possible amino 
acid neighbor and next-nearest neighbor, a principle com-
ponent representation (Georgiev 2009) with possibly fewer 
than 20 parameters is used; the correction for the k’th amino 
acid neighbor of type  ai+k is parameterized as:

where �j(ai+k) is the value of the j‘th principal compo-
nent corresponding to the amino acid type, wk

j
 (k = − 2, − 1, 

1, 2 and j = 1, 2, …, qk) are the adjustable weights, and γk ≤ 
20 is the number of principle components used (to be 
optimized).

The second-order amino acid neighbor correction term is 
parameterized using grouping of the amino acids and subset 
application:

where amino acids were grouped into 7 categories notated 
here with g(a) = “G”, “P”, “r”, “a”, “+”, “−”, “p” if the 
amino acid, a, is either G, P, F/Y/W (aromatic), L/I/V/M/
C/A (aliphatic), K/R (positive), D/E (negative), or N/Q/S/
T/H (polar), respectively, Π is the index set corresponding 
to the combined position and combination of groups that 
produces a significant chemical shift perturbation, and �k

l,m
 

are the adjustable weights (k = − 2, − 1, 1, 2) and l, m is one 
of the seven groups defined above. For example, the weight, 
�−1
G,r

 , corresponds to a correction to the chemical shifts for 
the central Gly residue Gly (l = g(G) = “G”) due to the pres-
ence of an aromatic residue (m = “r”), located at the position 
immediately before (k = − 1), alternatively denoted as the 
pentapeptide xrGxx, where “x” denotes any amino acid type.

To summarize, the chemical shifts are fitted for an 
assumed model of the significant parameters defined by the 
set of subsets:

where Γ and Π are the subsets defined above and Γ is the set 
defined by the limits, γk

For such a given model, M, the number, NM of adjustable 
weights for fitting is:

where NRC is the number of fitted random coil chemi-
cal shifts for the center residue, �RC

(
ai, 298K, pH 7

)
 , 

(9)Δk

(
ai+k

)
=

�k∑
j=1

wk
j
�j(ai+k)

(10)

�k

(
ai, ai+k

)
=

{
�k

g(ai),g(ai+k)
if
(
k, g

(
ai
)
, g
(
ai+k

))
∈ Π

0 else

(11)M = Γ,Λ,Π

(12)Γ = (�−2, �−1, �1, �2)

(13)NM = NRC + NΓ + NΠ + NΛ, NΓ =
∑

k=−2,−1,1,2

�k

corresponding to the number of amino acids with assigned 
chemical shift for the particular nucleus, i.e. NA = 20 except 
for  HN (n.a. for Pro) and Cβ/Hβ (n.a. for Gly) where in these 
cases NRC = 19. Note that for residues with two Hβ pro-
tons and Gly with two Hα protons, our method predicts the 
average of the chemical shifts. NΓ ≤ 4 × 20 is the number 
of parameters used for fitting the neighboring amino acids 
contribution, NΛ ≤ NP is the number of proteins where the 
offset is corrected (NP is the total of number of proteins 
in the training set) and NΠ ≪ 4 × 7 × 7 is the number of 
parameters used for parameterizing the contribution from 
combinations of center and neighbor amino acids (this num-
ber was significantly smaller than the maximum theoretical 
value in our fitting, see “results”).

For a given model, M, the derivation of the weights, (
�RC,w

k
j
, �k

l,m
, �I

)
 , (where �RC denotes the set of random 

coil chemical shifts for all the center residue types) that 
minimize the sum of squared differences between observed 
and predicted chemical shifts, reduces to a standard linear 
least squares fitting problem, which can be solved with 
procedures similar to those described in Tamiola et al. 
(2010). The optimal model must represent the best com-
promise between having the closest agreement between 
observed and predicted shifts and, at the same time, using 
the fewest possible number of free parameters. This is 
accomplished here by choosing the model with the lowest 
value of Akaike’s information criterion, AIC: (Akaike 
1974, 1985)

where Ntot is the number of chemical shift data points, rms 
is the resulting square root of the average of squared dif-
ferences between observed and predicted shifts after per-
forming the least squares fit, NM (Eq. 13) is the number of 
parameters used by the model, M, and rVIF ≥ 1 is a parameter 
that over-weights the number of model parameters relative 
to the classical AIC. rVIF can be interpreted as the variance 
inflation factor (Theil and Theil 1971) accounting for the 
(moderate) correlation between data points as discussed 
before in relation to chemical shifts (Nielsen et al. 2012) 
(values between 2.5 and 5.0 were used here). The optimal 
model having the lowest AIC was derived by varying the 
model definition systematically using a genetic algorithm 
(see Supplementary Methods for all details). The fitting pro-
cedure was coded in python using the numpy.linalg library 
for the least squares fitting routines and in-house developed 
procedures similar to ones described in Nielsen et al. (2016) 
for the genetic algorithm.

Briefly, the optimization algorithm consisted of five con-
secutive cycles of parameter fitting followed by outlier strip-
ping using decreasing values of the variance inflation factor. 
In the first cycles, the aim was a robust fitting, whereas in the 

(14)AIC(M) = Ntot ln(rms) + rVIFNM
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later cycles, the aim progressively changed towards select-
ing for the smallest residual error of fitting. At the end of 
each cycle, outliers were removed according to a principle 
of matching the observed data set quantiles to theoretical 
quantiles for a normal distribution. Following this princi-
ple, the absolute errors ε (difference between observed and 
predicted shifts) scaled by the standard deviation, σ, among 
all errors in the data set were identified:

The N data points were ranked according to their value 
of ε.

This means that for a rank, k, the fraction, Fobs, of 
observed errors, ε < εk is:

and εk is the k’th N-quantile, Qobs, for the data sample. For 
comparison, for the k’th ranked point with corresponding 
fraction, fk, the expected value of the error is the theoretical 
quantile, Qtheo:

where Ftheo is the theoretical cumulative distribution func-
tion, which is the standard half-normal distribution here. To 
identify outliers in the data sample, we removed the points 
corresponding to the largest errors until the observed and 
theoretical quantiles were matched for ε = 3.0, i.e. until:

where the integer number for N × 0.0027 was used. At the 
end of each cycle, all data points were (re)-evaluated for 
possible outlier-stripping, including points removed in the 
preceding cycles. Each cycle consisted of 12,000 steps of 
subset redefinition followed by least squares fitting (for 
details, see Supplementary Methods). The parameters in the 
final cycle, leading to the lowest value of AIC, were retained. 
The parameters were optimized based on sets of experimen-
tally assigned chemical shifts from the BMRB database. 
Residues classified as disordered are those with CheZOD 
Z-score < 3.0 (Nielsen and Mulder 2016), and these were 
used for the subsequent fitting. Since the definition of the 
Z-score itself depends on the sequence-corrected random 
coil chemical shift, the parameterization of the random coil 
shifts was performed in three iterations, each time revising 
the set of residues used for fitting, using progressively more 
data (see all details below).

(15)� =

|||�obs − �pred
|||

�

(16)𝜀1 < 𝜀2 < ⋯ < 𝜀k < ⋯ < 𝜀N

(17)Fobs

(
�k
)
= k∕N

(18)Qtheo

(
fk
)
= F−1

theo
(fk)

(19)
Qobs((N − K)∕N) = 𝜀N−K < 3.0 for K = N ×

(
1 − Ftheo(3)

)
= N × 0.0027

Construction of the database of intrinsically 
disordered regions of proteins with chemical shifts

The random coil chemical shift prediction parameters were 
fitted in three iterations, each time using a new, and larger, 
set of chemical shifts from disordered residues. In the first 
two iterations, residues from the published CheZOD data-
set, containing 119 proteins was used (Nielsen and Mulder 
2016). In the third iteration, the dataset was expanded with 
another complementary set of disordered proteins. This 
complementary set was derived by considering all published 
chemical shift datasets in the BMRB database (retrieved on 
27 Apr 2016), and applying procedures as described before 
(Nielsen and Mulder 2016) to ensure a sufficient number 
of disordered residues and native, non-denaturing condi-
tions. To be more specific, we required at least 50 assigned 
chemical shifts, at least 40 residues, 4 ≤ pH ≤ 8 (eventually 
no entries had pH above 7.5) and 273 ≤ T ≤ 313 K, and cal-
culated the Z-score for all residues and required at least 50% 
disordered residues (Z-score < 3.0). This procedure yielded 
242 entries. These entries were manually curated, removing 
entries with biasing conditions such as denaturants or added 
co-factors, in order to focus on the correlation between 
sequence and chemical shift exclusively. Next, the remain-
ing sequences were aligned using the EMBOSS implemen-
tation (http://www.ebi.ac.uk/Tools /psa/embos s_needl e/) of 
the Needleman–Wunsch alignment algorithm (Needleman 
and Wunsch 1970) keeping entries only for sequences hav-
ing < 50% mutual sequence identity and < 50% sequence 
identity to any sequence from entries used from the Che-
ZOD dataset leading to a final “complementary dataset” of 
84 entries and a total of 203 entries when combined with the 
original CheZOD database.

In each of the three iterations of data fitting, a residue 
from a candidate entry was included if either at least five 
consecutive residues were disordered (Z-score < 3) or just 
requiring Z-score < 3 for the particular residue if most 
residues in the full protein were disordered as quantified 
by fD < fmin where fD is the fraction of disorder residues 
with Z-score < Zmin using  Zmin = 3 and fD = 0.8 in the first 
iteration and  Zmin = 4 and fD = 0.75 in the last two itera-
tions. In the first iteration, neighbor-corrected RCCSs 
used as a basis to estimate the Z-score, were estimated 
using the method of Tamiola et al. (2010), which con-
siders the center residue and the nearest-neighbor amino 
acid types using weights for the chemical shift atom types 
as described before (Nielsen and Mulder 2016). For the 
other iterations, the random coil chemical shifts were esti-
mated using parameters from the previous iteration with 
corrections for nearest and next-nearest neighbors, and 
smaller chemical shift weights based on the RMSD of the 
refined fit from the first iteration. Specifically, we calcu-
lated the chemical shift chi square deviation, χ2, as the 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
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tripeptide sum of squared weighted differences between 
observed, �obs(j, n) , and predicted, �pred(j, n) , chemical 
shift based on the current prediction model, for residue j 
for nuclei, n, as:

Using the chemical shift standard deviations, σΖ(n), 
representative for the prediction RMSDs:

The chi square statistic was converted to a Z-score as 
described previously (Nielsen and Mulder 2016). The 
correlated effect of the pentapeptide amino acids on 
the chemical shifts were only included in the last itera-
tion. In the first iteration, pH and temperature were not 
considered, but to avoid large effects on the chemical 
shifts, entries were only included when 6 ≤ pH ≤ 7.5 and 
285 ≤ T ≤ 301 K. In contrast, in the final two iterations, 
entry inclusion was not restricted by pH or temperature, 
but the effect on the chemical shift was accounted for as 
described above. The progressively less stringent criteria 
for residue inclusion with each iteration was reflected 
in the number of included chemical shifts, using 2663, 
4530 and 8846 15N chemical shifts for the first, second 
and third iteration, respectively. In the third iteration, the 
final residues and segments classified as disordered were 
selected based on the refined criteria. This database of 
residues and chemical shifts represents a reference set of 
protein sub-segments of validated disorder. 137 protein 
entries were included in this dataset containing 9810 resi-
dues and 47,757 chemical shifts spread across 743 residue 
segments in total. The complete validated disorder data-
base is given in Table S1 in the Supplementary Material 
and the experimental conditions of pH and temperature 
pertinent to these entries are visualized for comparison 
to the Tamiola database in Fig. S1.

Construction of the database of structured proteins 
with chemical shifts

Another database of structured proteins was constructed 
to allow for comparison with the POTENCI database of 
disordered residues. This database was constructed by 

(20)

�2(i) =
∑
n

∑
Δ=−1,0,1

min

((
�obs(i + Δ, n) − �pred(i + Δ, n)

�Z(n)

)2

, 16

)

(21)�Z(n) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.1846 for n = C�

0.1982 for n = C�

0.1544 for n = C�

0.4722 for n = N

0.06708 for n = HN

0.02631 for n = H�

0.02154 for n = H�

retrieving the entries from the RefDB database (Zhang 
et al. 2003) and calculating the CheZOD Z-scores along 
the sequences as described above. This database was 
culled by requiring (i) at least three assigned chemical 
shifts per residue (on average), (ii) no more than 30% 
sequence homology within the database as determined by 
the cullpdb procedure (Wang and Dunbrack 2003), (iii) 
no more than 40% sequence identity to any protein in the 
POTENCI database determined as described above using 
the EMBOSS implementation of the Needleman–Wunsch 
alignment (Needleman and Wunsch 1970), (iv) requir-
ing the protein to be well structured as judged by hav-
ing less than 10% disordered residues  (fD < 0.1, with 
Z-score < 3.0). This procedure resulted in a final database 
having 630 entries and 80,517 residues. The database of 
structured proteins is compared to the POTENCI database 
in Results and an analysis of amino acid preferences in the 
two sets is visualized in Fig. 1.

Results

A set of 137 protein entries with assigned chemical shifts 
were generated by extending the CheZOD database 
(Nielsen and Mulder 2016) as described in “methods”. 
The disordered residues were identified by calculating the 
Z-score as described before (Nielsen and Mulder 2016) 
(see “methods”) leading to a database of 9810 validated 
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Fig. 1  Amino acid disorder promoting tendencies. The height of 
the bar for each amino acid, a, is equal to ln(fIDP(a)/fRefDB(a)) where 
 fIDR(a) and  fRefDB(a) are observed frequencies of amino acid, a, in 
our POTENCI database of validated disordered residues and a simi-
lar database of validated order build from amino acid sequences from 
proteins in the RefDB database (Zhang et  al. 2003) having  fIDR < 
10% (see “methods”)
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disordered residues. The experimental conditions pertinent 
to the entries used to construct the POTENCI database 
are visualized and compared with the Tamiola database 
in Fig. S1, correlating the fraction of disordered residues 
with the number of residues and the temperature vs. pH. 
The disordered residues were distributed across various 
parts of the protein sequences considered, and not only 
in one part or only in the ends, as also seen in our previ-
ous study. More specifically, 743 segments of disordered 
residues were identified equaling 5.4 segments per pro-
tein. The protein entries used contained between 15 and 
100% disordered residues (see Table S1 for all details). In 
line with earlier observations (Romero et al. 2001), our 
database contains more frequently Gly and Pro as well as 
negatively charged and polar residues, and comparatively 
fewer apolar residues and Cys compared to structured pro-
teins (see Fig. 1).

The database of disordered residues contained 47,757 
chemical shifts, which were used to parameterize 
POTENCI as described in “methods”. The chemical shifts 
were corrected for pH and temperature and the possibility 
of misreferencing was considered (Eq. 7) following the 
procedures described in Methods. The fitting procedure 
converged after 60,000 steps, removing approximately 1% 
of the chemical shifts judged to be outliers in the process. 
The distribution of errors subsequent to parameter fitting 
were normally distributed, whereas, in contrast, the outli-
ers removed according to the principle of quantile match-
ing (see “methods” and Eq. 19) were clearly beyond the 
tails of the normal distribution (see Fig. 2). The result-
ing RMSDs for the training data were 0.4180, 0.1624, 
0.1320, 0.1498, 0.05753, 0.02385, and 0.01873 ppm for 
15N, 13Cα, 13Cβ, 13C′, 1HN, 1Hα and 1Hβ, respectively (see 
also Table 1).

The POTENCI parameterization provided random coil 
chemical shifts, neighbor and next-nearest neighbor cor-
rections for all residue types as well as additional correc-
tions for correlations of central and neighboring residues. 
The random coil shifts are given in Table 2. The neighbor 
correction parameters were obtained by using fewer than 
the maximal number of parameters following the parsimo-
nious robust fitting procedure described in “methods” [see 
Table 1 and Eqs. (8)–(10)]. In total between 61(Cβ) and 
72(Hβ) parameters out of the possible 82 (including two 
to encode the termini) were used to account for the neigh-
boring residues, whereas only between 17(Hβ) and 56(N) 
out the maximal 196 parameters for correlations between 
amino acids were required. Between 42(Hβ) and 94(HN) 
of the 137 proteins required offset corrections. As a result, 
a total sum of between 151(Hβ) and 222(HN) parameters 
were used to fit the chemical shifts. Consequently, the total 
number of parameters used per chemical shift data point 
was low, between 0.023 and 0.027 for the heavy atoms, 

0.027 for  HN, and 0.036/0.054 for Hα/Hβ, where fewer 
chemical shifts were available, suggesting a robust fit (all 
counts are available in Table 1).

The derived amino acid neighbor corrections show a few 
general and interesting trends (see Fig. 3): For example, aro-
matic neighboring residues produce upfield shifts for cen-
tral residue proton chemical shifts, whereas beta-branched 
residues at position i − 1 lead to downfield shifts for central 
residue 15N and (to a lesser extent)  HN shifts. Overall, Gly 
and Pro neighbors result in the largest absolute perturbations 
on the central residue chemical shifts, whereas Gln, Lys, 
and Arg have least influence. Furthermore, 13Cα and 13Cβ 
nuclei are the least affected, while 15N/1HN chemical shifts 
are mostly affected by neighbor i − 1, whereas 13C′ chemical 
shifts are most effected by neighbor i + 1. Finally, there is 
a clear trend that amino acid correction matrices are cor-
related in the following pairs: Cα/Cβ, 15N/HN, and Hα/Hβ. 
All neighbor corrections are provided in the Supplementary 
Material Table S2.

A somewhat similar picture is seen for the correlated 
neighbor contributions, �k

l,m
(n) , Eq. (10), for residue groups, 

l and m, related to the central residue position, i, and neigh-
bor i + k, respectively, for nucleus, n. The effects are largest 
when Gly or Pro are involved and largest for the nearest 
residue positions, (k = − 1 and 1). As expected, the contri-
butions for k = − 2 and 2 are largest for 15N/1HN, and 13C′, 
respectively. The correlated contributions are visualized in 
Fig. 4. It is seen that a significant number of these are non-
zero and are different for each individual nucleus. The three 
most important contributions are highlighted with circles 
and explained in detail in the figure legend. The 20 most 
significant correlation corrections are listed in Table 3. The 
full list of correlated neighbor contributions is provided in 
the Supplementary Material Table S3.

Predicted chemical shift can now be derived, using the 
values from the tables indicated above. A few examples for 
representative pentapeptides are provided in Fig. S4 in the 
Supplementary Material for reference and the predictions 
are compared to those using ncIDP (Tamiola et al. 2010) 
and the method of Kjaergaard et al. (2011), Kjaergaard and 
Poulsen (2011).

To evaluate the performance of POTENCI, 12 repre-
sentative proteins were selected from the training set for 
cross-validation, i.e. POTENCI was parameterized with all 
proteins except one, I, and this parameterization was applied 
to derive the predicted shift for protein I. This procedure 
was repeated leaving each of the 12 proteins out from the 
cross-validation set one-by-one. The only exception from 
this procedure was BMRB ID, 6968, which was not used in 
the full training or the leave-one-out sets. The 12 proteins 
(listed in Table 4) were selected for their high degree of 
disorder and large number of available chemical shifts, and 
to also represent cases with low temperature and low pH. 
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Following this principle, the set contained chemical shifts 
for all 6 different nuclei, between 1026 (1Hα) and 1681 (13C′) 
chemical shifts in total, with temperatures between 273.0 
and 300.1 K and pH between 4.5 and 7.0. The performance 
of POTENCI on the cross-validation set was compared to the 
performance of the two currently most accurate predictors, 
ncIDP (Tamiola et al. 2010) and the method of Kjaergaard 
et al. 2011), Kjaergaard and Poulsen (2011) derived from 
the QQXQQ peptide library (henceforth referred to as the 
QQXQQ or KBP method). A few chemical shifts were iden-
tified having very large errors, corresponding to assignment 
errors or oxidized Cys, for all three methods (see Table S5). 

These chemical shifts (10 cases, Table S5) with absolute 
errors > 1.5 and 4.5  ppm for 13C and 15N, respectively, 
and 0.6 and 0.25 ppm for 1HN and 1Hα, respectively, were 
excluded from the comparison. Furthermore, the protein 
with BMRB ID 15563, was obviously assigned using a non-
standard reference, and therefore LACS (Wang et al. 2005) 
was used to re-reference the 13C chemical shifts using offset 
corrections of 2.74 ppm for 13Cα and 13Cβ and 3.07 ppm 
for 13C′. The result of the cross-validation and comparison 
between method performance is visualized in Fig. 5. The 
results on the cross-validation is slightly higher than the 
training set statistics, yielding RMSDs between observed 
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Fig. 2  Fitting performance and statistics. a Observed vs. predicted 
Hα shifts in the training set showing used data points in blue and 
points deemed to be outliers as green larger disks with black outline. 
b fraction of points, f = 1 − Fobs(nσ) (Eq.  17), with absolute scaled 
errors, (Eq.  15), ε >  nσ (for Hα) as a function of  nσ. showing data 
points subsequent to outlier-stripping as a solid blue curve, all data 
points—including outliers—with green dashes, and the curve corre-
sponding to the standard cumulative normal distribution as a continu-

ous black dashed line for reference. c Q–Q plot (Wilk and Gnanadesi-
kan 1968) showing observed quantiles against theoretical quantiles 
(Eq.  18) for all nuclei using blue, red, black, green, cyan, magenta 
and yellow curves for C′, Cα, Cβ, Hα,  HN, N and Hβ, respectively. 
The straight dashed line, y = x indicates that the error follows a stand-
ard half-normal distribution; points above the line in the right-hand 
side indicate heavy tail outliers
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and predicted shifts of the cross-validation set (Table 4) of 
0.1861, 0.1677, 0.1862, 0.5341, 0.0735, and 0.0319 ppm for 
13C′, 13Cβ, 13Cα, 15N, 1HN and 1Hα, respectively. However, 
the RMSDs for the other methods are significantly higher 
(see Fig. 5) obtaining RMSDs which are between 22.4% 
(13Cα) and 83.7% (1Hα) higher than POTENCI. Throughout 
this paper, we equate a higher accuracy to a lower RMSD 
between observed and predicted shifts.

Statistical analysis of the errors in the cross-validation 
set reveals that POTENCI performs better than the two 
other methods across the full error range (see Fig. 6). Fur-
thermore, it is observed that the errors are not precisely 
normal-distributed with a scale parameter corresponding 
to the RMSDs for the final evaluation in the training set 
(Table 1), but, rather, the smallest errors appear to follow 
a normal distribution, whereas the largest errors are much 
larger than expected from the normal distribution (see 

Table 1  Number of used parameters, chemical  shiftsa and RMSD

a The numbers qk,  NΓ,  NΛ,  NΠ, and  NM are defined in Eq. (13) in methods,  NCS is the number of chemical shifts used for fitting, and  NOL is the 
number of chemical shifts judged to be outliers
b Maximum possible number of parameters
c Including one parameter for the N/C-terminal end of the sequence
d Including 20 for the center residue random coil chemical shifts

Atom γ−1 γ 1 γ−2 γ 2 NΓ NΛ NΠ NM NCS NOL NM/NCS RMSD

Cα 19 17 14 20 70 70 42 202 8842 75 0.0228 0.1624
Cβ 18 18 13 12 61 78 39 198 7235 124 0.0274 0.1320
C′ 15 19 13 16 63 54 33 170 7030 89 0.0242 0.1498
N 19 18 13 11 61 77 56 214 8846 63 0.0242 0.4180
HN 19 18 20 12 69 94 39 222 8368 73 0.0265 0.05753
Hα 17 18 18 18 71 56 20 167 4586 86 0.0364 0.02385
Hβ 19 19 14 20 72 42 17 151 2820 88 0.0535 0.01873
Max.b 20 20 21c 21c 82 137 196 435d n.a. n.a. n.a.

Table 2  POTENCI random coil 
chemical shifts (ppm) at pH 7 
and T = 298 K (Eq. 1)

a Average of individual methylene shifts when both were reported
b Average of both individual methylene Hα shifts

15N 13C′ 13Cα 13Cβ 1Hα 1HN
1Hβa

A 125.268 177.446 52.537 19.220 4.258 8.209 1.315
R 122.453 175.948 56.044 30.820 4.284 8.258 1.734
D 121.575 176.027 54.315 41.170 4.554 8.279 2.601
N 119.987 174.949 53.201 38.870 4.643 8.364 2.728
C 120.596 174.345 58.499 28.061 4.444 8.296 2.854
E 122.136 176.197 56.580 30.289 4.226 8.353 1.924
Q 121.552 175.641 55.774 29.439 4.280 8.293 1.977
G 110.189 173.849 45.216 n.a. 3.915b 8.336 n.a.
H 120.757 175.010 56.178 30.598 4.558 8.267 3.031
I 122.233 175.886 61.059 38.695 4.108 8.064 1.786
L 123.357 177.065 55.182 42.298 4.287 8.143 1.541
K 122.772 176.251 56.275 33.032 4.260 8.243 1.720
M 121.418 175.912 55.516 32.841 4.417 8.248 1.976
F 121.211 175.276 57.622 39.573 4.567 8.112 3.000
P 137.374 176.647 63.151 32.071 4.370 n.a. 2.033
S 117.179 174.317 58.351 63.819 4.400 8.250 3.810
T 115.551 174.284 61.859 69.803 4.288 8.106 4.155
W 122.051 175.787 57.193 29.584 4.588 7.983 3.185
Y 121.358 175.355 57.795 38.780 4.503 8.062 2.918
V 121.580 175.812 62.209 32.783 4.061 8.066 1.993
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Fig. 6). These over-dispersed points could either be due 
to method-specific bias on the predicted shifts or due to 
experimental bias in the assigned chemical shifts. Here we 
consider two types of experimental biases, namely (i) con-
stant offset from misset chemical shift reference and (ii) 
over-dispersion caused by residual structure. To analyze (i) 
we included one additional parameter, λ, for comparing the 
observed and predicted shift minimizing (Eq. 22 below).

  

where �obs(i, I) and �pred(i, I,m) is the observed and pre-
dicted shift, respectively, for residue, i, and protein, I, and 
method, m, and λ is a phenomenological offset correction 
for protein, I, adapted for the method, m. To test for (ii) we 
excluded all residues in the cross-validation data set cor-
responding to residues with supposed residual order based 
on the criterion of the CheZOD Z-score > 3, hence, only 
retaining the same residues as used in the training set (see 
Table S1) (note that the particular entries were not used for 
deriving the cross-validation parameters leaving each protein 

(22)rmsd� =

√
1

N

∑
i

(
�obs(i, I) − �(I,m) − �pred(i, I,m)

)2

entry out one-by-one). Between 5.4 and 7.6% of the data 
points were removed by this criterion (see Table S6). Firstly, 
inclusion of the adaptive-method-specific chemical-shift 
offset revealed optimized RMSDs (Eq. 22) for POTENCI 
that were about 11% lower than the RMSD without offset 
correction (see Fig. 7 and Table S6). The other methods 
also showed improved performance by including an off-
set correction, in particular 1Hα RMSDs were much lower 
(Fig. 7 and Table S6) suggesting problems for the predic-
tions with constant bias, which is significant compared to 
the prediction RMSD for 1Hα for these methods. Secondly, 
stripping off the supposedly residually-structured residues 
leads again to improved RMSDs of ca. 10% for POTENCI. 
This improvement was also found for the other methods 
(Fig. 7 and Table S6). Finally, the inclusion of both experi-
mental bias remedies at the same time yielded significantly 
improved RMSDs for all methods. In particular, POTENCI 
shows RMSDs of 0.1457, 01248, 0.1494, 0.4131, 0.0563, 
and 0.0254 ppm for 13C′, 13Cβ, 13Cα, 15N, 1HN and 1Hα, 
respectively. Still, these RMSDs are significantly higher 
for the other methods by between 25 and 78% relative to 
POTENCI. We note also that the remedied RMSDs for 
POTENCI are on par with the RMSDs in the training set 
(Table 1). Analyzing the distribution of errors (Fig. S2) 
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Fig. 3  Visualization of amino acid neighbor corrections to random 
coil shifts. The scaled amino acid neighbor corrections, Δk/sn, (Eqs. 2 
and 9) are shown for each amino acid and atom for residue i + k with 
k = − 2, − 1, 1, and 2, images visualized according to the color bar. 
The corrections were scaled by dividing with  sn = 1.0, 4.0 and 10.0 

for 1H, 13C and 15N, respectively. Values were truncated to an abso-
lute maximum for 0.25 to enhance contrast in the visualization. This 
was necessary for: Pro i + 1 C′/Cα/Hα (full un-scaled corrections 
were − 1.91/− 2.02/0.283 ppm) and 15N Ile i-1 (2.75 ppm). See also 
Table S2 for all neighbor contributions
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reveals that remedying the data using either the offset cor-
rection or the residue stripping, still feature a remaining part 
of the errors being over-dispersed. However, including both 
remedies leads to errors that are very close to being com-
pletely normal distributed (see Fig. S2).

Discussion

We have presented here a method, POTENCI, for predict-
ing random coil chemical shifts from protein sequence. Our 
analysis revealed that POTENCI outperforms the currently 
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Fig. 4  Visualization of correlated amino acid contributions to ran-
dom coil chemical shifts. The matrix of images shows the contribu-
tion, �k

l,m
(n) (Eq.  10), for each nucleus, n, (rows, labels to the left) 

and sequence position, i + k, (columns, labels at the top). Each image 
shows the scaled corrections, �k

l,m
(n)∕�(n) , (scales defined in Eq. 21) 

according to the color bar for all combinations of the central residue 
group type, l, (vertical axis for each image) and neighboring group, 
m, (horizontal axis for each image). The amino acid groups are 
described in “methods” below (Eq.  10) using labels: G(Gly) = ”G”, 
P(Pro) = ”P”, F/Y/W(aromatic) = ”r”, L/I/V/M/C/A(aliphatic) = ”a”, 
K/R(positive) = ”+”, D/E(negative) = ”−”, or N/Q/S/T/H(polar) = ”p”. 

Only a small subset of the possible correlated corrections was 
used (between 17 and 56 out of the possible 196) showing all non-
used groups here as white pixels in the images. The scaled correc-
tions were visualized using a truncation to an absolute value of 2.0. 
Colored circles highlight corrections with absolute values higher than 
5.0, five further corrections were between 2.0 and 2.8 (see Table  3 
below). The colored circles highlights contributions from (n, k, l, m) 
= (Cα, 1, Gly, Pro) (motif: xxGPx as in Table 3 below, “x” denotes 
any amino acid, green circle), (n, k, l, m) = (Cβ, 1, Pro, Pro) (xxPPx, 
purple) and (n, k, l, m) =  (HN, − 2, Gly, aromatic) (rxGxx, black)
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Table 3  The 20 most 
significant correlated amino 
acid  contributionsa to the RC 
chemical shift

a The contribution, �k
l,m
(n) , for nuclei, n, as defined in Eq. (10) and visualized in Fig. 3. See also Table S3 

for the full list of contributions
b The pentapeptide context showing groups as defined in Methods below Eq. (10) and legend to Fig. 3 for 
positions, i − 2 to i + 2 from left to right with group positions, l (center) and m (neighbor) highlighted with 
bold letters
c The absolute scaled correction is scaled using values from Eq. (21)

n k l m Motifb Correction �k
l,m
(n)∕ppm Absolute scaled  correctionc

Cα 1 G P xxGPx 1.3044 6.5813
Cβ 1 P P xxPPx − 0.8458 5.4779
HN − 2 G r rxGxx − 0.3503 5.2220
Hβ 2 P r xxPxr − 0.0595 2.7608
Hα − 1 P r xrPxx 0.0621 2.3592
Hβ − 1 P r xrPxx 0.0460 2.1365
HN 1 G P xxGPx − 0.1418 2.1144
N 1 G P xxGPx − 0.9725 2.0595
N − 1 P P xPPxx − 0.9177 1.9434
Cβ − 1 P r xrPxx − 0.2678 1.7345
Cα 1 P P xxPPx 0.3025 1.5262
Hβ 1 + P xx+Px 0.0324 1.5056
C′ − 1 G r xrGxx 0.2742 1.4856
HN − 1 r P xPrxx − 0.0964 1.4367
C′ − 1 P r xrPxx 0.2640 1.4303
Hα − 1 r G xGrxx − 0.0371 1.4092
Cα 1 P G xxPGx 0.2642 1.3329
Hβ 1 a P xxaPx 0.0287 1.3310
C′ 1 p P xxpPx 0.2321 1.2574
Hβ 2 p r xxpxr 0.0262 1.2178

Table 4  The 12 proteins 
used for cross-validation of 
POTENCI

a Number of residues with assigned chemical shifts excluding the N- and C-terminal
b No Hα shifts available
c No  HN shifts available
d Offset corrected using LACS for 13C (Wang et al. 2005)

BMRB ID pH T/K Number of  residuesa Protein name

6968 6.5 285.5 138 Alpha-synuclein
17483 7.0 298.0 106 Small heat shock protein (Hsp12)
18889b 6.8 298.0 54 CD3e cytosolic domain
19135c 6.9 300.1 465 MAP2c
19332 6.6 298.0 108 p15 (PAF)
15563b,d 4.5 293.0 93 Human SRC (1-85)
25399b 6.5 298.0 50 Aortic medial amyloid protein medin
25185b 6.5 298.0 127 FG-NUP (48-172)
25183b 6.5 298.0 128 FG-NUP (274-398)
18417 6.0 298.0 251 Human BASP1
19318 7.0 273.0 58 CPAP-interacting epitope of Danio rerio STIL
26672b 5.5 298.0 160 Low complexity prion-like domain of Fused in Sarcoma 

(FUS 1-163)
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most accurate methods as outlined above. Below we com-
pare POTENCI with several other methods in greater detail, 
discuss the validation of POTENCI, the origin of the high 
accuracy of POTENCI, potential applications of POTENCI, 
and the mechanism of neighbor effects on chemical shifts.

Comparison of POTENCI with other methods

To compare more specifically the performance of POTENCI 
with other methods and analyze how the improved accuracy 
impacts on the interpretation of dynamics along to sequence, 
we analyze the specific errors in the prediction for all meth-
ods sequence-specifically for one protein in the cross-valida-
tion set, Hsp12, the heat shock protein from Saccharomyces 
cerevisiae (Singarapu et al. 2011) (BMRB ID 17483, Fig. 8). 
It is clear again that POTENCI produces much lower digres-
sions compared to the other methods and uniform deviations 
along the sequence except a slightly larger variation for seg-
ment 75–83 and for the C-terminal residues 105–108. On the 
other hand, ncIDP (Tamiola et al. 2010) clearly produces 
upfield-biased Hα RCCSs (seen as biased positive errors 
shown with green dots in Fig. 8c). The QQXQQ method 
appears to have overall larger errors for certain residues 
in the sequence. It should be noted that larger differences 
between observed and predicted RCCSs can both be inter-
preted as limitations of the model but also as amplified fluc-
tuations in secondary chemical shifts indicating residual 
ordered structure. An interpretation of increased order can 
be assisted by calculation of the CheZOD Z-score (Eq. 20) 
(black curve, Fig. 8). For comparison, the two other methods 
have higher background levels of error (RCCSs difference) 
fluctuations (i.e. higher minimum Z-score) and more regions 
with larger errors (and higher Z-score), which would make it 
more difficult to identify true segments of increased ordered 

structure. Interestingly, segment 75–83 is part of the only 
ordered structured segment (helix IV) that forms both in 
SDS micelles and in the presence of DPC (Singarapu et al. 
2011), and, as shown here for the first time, also seems to 
form partially in aqueous solution.

We compared the POTENCI-derived CheZOD Z-score 
with other methods for inferring structure and dynamics 
from chemical shifts (see Fig. 8d). The predicted order 
parameter,  S2, by RCI (Berjanskii and Wishart 2005) does 
not agree well with the Z-score and appears to have larger 
background noise. The reason for this might be that RCI 
applies a truncation of the RCCS difference. The neighbor-
corrected structural propensities [ncSPC, black curve (Tami-
ola and Mulder 2012)], which is based on ncIDP RCCS 
predictions, show positive values (indicative of helix popu-
lation) for residues 74–85 matching well with the region for 
helix IV discussed above. On the other hand, ncSPC reveals 
longer regions with negative signs, suggesting a propen-
sity for beta-sheet formation, which is not reflected in the 
Z-score. We argue that the derived increased propensity for 
beta-sheets is due to the upfield bias in ncIDP predicted 1Hα 
RCCS. With some similarities, δ2Δ (Camilloni et al. 2012) 
predicts a small region near helix IV with higher propensity 
for helix formation and a region in the middle and near the 
C-terminal with increased population of beta-sheet (Fig. 8d).

The origin of the high accuracy of POTENCI

As outlined above, POTENCI predicts the chemical shifts 
significantly better, with an uncertainty approaching the 
measurement error for 1Hα and 1Hβ. The predictions have 
almost an order of magnitude lower error compared to the 
chemical shift prediction error for structured proteins based 
on their sequence and structure (Meiler 2003; Neal et al. 
2003; Shen and Bax 2007; Kohlhoff et al. 2009; Han et al. 
2011). This reflects that chemical shifts for IDPs correspond 
to a statistical distribution of conformations that are highly 
specific to the local sequence of amino acids. By analyzing 
the sources of the accuracy of POTENCI a lot can be learnt 
about what limits the accuracy of chemical shift prediction 
and its interpretation in terms of structure and dynamics 
for IDPs.

Whereas earlier library methods based on guest-host 
substitutions of amino acids into short peptides (Richarz 
and Wüthrich 1978; Bundi and Wüthrich 1979; Braun 
et al. 1994; Wishart et al. 1995; Schwarzinger et al. 2000; 
Kjaergaard et al. 2011; Kjaergaard and Poulsen 2011) only 
sampled a small biased region in sequence and condition 
space, the POTENCI parameters were derived from a 
diverse database of full length protein sequences studied 
under native conditions that reflect representative sam-
pling of conformational space. Notably, with POTENCI 
we observe that correlated contributions were important 
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Fig. 5  Performance of POTENCI and other methods on the 12 pro-
tein cross-validation set (see Table  4) showing the RMSD between 
observed and predicted shifts for each nucleus and method. For the 
predictions by the method of Kjaergaard et  al., GGXGG-derived 
neighbor corrections were used for glycines
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for the prediction (Fig. 4), i.e. certain amino acid neigh-
bors, such as Pro, influence the chemical shifts and local 
conformational sampling idiosyncratically, dependent on 
the nature of the central amino acid. Taking this contribu-
tion into account leads to improvement of chemical shift 
prediction relative to library methods, where it would 
require as many as 8000 tripeptides or 3,200,000 penta-
peptides to be synthesized and measured to compile the 
analogue of the data presented here.

Tamiola et al. (2010) adapted a statistical approach, con-
ceptually very similar to the one presented here, addressing 
the inherent limitation of library methods by analyzing a 

small database of IDPs, the ncIDP database. The burgeon-
ing assignment of ever more IDPs allowed us to compile a 
much larger database of proteins, comprising 137 entries 
compared to a mere 14 in the ncIDP database (see Fig. S1). 
More specifically, after removing outliers in both databases, 
the POTENCI database retained 47,159 chemical shifts, 
whereas the ncIDP database consisted of 4439 chemical 
shifts, i.e. a factor of over ten times more data points. This 
indicates that POTENCI could apply more than ten times as 
many parameters, maintaining the same parameter-to-data 
ratio, and thereby study more subtle correlations between 
local sequence and chemical shifts. While this is of course a 

Fig. 6  Distribution of errors. 
Plots for each nucleus, showing 
the fraction of points (y-axis) 
above an error threshold as a 
function of the error threshold 
as in Fig. 2b (this time the abso-
lute unscaled error in ppm is 
shown). The different methods 
have color coding as in Fig. 5 
and highlighting the theoretical 
curve (broken magenta outline) 
for a normal distributed data set 
with a standard deviation equal 
to the RMSDs for the final 
evaluation in the training set 
(Table 1)
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simplistic interpretation, since not all parameters are equally 
important, our application of AIC [“methods”, Eq. (14)] 
allowed us to increase the number of adjustable parameters 
as long as it decreased the fitting rms significantly. Indeed, 
POTENCI included a significant number of correlated con-
tributions as described above, but also correction terms for 
next-nearest neighbors. This effect is very important, since 
the correction terms for the next-nearest neighbors, in some 
cases, were almost as large as those for the direct neighbors.

POTENCI also incorporates the effect of pH, which leads 
to partial or full protonation of titratable side chains, on the 
chemical shifts of the central and neighboring residues 
[“methods”, Eqs. (5) and (6)]. We analyzed the errors in the 
chemical shift predictions for human SRC residues 1–85 
(Perez et al. 2009) (BMRB ID 15563), studied at pH 4.5 
both with and without using the pH corrections. Neglect-
ing these corrections lead to large errors in chemical shifts 
for all histidines (see Fig. 9), seen as spikes in the derived 
Z-scores that could potentially be wrongly interpreted as 
residual order. For comparison, the KBP method is capable 
of accounting for pH, whereas ncIDP is not.

POTENCI also applies residue-specific corrections for 
the temperature dependence of the chemical shifts (“meth-
ods”, Eq. 4). Chemical shift prediction errors for the protein 
CPAP-interacting epitope of Danio rerio STIL (BMRB ID 
19318) (Hatzopoulos et al. 2013) studied at 0 °C are shown 
in Fig. 10. The main effect of neglecting temperature correc-
tions was a downfield bias of 15N chemical shifts. Although 
the overestimation of order by the 15N chemical shifts (cyan 
data points) is evident from comparison of panels (b) and 
(a), this has a negligible effect on the derived total Z-score, 
when using all chemical shifts collectively, since the weight 
factor for 15N secondary chemical shifts is small.

The accuracy of RCCS prediction was greatly improved 
in POTENCI by the introduction of both next-nearest neigh-
bors and pairwise correlated amino acid pairs described 
by linear equations and corrections for dependence on pH 
and temperature as discussed above. The question remains 
whether the chemical shift prediction can be improved fur-
ther by adding more sequence and condition features or by 
using a more sophisticated mathematical description. To 
address this question, we analyzed our database of 9810 
disordered residues and searched for multiple occurrences 
of triplet and pentad amino acid segments both within the 
same, and across all, proteins in the database. For each reoc-
curring segment, S, we inspect the standard deviation, σS, of 
the observed chemical shift within the group. The distribu-
tion of such standard deviations, representative of the “true 
variation” of the chemical shift, is analyzed and shown in 
Fig. 11. Among entries with assigned 15N shifts (8846 resi-
dues), there were 2032 and 419 reoccurring triplets across 
all protein sequences and within the same protein, respec-
tively, and 127 and 58 pentads across and within protein(s), 
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Fig. 7  Performance of POTENCI and other methods RMSD with and 
without experimental data bias remedies. RMSDs for POTENCI and 
other methods showed with colored bars as in Fig. 5 with or without 
method adapted offset correction (Eq.  22) and/or stripping off resi-
dues with residual structure (see text and definition in Table S1)
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respectively. For segments across proteins we compare the 
chemical shifts corrected for temperature, pH and offset 
(Eq. 7). It is seen that the chemical shift variation for identi-
cal triplets across all protein sequences (black curve) is com-
parable to a normal distribution having the same errors as 
POTENCI predictions (magenta broken curve)—except for 
1HN and 13C′, to a lesser extent—which show larger variation 
in the triplets. For comparison, the chemical shift variation 
for identical pentads across proteins (green curve) reduces 
to about half the value for the triplets, e.g. the median vari-
ation is 0.053 ppm for 13Cα among pentads (compared to 
0.12 ppm among triplets). The observation that sharing five 
rather than three residues reduces chemical shift variation 

confirms that next-nearest neighbors are important for chem-
ical shift prediction. These rather small variations among 
triplets and pentads compared to the POTENCI errors sug-
gests that considering all three (or more) residues in a tri-
plet simultaneously would improve chemical shift predic-
tion. However, considering  20N combinations of N residues 
would require introducing an expansive number of adjust-
able parameters, and lead to over-fitting. It should, however, 
be noted that the analyzed variations correspond to residue 
types that occur more frequently in IDPs, and therefore 
might not be representative of the chemical shift variation 
for all possible combinations of residues. As another caveat, 
we point out that a fraction of the triplets would be part of 
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Fig. 8  Weighted errors for RCCS prediction for protein Hsp12 
(BMRB ID 17483). The signed scaled error between observed and 
predicted shifts, ε = (δobs − δpred)/σ, is shown as a function of the 
position in the sequence (using scaling by Eq. 21) as dots colored as 
described in the legend to Fig. 2d for POTENCI (a), the method of 
Kjaergaard et al. (2011), Kjaergaard and Poulsen (2011) (b) and the 
method of Tamiola et al. (2010) (c). The CheZOD Z-score calculated 
based on the sum of the squared scaled errors (Eq. 20) as described in 

“methods” and (Nielsen and Mulder 2016) is shown as a black curve. 
Lines for ε = 0 and Z = 3 are shown for reference. d Predicted dynam-
ical and structural properties: order parameter,  S2, by RCI [green 
curve (Berjanskii and Wishart 2005)], neighbor-corrected structural 
propensities [ncSPC, black curve (Tamiola and Mulder 2012)], and 
secondary structure probabilities as predicted by δ2Δ (Camilloni 
et  al. 2012) shown as a red curve for α-helix and a blue curve for 
β-sheet (displaying the negative of the probability here)
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SRC (1-85) with BMRB ID 15563 at pH 4.5. The signed scaled error 
between observed and predicted shifts and the CheZOD Z-score is 
shown along the sequence as in Fig. 8 in the main text. Predictions 
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Fig. 10  Weighted errors for RCCS prediction for the protein CPAP-
interacting epitope of Danio rerio STIL, (BMRB ID 19318) at 
T = 273  K. The signed scaled error, ε, between observed and pre-
dicted shifts and the CheZOD Z-score is shown along the sequence 

as in Fig.  8. Predictions when not using temperature correction are 
shown in panel b with the amino acid sequence shown for reference. 
15N chemical shifts are shown using cyan dots
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longer repeat segments such as pentads whereas we have 
already removed the segments that only repeated within the 
same protein from the “across” analysis.

Restricting the above analysis to segments within the 
same protein, it is seen (Fig. 11) that the chemical shift 
variation is significantly lower (ca. half the magnitude for 
triplets, red curve) than the corresponding variation for the 
same segment size across all the proteins. e.g. for 13Cα the 
median variation is 0.06 ppm for triplets within proteins. 
There are several possible explanations for this decrease in 
chemical shifts variation. Firstly, segments within the same 
protein share the same sample conditions such as pH and 
temperature and it might be that, although POTENCI con-
siders these effects, the parametric dependence might not 
be adequate. Secondly, other buffer conditions such as e.g. 
ionic strength and type of buffer component are not included 
in POTENCI, and might have an influence on the chemical 
shift in a way that is not currently captured by the offset 

correction parameter. Unfortunately, not all conditions are 
reported consistently in the BMRB data and, in particular, 
the ionic strength is only provided in some cases. A system-
atic empirical investigation of chemical shifts under varied 
conditions could prove valuable for resolving this issue. 
Thirdly, it should be noted that repeated segments within the 
same protein share features from the underlying sequence 
such as total charge and local polarity etc. and the segments 
might even be part of longer pseudo-repeats in sequence as 
is often seen for IDPs (Dunker et al. 2002; Simon and Han-
cock 2009). It appears from these observations, that there 
would be an underlying sample-specific effect that perturbs 
the conformational equilibrium very subtly in a way depend-
ent on the central residue type and the sample conditions. 
These effects might be important, but are difficult to address 
without applying too many adjustable parameters with the 
risk of over-fitting of the data. Finally, the chemical shift 
variation among pentads within the same protein is very 
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Fig. 11  Distribution of the variations in observed chemical shifts 
among identical sequence motifs. Cumulative distribution function 
(cdf) for the standard deviation, σS, of observed chemical shifts for 
each reoccurring segment (see text); triplet (black and red curve)/pen-
tad (green and blue), across (black and green curve) all proteins in the 
POTENCI database and within the same protein (red and blue); see 
also text. The theoretical cumulative distribution function of varia-

tion is shown with a broken magenta curve corresponding to the half-
normal distribution with a standard deviation taken as the POTENCI 
error in the training set (Table 3). Segments only present in the same 
protein were excluded from the analysis across proteins. For the anal-
ysis across proteins, the chemical shifts were corrected for pH and 
temperature (Eq.  7, “methods”), and offset (which was determined 
during the fitting process)
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low (Fig. 11, blue curve) and approaches the experimental 
precision for the chemical shift, e.g. the median value is 
ca. 0.01 ppm for the heavy atoms and 0.001 ppm for pro-
tons. The true variation could be difficult to measure for 
experimentalists due to potential complete overlap on all 
chemical shift axes in a multi-dimensional NMR experiment 
for assignments, and hence, conservatively, the same chemi-
cal shifts would often be assigned to two different pentads 
although the actual chemical might differ slightly explain-
ing the small kink in our curves. Therefore, the dispersion 
in multidimensional NMR spectra of IDPs are completely 
described by the local penta-peptide segments. This also 
means that predicted chemical shifts are not expected to 
improve with the addition of further neighboring amino 
acids beyond next-nearest neighbors in the parameterization. 
Rather, the chemical shift prediction accuracy is limited by 
the effects from sample conditions.

Validation of POTENCI

Statistical regression models can suffer from over-fitting. 
Therefore, in order to assess how our model would general-
ize to an independent dataset, the reliability of POTENCI 
predictions was assessed by cross-validation. Twelve rep-
resentative proteins were selected and the chemical shifts 
were predicted with a leave-one-out procedure and com-
pared to the observed shifts. Analysis of the prediction 
errors, following this cross-validation procedure, is a fair 
assessment of the accuracy of POTENCI. It was seen that 
POTENCI performs significantly better than the two cur-
rently most accurate predictors, ncIDP (Tamiola et al. 2010) 
and the QQXQQ library method of Kjaergaard et al. (2011), 
(Kjaergaard and Poulsen 2011), which show RMSDs higher 
by between 22.4% (Cα) and 83.7% (Hα) (Fig. 5). We also 
showed that the majority of the largest errors can be removed 
by adapted offset correction and by excluding residues with 
supposed residual order, and in this case POTENCI still per-
forms better than the other methods with about the same 
ratios of improvement (Table S6). Furthermore, the RMSDs 
for POTENCI decreased by 1.7% on average without cross-
validation, i.e. if the parameter set for the full training set of 
proteins including the protein to be predicted was used. This 
relatively small decrease in RMSD supports the conclusion 
that POTENCI was not over-fitted by our stochastic regres-
sion procedure. Akaikes information criterion (AIC) was 
used for deriving the optimal balance between the number 
of adjustable model parameters and goodness of fit (“meth-
ods”, Eq. 14). This procedure appears to be a suitable choice, 
since it prevents over-fitting of the data in an objective way 
and is asymptotically equivalent to minimizing the good-
ness of fit in leave-one-out cross-validation (Stone 1977). 
Indeed, POTENCI applies a relatively small ratio of number 
of parameters divided by number of data points, i.e. between 

0.023 and 0.027 for all the heavy atoms (see Table 1). This 
number is low compared to the ratio of ca. 0.10 used in 
the linear regression applied to train the method of Tamiola 
et al. (2010). This ratio becomes as high as 0.144 for the 
method of Tamiola et al. for 1Hα, and we argue that over-
fitting in this case might be responsible for the observation 
of downfield biases for 1Hα RCCS predictions for proteins 
not part of the training set for this method, as, for example, 
seen in Fig. 8 (see also Fig. S3). The very low standard error 
for 1Hα, measured in ppm, demands a very accurate offset 
setting of the chemical shift axes. If the offset is not set 
properly, it would lead to significant bias in the sign of the 
secondary chemical shift and distribution of errors as seen in 
Fig. S1. We foresee that the accuracy of POTENCI could be 
improved even further upon expansion of the database with 
future assigned IDPs that would allow for a larger number 
of adjustable parameters to be used according to AIC—in 
particular for the correlated contributions and next-nearest 
neighbor corrections. Such corrections would, of course, be 
much smaller than those presented here, and would have 
comparatively less impact.

Unfortunately, the studied training set of chemical shifts 
inevitably contains outliers, both due to errors in the chemi-
cal shifts due to human assignment mistakes and experimen-
tal noise, but also due to systematic biases caused by effects 
not included in the model definition, such as small fractions 
of residual structure or differences in buffer conditions. 
Since outliers have large impact on the model parameters 
in regression models, it is important to remove the outliers 
prior to fitting. IDPs often contain ordered segments of vary-
ing length and degrees order as recently discussed (Nielsen 
and Mulder 2016), and therefore we did not include such 
putative ordered segments and only included apparent com-
pletely disordered residues according to our Z-score defini-
tion of local order (Table S1). It was indeed identified by 
cross-validation that local residual structure leads to over-
dispersed error distributions (Fig. S1). However, other types 
of outliers cannot be distinguished from rare cases related to 
true data points prior to model building and therefore need to 
be identified a posteriori. We applied our procedure of itera-
tively decreasing the weight, rVIF, (Eq. 14) on the number 
of parameters in the definition of AIC, followed by removal 
of outliers (ca. 1% of data points) based on the principle of 
quantile matching (“methods”, Eq. 19). A high value of rVIF 
in the first iteration ensured that the data points were not fit-
ted too heavily, so that outliers could be distinguished and 
removed. The principle of quantile matching was applied 
here to remove the correct number of over-dispersed points. 
While removing too few erroneous points is bad for rea-
sons discussed above, too excessive outlier stripping would 
risk removing true data points with high information con-
tent. Our choice of limiting quantile, Q = 3.0 (Eq. 19), is of 
course not universal, but with this choice we observed that 
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the errors followed a normal distribution quite well (Fig. 2) 
as required for linear regression models. After the final cycle 
of model optimization followed by outlier stripping, the pro-
cedure appeared to have converged as, on average, the num-
ber of outliers did not increase in the final cycle (between 
8.6% more and 15.7% less than in the previous cycle were 
found). We note that the inclusion of neighbor correlated 
contributions (Eq. 10) allowed us to account for data, which 
appeared as outliers without this contribution.

POTENCI was optimized in steps of standard least 
squares fitting imbedded in a stochastic procedure (see 
“methods” and Supplementary Methods) to optimize the 
subset definition (Eq. 11), which cannot be varied exhaus-
tively or with an analytical gradient. Stochastic methods 
are not necessarily guaranteed to converge, but the suc-
cess of the convergence will depend on how efficiently the 
solution space was searched with the purpose of identify-
ing the global minimum. It is, in principle, impossible to 
assess whether the global minimum was indeed found, but 
the success can be estimated from the apparent precision 

judged by the convergence of multiple parallel solutions 
to the optimization. We analyzed the optimized param-
eters and chemical shift predictions for the individual 
optimizations based on the 12 different proteins in the 
cross-validation set (Table 4). Some small and homog-
enous variations for the parameters are observed (data not 
shown), but we argue the most important property is the 
impact on the chemical shift predictions. Therefore, we 
derived the predicted chemical shifts by each of the 12 sets 
for Hsp12 (cf. Fig. 8) and show the scaled chemical shift 
errors in Fig. 12. It is seen that the variation in prediction 
is about one order of magnitude lower than the prediction 
RMSD related to the accuracy of the POTENCI method, is 
evenly distributed across the sequence, and is independent 
of error size.

The mechanism of neighbor effects

With POTENCI a set of chemical shift correction terms, 
Δk(n), for the amino acid neighbors (Eqs. 2 and 9) were 
derived. This set of corrections quantifies the effect of 
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Fig. 12  Variations in predicted chemical shifts using 12 differ-
ent parameter sets. The scaled chemical shift difference as in Fig. 8 
shown as a function of the position in the sequence using the scal-
ings representative of the accuracy of POTENCI taken as the RMSDs 

from the cross-validation set of 12 proteins (Table 3). Values for the 
prediction are superimposed for parameter sets based on each protein 
from the cross-validation set (Table 4). The plot window is zoomed 
and shows all predictions except T107 15N
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local sequence on local conformational sampling through 
chemical shift perturbation. A few interesting trends were 
observed (Fig. 3). For example, aromatic residues produce 
upfield shifts on protons revealing a clear effect of ring-
currents. Nuclei closest to the neighboring amino acid are 
the most affected, i.e. 15N/1HN by neighbor i − 1, 13C′ by 
neighbor i + 1 while 13Cα and 13Cβ are the least influenced, 
indicating that the chemical shift is perturbed through space 
by local magnetic fields. Furthermore, there is a clear trend 
that amino acid correction matrices are correlated in pairs 
corresponding to bonded atoms (13Cα/13Cβ, 15N/1HN) and 
also 1Hα/1Hβ. Since secondary chemical shifts are utilized 
to identify residual order, such as partial helix formation, 
it is important to assess whether the nature of the neigh-
bor amino acid directly leads to shifts in the local backbone 
angle sampling for the segment, as discussed previously 
(Ting et al. 2010; Kjaergaard et al. 2011; Kjaergaard and 
Poulsen 2011). However, this is difficult to address directly 
from the correction matrices, since these represent the sum 
of all the sources of amino acid perturbations, such as, for 
example, ring-current shifts. In order to separate the effects, 
we performed a principal component analysis (PCA) (Wold 
et al. 1987) of all the corrections, where all 20 amino acids 
where represented by the 7 × 4 = 28 correction terms, and 
the linear combination of these constituents explaining most 
of the variation were derived by the PCA procedure. The 
first four loadings (correction term combinations) and scores 
(grouping of amino acids) are visualized in Fig. 13. First, 
it is seen that the most important component (explaining 
46.2% of the variation) is defined by a loading having the 
largest weight on the proton terms, with a positive sign. This 
large negative shift in the scores for peptides containing aro-
matic residues most likely arises due to ring-current effects. 
Second, the next-largest component (together with the first 
component explaining 67.9% of the variation) is defined by a 
loading with positive sign for 13C′ and 13Cα (and small posi-
tive weights for 1Hβ) and a negative sign for the remaining 
nuclei. Strikingly, this sign combination matches exactly the 
well-known secondary chemical shifts for alpha-helix for-
mation (Wishart et al. 1991). Indeed, analysis of the scores 
for the second component reveals that residues that increase 
the population of local helical structure (Ting et al. 2010) 
(Asp and Asn) display the highest value of component 2, 
whereas helix dis-favoring residues (Ile and Val) show the 
lowest value. We chose to exclude Pro from this analysis, 
since it resulted in slightly more noisy parameters, but the 
same analysis including Pro revealed the same trends for the 
first two components with an extreme value of − 10.1 for the 
second component, indicating that Pro disfavors helical local 
conformations more than Ile and Val, a result consistent with 
theoretical values from Ting et al. (2010). Altogether, our 
results support the findings by Kjaergaard et al. (2011), 
Kjaergaard and Poulsen (2011) in the context of peptide 

libraries, where changes in the Ramachandran distribution 
were shown to contribute to the sequence correction fac-
tors. The systematic trends in the loadings and scores for 
components 3 and 4 are less clear (data not shown) and the 
interpretation would therefore be largely speculative.

POTENCI includes corrections for correlated effects of 
neighbors, �k

l,m
(n) (Eq. 10), meaning that it accounts for the 

different effects a certain amino acid has on another spe-
cific amino acid using groups of amino acids. Several sig-
nificant correlation corrections were observed (see Fig. 4; 
Table 3). The largest effects are observed when Gly and Pro 
are involved, most likely reflecting the special sampling of 
local backbone conformation for these residues. For exam-
ple, Gly followed by Pro (xxGPx segment, see legend to 
Fig. 4) has a large correlation correction of 1.3 ppm for Gly 
13Cα and large negative corrections for 15N (− 0.97 ppm) 
and 1HN (− 0.14 ppm). The number for 13Cα is well reflected 
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in the different neighbor correction factors of − 0.79 and 
− 2.25 ppm in the context of the penta-peptide libraries, 
GGXGG and QQXQQ, respectively (Kjaergaard et al. 2011; 
Kjaergaard and Poulsen 2011) and similarly well-matched 
differences for 15N (− 1.56 ppm) and 1HN (− 0.20 ppm). 
Another important correlation correction, − 0.35 ppm for 
1HN, is needed when Gly has an aromatic residue as next-
nearest preceding neighbor (rxGxx segment). This suggests 
that ring-current effects are stronger for Gly as a conse-
quence of a missing side-chain. Between the two different 
peptide libraries, GGXGG and QQXQQ, we find differences 
of − 0.34, − 0.25, and − 0.29 ppm for Trp, Phe, and Tyr, 
respectively, matching well with our corrections.

Applications of POTENCI

The sequence-specific random-coil chemical shift is the 
core of many methods for inferring structural and dynamical 
properties (Cornilescu et al. 1999; Berjanskii and Wishart 
2005; Cavalli et al. 2007; Shen et al. 2008, 2009; Camil-
loni et al. 2012; Tamiola and Mulder 2012; Nielsen and 
Mulder 2016). The improvement in accuracy for POTENCI 
relative to other methods means that subtler deviations from 
complete disorder can be detected, as discussed above. A 
perspicacious standard for deriving “exact” protein-specific 
RCCSs has been to denature a protein artificially (e.g. using 

a denaturant and/or low pH) in order to obtain the “intrinsic 
random coil (IRC) shifts”. The IRC shifts can be obtained 
through the additional sequence-specific assignment of the 
denatured state or a denaturant titration series (Modig et al. 
2007; Kjaergaard et al. 2010). The POTENCI procedure is 
compared to the IRC approach for the C-terminal domain 
of the protein TDP-43 (Chen et al. 2016) in Fig. 14. Dif-
ferences between experimental and POTENCI-predicted 
chemical shifts reveal larger fluctuations (higher CheZOD 
Z-scores) for residues 65–79, consistent with partial helix 
formation, and very small secondary chemical shifts (and 
very low Z-scores) for other parts of the sequence, with the 
further exception for residues 80–92, which again display 
slightly larger values. Exactly the same trends are observed 
for the IRC approach, with the only exceptions being the 
acidic residues Glu17 and Asp152, which are protonated 
under the acidic conditions (pH 2.5) employed to enforce the 
denatured state in the IRC approach. The similar conclusions 
drawn from the two chemical shift approaches are mirrored 
in the similar sequence profiles for the derived CheZOD 
Z-score (Fig. 14a, b, black curves). In contrast, the same 
chemical shift differences derived using the QQXQQ or 
ncIDP methods reveal much noisier profiles, having much 
larger average chemical shift fluctuation and higher back-
ground values for the Z-score (Fig. 14c, d). In conclusion, 
with the introduction of POTENCI it is no longer necessary 
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Fig. 14  Weighted errors for RC chemical shift prediction and com-
parison with denatured chemical shifts for the C-terminal domain 
of TDP-43 (BMRB ID 26728) (pH 6.5) (Chen et  al. 2016). Signed, 
scaled differences between observed and predicted shifts and the Che-
ZOD Z-score are shown along the sequence as in Fig.  8. For com-
parison, in panel b, we show the differences between the observed 
chemical shifts and another set of corresponding assignments for 

the same protein sequence derived under denaturing conditions [pH 
2.5; 8 M Urea (Chen et al. 2016) (BMRB ID 26816)]. The titratable 
amino acids Glu17, Glu108 and Asp152 are highlighted using yellow 
boxes. Note that the experimental 13Cα and 13Cβ chemical shifts are 
not available for Glu108. Residue numbering starts with 1 for the first 
residue in the protein sequence (The first 11 residues have no assign-
ments and are not shown)
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to perform the additional complete resonance assignments in 
the denatured state, but rather the empirical POTENCI pre-
dictions can be directly applied to deduce important infor-
mation on the deviation from complete disorder. In addition, 
spikes related to problems with chemical shift differences for 
the IRC approach due to titratable side chains are avoided 
when using POTENCI. Since pH and temperature correc-
tions are incorporated, POTENCI can be applied as well to 
study pH or temperature induced structural changes to reveal 
details of protein folding.

Automatic resonance assignments are at the heart of fast 
protein structure-determination pipelines, such as structural 
genomics projects (Bartels et al. 1997; Burley 2000; Mon-
telione et al. 2000; Moseley et al. 2001; Oezguen et al. 2002; 
Jung and Zweckstetter 2004; Williamson and Craven 2009; 
Rosato et al. 2012; Schmidt and Guntert 2012; Zhang et al. 
2014). Sequence-specific RCCSs predicted by POTENCI 
would be instrumental for the performance of (automatic) 
assignment procedures for IDPs (Verdegem et al. 2008; 
Tamiola and Mulder 2011; Isaksson et al. 2013; Lee et al. 
2015; Piai et al. 2016). More specifically, for a completely 
disordered protein, the spectral region that needs to be 
searched for assignment candidates is proportional to the 
product of the prediction RMSDs of RCCS for the applied 
method. For an HNCO correlation spectrum, for example, 
this spectral region is 3.8- and 3.6-times smaller when apply-
ing POTENCI rather than the QQXQQ and ncIDP methods, 
respectively (based on the RMSDs as presented in Fig. 5). 
When analyzing modern high-dimensional experiments 
specialized for assigning IDPs (Zawadzka-Kazimierczuk 
et al. 2012; Bermel et al. 2013; Piai et al. 2014) this fac-
tor would even be larger than ten-fold. This would mean 
that fewer multi-dimensional experiments would be needed 
for the assignments and the process could be considerably 
faster. Fast sequential assignments combined with analysis 
of secondary chemical shifts based on the POTENCI predic-
tions and sequence-specific CheZOD Z-score calculations, 
as in Figs. 8a and 14a, form an effective procedure for the 
accurate quantification of dynamics for IDPs. We propose an 
even faster approach based on assignment-free assessment 
of sequence-specific disorder using POTENCI predictions 
and unassigned multidimensional NMR correlation spectra. 
POTENCI could be applied to predict the multidimensional 
spectra of IDPs when used in conjunction with spectrum 
simulation programs such as Virtual Spectrum (Nielsen 
and Nielsen 2014) where observed peaks not matching any 
predicted positions would be indicative of residual order. 
Conversely, the difference between a predicted peak posi-
tion and the position of the nearest observed peak could be 
used to estimate a probability of residual order. We foresee a 
future where NMR spectroscopy combined with POTENCI 
predictions and automated-analysis methods can be used for 
large scale classification of IDPs in “dynamical genomics 

projects”, complementing and extending the structural 
genomics of folded proteins (Baker and Sali 2001; Simons 
et al. 2001; Chandonia and Brenner 2006) to dramatically 
increase our panorama of the protein universe.

Conclusions

We have presented here a method, POTENCI, for predicting 
RCCSs for proteins from amino acid sequence. The cross-
validation performance of POTENCI on 12 very unstruc-
tured proteins result in chemical shift RMSD values of 
0.1861, 0.1677, 0.1862, 0.5341, 0.0735, and 0.0319 ppm 
for 13C′, 13Cβ, 13Cα, 15N, 1HN and 1Hα, respectively, while 
1Hβ is predicted with an RMSD of 0.0187 ppm. POTENCI 
exhibits a significantly improved accuracy compared to cur-
rent best methods, with decreased RMSD values between 
25 and 78%, and is at least as accurate as “intrinsic random 
coil” referencing. We attribute the improved accuracy of 
our method to two important assets. First, pH and tempera-
ture corrections are applied. When neglecting these correc-
tions, one would observe rogue errors in predicted RCCSs 
for titratable residue at non-neutral pH and systematically 
biased 15N chemical shifts at low temperatures. Second, 
data-mining of a very large database of chemical shifts for 
validated, completely unstructured protein segments allowed 
us to take more sequence features into account. At current, 
we believe that adding further sequence features will not 
affect the prediction significantly, but, rather, the interplay 
between local sequence and sample conditions has become 
limiting to the accuracy of RCCS prediction. We have dem-
onstrated the use of POTENCI-derived secondary chemical 
shifts together with the CheZOD Z-score method to detect 
very subtle signs of residual structure in IDPs that cannot 
be separated from the noise with other methods. We envis-
age that POTENCI may become the standard for RCCSs, 
and will be applied for the characterization of IDPs at large. 
POTENCI is available for download and as a web server 
implementation from http://www.prote in-nmr.org.
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