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Abstract
Protein structure determination using nuclear magnetic resonance (NMR) spectroscopy can be both time-consuming and 
labor intensive. Here we demonstrate how chemical shift threading can permit rapid, robust, and accurate protein structure 
determination using only chemical shift data. Threading is a relatively old bioinformatics technique that uses a combination 
of sequence information and predicted (or experimentally acquired) low-resolution structural data to generate high-resolution 
3D protein structures. The key motivations behind using NMR chemical shifts for protein threading lie in the fact that they 
are easy to measure, they are available prior to 3D structure determination, and they contain vital structural information. The 
method we have developed uses not only sequence and chemical shift similarity but also chemical shift-derived secondary 
structure, shift-derived super-secondary structure, and shift-derived accessible surface area to generate a high quality pro-
tein structure regardless of the sequence similarity (or lack thereof) to a known structure already in the PDB. The method 
(called E-Thrifty) was found to be very fast (often < 10 min/structure) and to significantly outperform other shift-based or 
threading-based structure determination methods (in terms of top template model accuracy)—with an average TM-score 
performance of 0.68 (vs. 0.50–0.62 for other methods). Coupled with recent developments in chemical shift refinement, these 
results suggest that protein structure determination, using only NMR chemical shifts, is becoming increasingly practical and 
reliable. E-Thrifty is available as a web server at http://ethrifty.ca.
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Introduction

One of the long-term goals in protein NMR is to be able 
to generate accurate, atomic-resolution protein structures 
using only chemical shift data. Protein chemical shifts can 
provide accurate information about secondary structure 
(Wishart et al. 1992; Wishart and Sykes 1994a, b; Shen et al. 
2009; Shen and Bax 2013; Hafsa and Wishart 2014; Hafsa 
et al. 2015a), torsion angles (Berjanskii et al. 2006; Shen 

and Bax 2013), hydrogen bonds (Wishart and Nip 1998; 
Wishart and Case 2001), backbone and side chain dynam-
ics (Berjanskii and Wishart 2005, 2013), disulfide bonds 
(Sharma and Rajarathnam 2000), charge states (Osapay and 
Case 1991), accessible surface area (Vranken and Rieping 
2009; Berjanskii and Wishart 2013; Hafsa et al. 2015b), 
ligand interactions (Medek et al. 2000), and aromatic ring 
proximity (Osapay et al. 1994; Kuszewski et al. 1995). The 
fact that protein chemical shifts have been shown to provide 
such a rich diversity of structural information has inspired 
the development of several chemical shift based protein 
structure prediction methods, such as CS-Rosetta (Shen et al. 
2008), Cheshire (Cavalli et al. 2007), and CS23D (Wishart 
et al. 2008). The CS-Rosetta and Cheshire methods generally 
follow an ab initio approach and attempt to model protein 
structures by generating large numbers of possible structures 
from the observed chemical shift data and then ranking the 
models based on knowledge-based potentials and chemical 
shift scoring functions. CS23D differs from CS-Rosetta and 
Cheshire in that it also attempts to use comparative modeling 
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along with chemical shift “threading” to identify known pro-
tein folds that may be similar to the fold of the query protein 
and can be used to guide its structure elucidation.

Sequence “threading” can be used to detect very remote 
structural homologs or to predict protein fold similarities 
(Rost 1995, 1997; Karplus et al. 1998; Peng and Xu 2010). 
An example of a particularly successful sequence-only 
threading program is PSI-BLAST (Altschul et al. 1997), 
which uses customized, iteratively trained scoring matri-
ces to identify remote homologs and remotely homologous 
structures. While PSI-BLAST has proven to be as good as 
many conventional threading programs (Lindahl and Elof-
sson 2000), the inclusion of secondary structure informa-
tion (predicted or calculated) as well as accessible surface 
area (predicted or calculated) has been shown to improve 
threading performance (Bowie et al. 1991; Jones et al. 1992; 
Rost et al. 1997). Indeed, studies by Jones et al. (1992) and 
Rost et al. (1997) suggested that the environment of an indi-
vidual residue described by its (sequence-predicted) sec-
ondary structure, (sequence-predicted) torsion angles and 
(sequence-predicted) solvent accessibility are particularly 
useful. In other words, if sequence-predicted information 
could be supplemented with easily acquired experimental 
observations (circular dichroism data, FTIR data, SAXS 
data, and chemical shift data) it stands to reason that thread-
ing accuracy could be significantly improved. As noted ear-
lier, protein chemical shifts have been shown to provide very 
accurate readouts of protein secondary structure, torsion 
angles, and accessible surface area. Because protein chemi-
cal shifts are often determined long before NOE measure-
ments can be completed, the use of chemical-shift thread-
ing could potentially be used to guide or even completely 
solve protein structures by NMR. This concept is the basis to 
CS23D. Originally described in 2008 (Wishart et al. 2008), 
CS23D employs a chemical shift threading program called 
THRIFTY (THReading with shIFTY) to help generate 3D 
protein structures from chemical shifts. THRIFTY uses tor-
sion angles predicted via chemical shifts and chemical-shift 
predicted secondary structures to identify related distant 
homologous templates or potential structural homologs 
that already exist in the PDB. THRIFTY has also been used 
extensively in the GeNMR program (Berjanskii et al. 2009).

The first description of chemical shift threading, as a 
technique, was made more than 15 years ago (Wishart and 
Case 2001). Five years later, another chemical shift thread-
ing method, called SimShift appeared (Ginzinger and 
Fischer 2006), which was followed by CS23D/THRIFTY 
(Wishart et al. 2008). Most recently, Shen and Bax (2015) 
described a threading-like system called POMONA (Protein 
alignments Obtained by Matching Of NMR Assignments) 
that identifies suitable PDB homologs for query proteins 
using chemical shift data (and NOE distance restraints when 
available), which is followed by a modified comparative 

modeling procedure to generate all-atom structures for pro-
teins. In particular, POMONA searches the PDB for suitable 
homologs that are well matched with backbone chemical 
shift-predicted, residue-specific φ/ψ probability maps and 
chemical-shift derived secondary structures. The resulting 
structural templates are then clustered into groups (typi-
cally ten) using a normalized Cα root mean square deviation 
(Cα-RMSD) as a distance metric. Representative homologs 
from these clusters are used to build a structural pool for 
comparative modeling using a modified RosettaCM proce-
dure (Song et al. 2013). POMONA was evaluated on a set 
of 16 proteins and in most cases the best alignments found 
by POMONA have good structural similarity with the native 
structures [an average MaxSub score (Siew et al. 2000) of 
0.49] even when there is no detectable sequence similarity 
(≤ 20% sequence identity).

Published results from SimShift (Ginzinger and Fis-
cher 2006), THRIFTY/CS23D (Wishart et al. 2008), and 
POMONA (Shen and Bax 2015)—all strongly suggest that 
the structural information encoded by chemical shifts can 
help to identify structurally similar template(s) even in the 
absence of detectable sequence similarity. Inspired by these 
studies, we have developed a method called “Enhanced-
Thrifty” (E-Thrifty) that employs a more advanced version 
of chemical shift threading to more accurately identify the 
most likely fold and to generate a high quality protein struc-
ture. In particular, E-Thrifty uses significantly enhanced 
shift-based secondary structure identification (Hafsa and 
Wishart 2014) as well as recently developed shift-based 
super-secondary and structural motif identification (Hafsa 
et al. 2015a) to improve its performance. It also uses a newly 
developed shift-based accessible surface area prediction 
method (Hafsa et al. 2015b) as well as shift-based torsion 
angle predictions (Shen and Bax 2013) along with very 
accurate secondary chemical shift calculations (Han et al. 
2011). These are combined to perform a modified thread-
ing protocol using a specially constructed, non-redundant 
database of known protein structures [a modified version 
of the PDB (Berman et al. 2000)]. When compared to the 
state-of-the-art threading programs or chemical shift-based 
structure generation programs, such as POMONA (Shen and 
Bax 2015), PSI-BLAST (Altschul et al. 1997), CS-Rosetta 
(Shen et al. 2008), and CS23D (Wishart et al. 2008), on two 
different test data sets, E-Thrifty exhibits a 10–20% improve-
ment in overall performance and a significant improvement 
in speed (< 10 min/query). E-Thrifty’s performance on 
“easy” targets is even better, suggesting that it can serve as 
a rapid and highly reliable method for determining protein 
structures from chemical shifts alone. Details describing the 
E-Thrifty algorithm, its performance, and its implementation 
as a web server are given below.
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Materials and methods

Structural annotation of the database proteins

Key to any successful threading algorithm is a non-redun-
dant, high quality, well-annotated database of protein 
sequences and structures. A non-redundant (nr) version of 
the PDB was generated using the Pisces server (Wang and 
Dunbrack 2003). As of July 21st 2017, there were a total of 
91,336 sequences and coordinate files in this nrPDB data 
set. This database of known structures was then annotated 
using a series of programs so that every residue was assigned 
a secondary structure, a specific secondary structure motif, 
a set of backbone torsion angles, and a fractional accessible 
surface area. The secondary structures, torsion angles, and 
accessible surface areas were generated from the DSSP (Kab-
sch and Sander 1983) program. Other secondary structure 
elements, such as β-turns and edge/internal strand informa-
tion, were obtained using methods described in Hafsa et al. 
(2015a). Fractional accessible surface areas or fASA values 
for each residue were derived from the DSSP output using a 
method previously described in Hafsa et al. (2015b). After 
calculating these data, we generated four “pseudo-sequences” 
based on a structural alphabet associated with each entry in 
our nrPDB data set. These pseudo-sequences correspond 
to: (1) a secondary structure “sequence” (using 3 letters—
H, B, C for helix, beta strand, and coil, respectively); (2) a 
structure motif “sequence” (using 5 letters—H, E, I, C, T for 
helix, edge beta strand, interior beta strand, coil, and beta 
turn, respectively); (3) a torsion angle “sequence” (using 9 
letters—ASDFGHJKL corresponding to different regions of 
Ramachandran space—see Supplementary Material for more 
details) and (4) a fASA “sequence” (using 3 letters—B, P, 
E, for buried, partially buried, and exposed, respectively). 
Additional details regarding the meaning and numerical cut-
offs associated with each of these structural alphabets are 
provided in Hafsa et al. (2015b) and Wishart et al. (2008). 
These, along with the amino acid sequence of each protein, 
describe its local and non-local structural states.

Sequence and secondary structure filtering

A key consideration in chemical shift based structure gen-
eration is speed. Many algorithms take hours or require large 
numbers of CPUs to complete their calculations. We decided 
to incorporate some “smart” filtering steps to accelerate 
the performance of our program and allow it to generate a 
final folded model on a single CPU in a matter of minutes 
(though the generation of ensembles for unfolded structures, 
described below, employs 20 CPUs). The initial input to the 
E-Thrifty program is expected to be an amino acid sequence 
(≥ 12 amino acids) and a reasonably complete (> 85%) set 

of backbone (including 13Cα, 13Cβ, 13C, 1HN, 1Hα and 15N) 
chemical shifts. The query is then run through CSI 2.0 
(Hafsa and Wishart 2014) to generate a shift-derived second-
ary structure assignment. The sequence and the shift-derived 
secondary structures of the query protein are then aligned 
against all the database sequences and structures in our non-
redundant version of the PDB (nrPDB) using BLAST (Alts-
chul et al. 1997; Boratyn et al. 2012). An E-value cutoff of 
0.01 is used for selecting sequence alignments and 0.001 is 
used for selecting secondary structure alignments. While the 
sequence pre-filtering step identifies obvious homologues, 
the secondary structure content pre-filtering step helps to 
retrieve structurally similar proteins and reject structurally 
dissimilar proteins. For example, if the query protein is 
predicted (via chemical shifts) to be an all-helical protein, 
this simple pre-filter will remove all-beta or all-disordered 
proteins from consideration. Including these pre-filters lim-
its the search space for next stage structural alignment (see 
below). If there are no significant hits from these preliminary 
sequence and secondary structure filtering steps, a full-scale 
structural alignment is performed against nrPDB to find suit-
able templates for the query protein. The details of the full-
scale structural alignment method are described below.

Measuring local and non‑local structure similarity

While amino acid substitution scores are normally used to 
guide the local alignment between two protein sequences, 
sequence alignment alone does not necessarily guarantee 
optimal structural or topological alignment between two 
proteins. This is particularly true when the sequence iden-
tity between two proteins drops below 35%. To perform 
sequence alignments or sequence threading for distantly 
related proteins, additional information, such as (predicted 
or calculated) backbone φ/ψ angles, secondary structure, 
structural motifs, secondary chemical shifts and accessible 
surface area (ASA), are often needed to guide the align-
ment process. This is because these structural states tend to 
be more conserved than sequence among remote structural 
homologues (Rost et al. 1997). Ideally, a good threading 
program should have three major components: (1) a database 
of solved structures where all of the threading parameters 
(sequence, torsion angles, secondary structure, structure 
motifs, ASA and secondary shifts) are pre-calculated; (2) 
a series of programs where the same parameters (torsion 
angles, ASA, etc.) are predicted and/or calculated for the 
query protein and (3) an alignment algorithm that scores, 
aligns, and matches the query protein by taking into account 
all of the calculated and/or predicted parameters. If the 
structural parameters used for threading can be converted 
to letters or character strings (similar to the sequence), 
the threading process can be performed via a letter align-
ment algorithm, such as the Smith–Waterman alignment 
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algorithm (Rost et al. 1997). These are the principles that 
we used to design the E-Thrifty algorithm, which is depicted 
in Fig. 1. The E-Thrifty algorithm, the scoring scheme, and 
the parameter mapping are explained in more detail below.

Substitution matrices for structural descriptors

In E-Thrifty, structural parameters that describe the struc-
tural environments associated with each residue in the 
query and with each residue in the nrPDB are represented 
by a set of one-letter codes (see Structural Annotation of 
Database Proteins for details). During the alignment pro-
cess, these letters are compared to maximally match both 
local and non-local structural similarity. Matched or highly 
similar structural states are given a high positive score 
whereas unmatched or dissimilar states are given a low 
score (a smaller positive or a negative value). For example, 
a negative score is assigned to a helical secondary structure 
class (represented by “H”) being substituted/replaced by a 
β-strand class (represented by “E” or “I”), whereas a β-turn 
replacement by a coil assignment is given a small positive 
value (i.e., a lower penalty). A substitution matrix can be 

used to compactly represent this scoring scheme. A 3 × 3 
substitution matrix for the three-state secondary structure 
states describes the substitution/matching scores of the three 
secondary structure classes. Similarly, a 5 × 5 substitution 
matrix is used for the five structural motif states, a 3 × 3 
substitution matrix is used for the three fASA categorical 
states, and a 9 × 9 substitution matrix is used for the nine 
torsion angle states. Substitution matrix values were initially 
chosen from the BLOSUM62 matrix (Henikoff and Henikoff 
1992) and then optimized through grid search methods on 
the training alignments.

Scoring local and non‑local structural similarity

After defining the substitution matrices for the different 
structural descriptors, the structural similarity between the 
query residue i and the database residue j is calculated using 
the following equation: 

(1)

S(i, j) = wAA × AAscore + wTorsion × Torsionscore

+ wSS × SSscore + wSM × SMscore

+ wASA × fASAscore

Fig. 1  The sequence-structure alignment concept used in the 
E-Thrifty method. Here AA, SS, SM, ASA and TOR represent the 
amino acid, secondary structure, structure motif, accessible surface 

area and backbone torsion angle sequences, respectively. nrPDB non-
redundant Protein Data Bank
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where AAscore is the amino acid similarity score, Torsionscore 
is the torsion letter similarity score, SSscore is the secondary 
structure similarity score, SMscore is the structural motif simi-
larity score, fASAscore is the ASA state similarity score, and 
the w∗ terms represent the corresponding weighting coef-
ficients. Each S(i, j)entry in the calculated scoring matrix 
is then rescaled to a range (− 2.0, 3.0) so as to obtain a 
smoothed distribution of alignment scores. The rescaling is 
performed using the following equation: 

where minrange = − 2.0, maxrange = 3.0, and minSand maxS are 
the minimum and maximum values observed in the scoring 
matrix S , respectively. The scoring components described 
in Eq. 1 are briefly explained in the following paragraphs.

Amino acid similarity

The aligned amino acids are scored using the BLOSUM62 
(Henikoff and Henikoff 1992) substitution matrix. In this 
20 × 20 matrix, every possible amino acid substitution is 
assigned a score based on its observed frequencies derived 
from careful alignment of evolutionarily related proteins 
(with no more than 62% sequence identity). A positive 
score is given to more probable substitutions while a nega-
tive score is given to less probable substitutions. The amino 
acid similarity score (AAscore) is given as: 

where aai is the query residue in i-th position and aaj is the 
database residue in j-th position.

Secondary structure similarity

Secondary structures for the query protein are calculated 
using the CSI 2.0 program (Hafsa and Wishart 2014). CSI 
2.0 is a multi-class, machine-learning algorithm that deter-
mines the extent and location of α-helices, β-strands, and 
coil regions based on 13Cα, 13Cβ, 13C, 1HN, 1Hα, and 15N 
backbone chemical shifts and sequence. In the E-Thrifty 
threading algorithm, the secondary structure similarity 
between secondary structures of the query residue i and the 
database residue j is calculated over a 3-residue window 
using the following formula: 

where SSmatrix is a 3 × 3 substitution matrix for second-
ary structure states {H, B, and C}, which describes the 

(2)

Sscaled
i,j

=

((
maxrange − minrange

)
∗
S[i]

[
j
]
− minS

maxS − minS

)
+minrange

(3)AAscore = BLOSUM62(aai, aaj)

(4)SSscore =

−1,0,1∑
n

Si+n, j+n
{
Si,j = SSmatrix(ssi , ssj)

substitution scores for matching/replacing one secondary 
structure state with another.

Structural motif similarity

The classification of β-strands and β-turns in the query 
sequence is performed by CSI 3.0, a chemical shift based 
super-secondary structure identification program, described 
by Hafsa et  al. (2015a). The CSI 3.0 output is mapped 
to 5 letters H, E, I, C, and T which stand for helix, edge 
β-strand, interior β-strand, coil and β-turn, respectively. In 
the E-Thrifty threading algorithm, the structural motif simi-
larity between the query residue i and the database residue 
j is calculated over a 3-residue window using the formula: 

where SMmatrix is a 5 × 5 substitution matrix for five structure 
motif states {H, E, I, C, T}, describing the scoring scheme 
for matching/replacing structural motif states.

Fractional accessible surface area (fASA) similarity

The fractional ASA (fASA) is an ASA descriptor that 
describes the percentage of accessible surface area for a 
given residue relative to a fully exposed residue. Residue-
specific fASAs for the query protein are calculated using 
the ShiftASA program (Hafsa et al. 2015b). Residues are 
assigned one of three letters—B (buried) (fASA ≤ 0.25), 
P (partially buried) (0.50 ≥ fASA > 0.25), or E (exposed) 
(fASA > 0.50)—based on the predicted/calculated fASA 
range. In the E-Thrifty threading algorithm, the similarity 
between fASA categorical states of the query residue i and 
the database residue j is calculated as below: 

where fASAmatrix is a 3 × 3 substitution matrix for three 
fASA categorical states {B, P, E} that describes the scores 
for matching/substituting three fASA states.

Torsion letter similarity

Backbone φ/ψ torsion angles from experimental 13Cα, 13Cβ, 
13C, 1HN, 1Hα, 15N chemical shifts are predicted by TALOS-
N (Shen and Bax 2013) and converted into a 9-letter tor-
sion angle alphabet. This so-called torsion angle alphabet, 
which is identical to the THRIFTY alphabet used in CS23D 
(Wishart et al. 2008), splits the Ramachandran map into 
9 non-overlapped regions based on the φ/ψ propensity of 

(5)SMscore =

−1,0,1∑
n

Mi+n, j+n

{
Mi,j = SMmatrix(smi , smj)

(6)fASAscore =

−1,0,1∑
n

Fi+n, j+n

{
Fi,j = fASAmatrix

(
fi , fj

)
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common secondary structural classes, with a letter assigned 
to each region (Fig. S1). In the E-Thrifty threading algo-
rithm, the torsion letter similarity between the query residue 
i and the database residue j is calculated over a 3-residue 
window using the following formula: 

where Torsionmatrix is a 9 × 9 matrix that describes the substi-
tution scores for the replacement of one torsion angle letter 
with another. Therefore, the torsion letter similarity score 
of the central residue position takes into account the torsion 
letter substitution scores in the preceding and the following 
neighbor locations.

Gap penalty function in sequence‑structure 
alignment

In order to perform a proper sequence or a sequence-struc-
ture alignment of two protein sequences, it is important to 
develop a scoring function to properly handle the insertion or 
deletion of gaps in either sequence. Gaps are usually counted 
as a penalty in the total alignment score. Typically an affine 
gap penalty or AGP function of the form, g = u + vl is used 
in most sequence-only alignment algorithms. This kind of 
function depends on the gap initiation ( u ) and gap exten-
sion ( v ) parameters, and the length of the gap in the align-
ment (l). However, previous studies suggest that including 
a conformation specific gap penalty in sequence-structure 
alignment increases the accuracy of the correctly aligned 
residues (Madhusudhan et al. 2006). Hence, in our work, we 
adopted a conformation specific gap penalty function called 
a variable gap penalty or VGP as described in a recent pub-
lication by Shen and Bax (2015), in which the gaps that are 
introduced in regular secondary structure regions (contigu-
ous helices and β-strands) and between two spatially distant 
residues are penalized.

Protein local alignment

In E-Thrifty, protein sequences with experimentally meas-
ured chemical shifts (i.e. the query sequence) are aligned 
against sequences of known structures in our annotated 
nrPDB using a modified version of the Smith–Waterman 
local alignment algorithm (Smith and Waterman 1981). 
A similarity matrix S of M × N dimensions is constructed, 
where M is the length of the query protein and N is the 
length of the database protein. Each element in the scoring 
matrix, S(i, j) indicates the substitution score for the query 
residue i with the database residue j. Once the scoring matrix 
is constructed, the optimal alignment between query and 
subject sequence is found by calculating an alignment matrix 

(7)

Torsionscore =

−1,0,1∑
n

Ti+n, j+n
{
Ti,j = Torsionmatrix(tori , torj)

(H) using a dynamic programming and traceback procedure. 
This traceback protocol involves finding the maximum ele-
ment in the alignment matrix and tracing back through the 
matrix from the maximum element to zero. Each element 
H(i,j) in the H matrix is calculated with the following recur-
sive dynamic programming equation: 

The initial conditions for the recursive algorithm are, 

In Eq. 8, S(i, j) is the substitution score for the query resi-
due i with the database residue j. VGP is the gap penalty 
function applied when there is a gap opening or extension 
between the i and i′ positions in the sequence block or the j 
and j′ positions in the structure block. For the assignment of 
each element H(i, j) in the H matrix, the diagonal i.e. upper-
left ( H(i − 1, j − 1)), upper ( H(i − 1, j)), and left ( H(i, j − 1) ) 
neighbor elements are compared and the maximum value 
among these three elements is assigned to the current ele-
ment as score H(i, j) . If the maximum value is negative, then 
0 is assigned to the score. After calculating all the elements 
of the H matrix as described in Eq. 8, the largest element in 
the H matrix ( Hmax ) represents the optimal alignment score. 
The residue equivalence assignments can then be obtained 
by tracing back through the maximum element, Hmax to the 
zero value in the H matrix, which is also the optimal sub-
alignment between query and the subject sequences. An 
example of local alignment between the query protein 2LCI 
and the database protein 2L82 (chain A) is shown in Figure 
S2.

Chemical Shift scoring and the alignment ranking

To further improve the alignment scoring, we implemented 
a backbone secondary chemical shift fitness score similar 
to SimShift (Ginzinger and Fischer 2006). Specifically, 
a secondary chemical shift fitness score is calculated for 
equivalent residue assignments in the alignment. Second-
ary chemical shifts can be defined as the difference between 
the observed experimental chemical shift ( �obs ) and the cor-
responding random coil shift ( �rc ) value for a specific atom 
(Wishart 2011). 

Secondary chemical shifts contain important structural and 
dynamic information about proteins (Wishart and Case 
2001; Mielke and Krishnan 2009). The backbone chemical 

(8)H(i, j) = max

⎧⎪⎨⎪⎩

H(i − 1, j − 1) + S(i, j)

H(i − 1, j) − VGP(i, j, i − 1, j)

H(i, j − 1) − VGP(i, j, i, j − 1)

0

{
H(i, 0) = 0; 0 ≤ i ≤ M

H(0, j) = 0; 0 ≤ j ≤ N

(9)Δ� = �obs − �rc
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shifts for the nrPDB structures are calculated using ShiftX2 
(Han et al. 2011) and the secondary shift values are obtained 
with the aforementioned formula using the neighbor adjusted 
random coil values extracted from Schwarzinger et al. 2001. 
The secondary shift fitness score is calculated as: 

where �preda  represents the backbone chemical shift predicted 
by ShiftX2 (Han et al. 2011) for a specific atom a (a = 13Cα, 
13Cβ, 13C, 1HN, 1Hα, 15N). The corresponding experimental 
chemical shift is referred to as �obs

a
 . The wa’s are the weight-

ing coefficients for the standard six backbone atoms. The 
function corr

(
�
obs
a

, �
pred
a

)
 measures the correlation between 

the observed (query) and the predicted (subject) secondary 
chemical shifts over all the aligned residues for a specific 
backbone atom a. Therefore chemical shift fitness score is a 
weighted combination of chemical shift correlations of six 
backbone atoms over all the aligned residues.

The secondary chemical shift fitness score is then com-
bined with the optimal sub-alignment score  Hmax using 
a scaling factor wcorr to produce the total score for each 
alignment. 

The final ranking of the alignments is performed according 
to this total score, Stotal.

Optimization of E‑Thrifty parameters

To optimize the parameters described in Eqs. 1–11, a set of 
30 proteins with complete experimental chemical shift infor-
mation and corresponding high-resolution X-ray structures 
(< 2 Å) were chosen. The training proteins had ~ 90% of 
their complete (1H, 13C, and 15N) backbone chemical shifts 
assigned. A set of homologs for the training proteins span-
ning a sequence identity range 20–40% was retrieved using 
a PSI-BLAST search. Once the training set was obtained, 
a structural alignment between the queries and the corre-
sponding homolog proteins was performed. The alignment 
produced a total of 1777 alignment pairs. There were a 
total of 18 parameters to optimize. The parameter set could 
be divided into three different groups: the scoring matrix 
weighting parameters, the gap spanning parameters, and the 
chemical shift weighting parameters. Each group was opti-
mized using a specific optimization protocol as described 
below.

The scoring matrix parameters (wAA, wTorsion, wSM , wASA) 
were optimized by a grid search using the training struc-
tural alignments. We trained one parameter at a time and 
kept the other parameters constant at their initial values or 
the previously optimized values. Parameter optimization 

(10)SCscore =
∑
a

wa × corr
(
�
obs
a

, �pred
a

)

(11)Stotal = Hmax + wcorr × SCscore

was terminated on the convergence of the average align-
ment score observed against the Cα-RMSD between the 
aligned residues (the higher the alignment score, the lower 
the Cα-RMSD) for the training set of structural alignments. 
Note that the RMSD is calculated for the defined secondary 
structures in the aligned region using the Superpose pro-
gram (Maiti et al. 2004). For the gap spanning parameters 
in the VGP function described in Shen and Bax (2015), the 
initial values were chosen from the original study. We then 
attempted to further optimize the parameter values through 
a grid search. However, no significant improvement was 
observed (data not shown). Hence, we used the Shen et al. 
values. The chemical shift weighting parameters defined 
in Eq. 10 were optimized using a linear regression anal-
ysis. The training data for linear regression is comprised 
of chemical shift correlation coefficients between the six 
backbone atoms of the query and the database equivalent 
residues (~ X) and the Cα-RMSD (~ Y) of the aligned region 
of the training proteins. A linear regression model was then 
fit to the training data. A similar regression analysis was 
performed to search an optimal value for wcorr described in 
Eq. 11.

The optimized parameter values (except the gap spanning 
parameters) determined from this study are: 

Statistical significance of E‑Thrifty alignments

In any database alignment protocol, it is important to prop-
erly assess the significance of an alignment that results 
from a comparison of a protein of a certain length to a 
database containing many different proteins of variable 
length. Hence, E-Thrifty alignments were evaluated using 
a BLAST-like e-value or expect-value (Altschul and Gish 
1996). This was done because E-Thrifty’s alignment scoring 
system (using substitution matrices) and alignment proto-
cols closely resembled the original BLAST model. Further-
more, the secondary structure, super-secondary structure, 
torsion angle and accessible surface area information used 
by E-Thrifty were all encoded as simple n-letter sequences, 
just like the 20-letter amino acid sequences used in BLAST. 
Because E-Thrifty essentially performs a BLAST-like align-
ment, we decided to use the same definitions and the same 
BLAST parameters in calculating our e-values. Therefore, 
E-Thrifty’s e-value for an alignment having a score S was 
calculated using the function described in Altschul et al. 
(1996). 

w
ASA

= 4.25,w
AA

= 1.0,w
SM

= 5.11,w
Torsion

= 3.97,

w
SS

= 4.35,w
d
= 2.0,w

CO
= 3.75,w

CA
= 4.5,

w
CB

= 4.75,w
N
= 2.5,w

HN
= 4.25,w

HA
= 4.5,

w
corr

= 0.5.
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here K and λ are statistical parameters, m′n′ is the effective 
search space size and S is the alignment score of an optimal 
sub-alignment. The effective search space m′n′ is calculated 
using the equation below: 

where m is the number of residues in query protein, n is the 
total number of residues in the E-Thrifty protein database, N 
is the total number of E-Thrifty database proteins and l is the 
edge correction factor. The edge correction factor is used to 
calculate an “effective length” for a sequence. It eliminates 
the “edge effect” problem i.e. a high-scoring alignment has 
a non-zero length and does not begin near to the end of 
either of two sequences being compared. K and λ values are 
taken from Altschul et al. (1996). The l value depends on 
the length of the database protein being compared with and 
is chosen from a set of empirical values depending on the 
ln(m × n) values described in the same study by Altschul 
et al. (1996).

Clustering and selection of E‑Thrifty templates

Among the candidate templates identified by E-Thrifty, 
many were found to score very similarly or very closely 
to one another for any given query protein. This is because 
multiple templates may share a similar fold, a similar sub-
structure, or a similar 3D structure. In some cases, multiple 
templates for a single query protein may increase the cov-
erage when building a full-length model. Moreover, these 
templates can be used as a structural pool for comparative 
modeling purposes. In E-Thrifty, a hierarchical clustering 
algorithm was used to group the set of candidate templates. 
The Cα-RMSD between two template proteins was calcu-
lated over a common set of residues that were aligned with 
the same set of query residues. Specifically, the “complete 
linkage method” for hierarchical clustering was used to 
group the templates. At each stage, the cluster is formed 
when all the links (i.e. the Cα-RMSD) between pairs of 
objects in the cluster are within ≤ 4 Å cut-off distance. .

E-Thrifty will generate up to 10 template hits, each of 
which are ranked according to their alignment scores and 
each of which are given a cluster membership. A user can 
select either the top template from this list or the top repre-
sentative template from the first three resultant clusters for 
the subsequent model generation part.

Generation of 3D models via MODELLER

As part of the E-Thrifty pipeline, a 3D model of the query 
protein is generated via the MODELLER software package 

(12)E = K × m� × n� × e−�S

(13)m� = m − l

n� = n − N × l

(Sali and Blundell 1993). It is important to remember that 
simply identifying a similarly folded template for a query 
sequence is insufficient to determine the full 3D structure 
of the query. To complete the 3D structure determination 
process, comparative modeling must be used to rebuild the 
template, add the appropriate side chains, construct loops, 
close gaps, minimize the energy and create a 3D structure 
with exact sequence of the query protein. MODELLER is a 
widely used comparative/homology modeling program that 
is able to perform all these operations. To initiate the com-
parative modeling process, the sequence-structure alignment 
generated by E-Thrifty is first converted into the required 
PIR format and then used as input for MODELLER’s com-
parative modeling function. MODELLER then generates 
the 3D coordinates of five possible models. The generated 
models are further assessed using MODELLER’s score 
evaluation functions (GA341 and DOPE). The 3D model 
that has the lowest energy after the assessment is chosen 
as the final 3D model. MODELLER was chosen for the 
model generation purposes as it has been well tested by the 
scientific community and become one of the most popu-
lar programs for template-based modeling. E-Thrifty has 
two model generation output options. The default “single-
template” option generates a comparative model (with 3D 
coordinate data) of the query protein using the E-Thrifty 
sequence-structure alignment of the top template only. 
The other “multiple-template” option offered by E-Thrifty 
employs the Clustal Omega (Sievers et al. 2011) program to 
perform a multiple alignment between the query and several 
template sequences. This multiple alignment is then used to 
build the 3D model of the query protein. Note that, in this 
paper, we have used the single-template modeling option 
to generate all the models that are used in the comparative 
study of E-Thrifty and the other threading programs. We will 
describe the evaluation of the other experimental (multiple-
template) modeling option in an upcoming publication.

Assessment of E‑Thrifty generated models

To assess the performance of E-Thrifty as well as other 
threading programs, we used DALI (Holm and Rosenström 
2010) as the “gold standard” for identifying remote struc-
tural homologs. DALI is a web server designed for perform-
ing 3D coordinate comparisons. It is particularly useful for 
identifying proteins with 3D structure similarities that may 
not have any obvious sequence similarity. For this compo-
nent of the study, we assessed the structural accuracy and 
fold similarity achieved by structures generated by E-Thrifty, 
POMONA, PSI-BLAST, and DALI (as a control) using the 
Template Modeling or TM-score (Zhang and Skolnick 2004) 
in addition to RMSD. As many other researchers (Siew et al. 
2000; Ortiz et al. 2002; Betancourt and Skolnick 2001) have 
noted, RMSD is not a perfect measure of model quality as 
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it sometimes fails to identify well-predicted sub-structures 
in the presence of large prediction errors (i.e. disordered 
loops) in other parts of the model. Therefore, we used the 
TM-score in addition to RMSD to measure model quality. 
Unlike other popular scoring functions such as the aforemen-
tioned MaxSub score (Siew et al. 2000), the TM-score uses a 
size-dependent scale to eliminate the protein length depend-
ence. It also considers all alignments or modeling residue 
pairs in its assessment rather than arbitrarily setting specific 
distance cutoffs and calculating only the fraction of residues 
with errors below a certain cutoff distance (Zhang and Skol-
nick 2004). A TM-score typically falls in the range from 0 
to 1.0, with a TM-score of 1.0 indicating a perfect match 
between two structures and a TM-score below 0.17 generally 
indicating a randomly chosen unrelated fold. A quantitative 
study by Xu and Zhang (2010) showed that proteins with a 
TM-score equal to 0.50 have a probability of 37% of being 
in the same CATH (Greene et al. 2007) topology family and 
a probability of 13% of being in the same SCOP (Murzin 
et al. 1995) fold family.

Results

The performance of E-Thrifty was evaluated on three inde-
pendent test sets. The first test set (TEST1) consisted of 15 
proteins randomly selected from a set of proteins, for which 
CS-ROSETTA models were available on the BMRB website 
(Ulrich et al. 2008). The second data set (TEST2) consisted 
of ten blind targets from a recent challenge Critical Assess-
ment of Automated Structure Determination of Proteins by 
NMR (CASD-NMR-2013) (Rosato et al. 2015). The third 
test (TEST3) was a random selection of 15 recently solved, 
fully assigned proteins with sequence identities between 
35 and 90% to proteins already in the PDB. For all 3 tests, 
DALI (Holm and Rosenström 2010) was used to identify 
the “gold standard” models, corresponding to the best 
structural homologs that are able to be identified through 
a 3D coordinate-based structural superposition against all 
PDB structures. The performance of E-Thrifty was com-
pared against several well-regarded threading and ab initio 
structure generation and chemical shift threading methods, 
including POMONA (Shen and Bax 2015), PSI-BLAST 
(Altschul et al. 1997), CS23D (Wishart et al. 2008) and CS-
Rosetta (Shen et al. 2008). More specifically, POMONA is 
a threading/homology search program that uses only chemi-
cal shift generated structural information to obtain highly 
probable alignments for query proteins. On the other hand, 
PSI-BLAST detects homologs using position-specific scor-
ing matrices or customized scoring profiles generated using 
iterative alignments of the query sequence against the data-
base. CS23D detects structural homologs via chemical shift 
threading (torsion angle matching and secondary structure 

matching) as well as sequence comparison. CS-Rosetta pre-
dicts the protein structures via chemical shift-based frag-
ment matching, in conjunction with ab-initio protein mod-
eling algorithms.

The performance of E-Thrifty and the other methods was 
evaluated for the TEST1 proteins with two sequence identity 
upper thresholds (≤ 30 and ≤ 95%), whereas, for the TEST2 
proteins, only a ≤ 30% sequence identity cutoff was used (as 
most TEST2 proteins exhibit very low sequence identity 
to known structures). For evaluation consistency, the same 
protein structure modeling software, MODELLER (Sali and 
Blundell 1993) was used to build full-length models using 
the templates identified by the different threading methods 
assessed in this study. The quality of the template models 
was then evaluated using the TM-score (Zhang and Skolnick 
2004), a widely used metric to assess the folding similarity 
between two proteins.

The results of the TM-score evaluation on TEST1 and 
TEST2 proteins are shown in Tables 1, 2 and 3. These tables 
also describe the performance of PSI-BLAST, CS23D, CS-
Rosetta, DALI, and POMONA for the same test proteins. 
The POMONA and the PSI-BLAST templates with the high-
est alignment scores with default alignment settings (within 
two sequence identity cutoffs) were identified as the opti-
mal threading results. The lowest energy structure produced 
by CS-Rosetta was considered as the best template. As the 
TEST2 proteins are blind targets from the CASD-NMR-2013 
competition (Rosato et al. 2015), we decided that in order 
to make the comparison fair and unbiased, all database tem-
plates that were solved or deposited into the PDB after 2013 
were excluded. The last column in each table includes the 
results from the DALI server, which essentially indicates 
the “true” answer or the “gold standard”. This result was 
included to help assess each program’s performance. The 
inclusion of the DALI data also helps to define the upper 
limit of how well a given threading program can perform. 
The database, proteins for which DALI produces the high-
est Z-scores (within the two sequence identity cutoffs, ≤ 30 
and ≤ 95%), were selected as the DALI outputs. Note that, 
in selecting the templates from the different programs, we 
relied on the reported sequence identity as measured by the 
respective alignments. If one of the programs had no answer 
for any particular test case, we report N/A (not available) in 
that particular column.

Discussion

Pre‑filtering steps improve the E‑Thrifty search time

The sequence and secondary structure content pre-filter-
ing steps in the E-Thrifty pipeline were found to signifi-
cantly improve the overall E-Thrifty template search time. 
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E-Thrifty’s run time without the pre-filtering steps is 
~ 60–90 min for medium sized proteins, whereas the inclu-
sion of simple pre-filters reduces the run time to < 10 min 
(> 80% improvement over the run time without pre-filter-
ing). Extensive testing (data not shown) demonstrated that 
adding these pre-filtering steps allowed E-Thrifty to retain its 
original accuracy in terms of finding the correct templates.

E‑Thrifty’s performance on TEST1, TEST2 and TEST3

E-Thrifty’s performance on the TEST1 and TEST2 data 
sets is described in detail in Tables 1, 2 and 3. In terms of 
TM-score evaluation of the full-length template (or data-
base) models, E-Thrifty consistently gave a better perfor-
mance than all other prediction programs for both test sets. 

In particular, E-Thrifty achieved an average TM-score of 
0.67 (TM-Align RMSD = 3.10 Å) for proteins with ≤ 30% 
sequence identity in the TEST1 data set, as opposed to 0.58 
(TM-Align RMSD = 3.25 Å) achieved by POMONA and 
0.52 (TM-Align RMSD = 3.56 Å) achieved by PSI-BLAST 
respectively (Table 1). The improvement in E-Thrifty’s 
TM-scores for the 15 test proteins is statistically significant 
(with a 95% confidence level), compared to PSI-BLAST and 
POMONA (p values of 0.003 and 0.03, respectively, which 
are less than the cutoff significance level of 0.05). In Table 2, 
where no sequence similarity restriction was imposed, we 
can see that all three programs exhibit nearly similar perfor-
mance in terms of their average TM-score (E-Thrifty = 0.74 
(TM-Align RMSD = 2.60  Å), POMONA = 0.70 (TM-
Align RMSD = 2.74  Å), PSI-BLAST = 0.64 (TM-Align 

Table 1  Template recognition performances of four threading programs on TEST1 proteins using sequence identity cutoff as ≤ 30%

The E-Thrifty column shows the top template identified by E-Thrifty, whereas the next two columns show the top templates identified by 
POMONA and PSI-BLAST. The DALI answers for TEST1 proteins are displayed in the last column. Template information includes the PDB 
ID of the template, TM-score and the TM-Align RMSD of the full-length model generated using the corresponding template. RMSD values are 
shown in Angstroms (Å)

Query E-Thrifty POMONA PSI-BLAST DALI

Protein name PDB/BMRB ID Length/(fold) Template
TM-score (RMSD)

Template
TM-score (RMSD)

Template
TM-score (RMSD)

Template
TM-score (RMSD)

KaiA 1M2F/5031 135/(α/β) 1YS7A
0.74 (3.18)

2WRZA
0.51 (3.51)

4D2OB
0.32 (4.79)

3R0JA
0.71 (2.99)

NEDTH 1F3Y/4448 165/(α/β) 2O5WA
0.66 (3.15)

3A6UA
0.61 (3.99)

2O5WD
0.46 (3.97)

3I7UC
0.66 (2.41)

NCS-1 2LCP/4378 190/(α) 1UHNA
0.60 (4.18)

2TN4A
0.32 (3.93)

2GGZB
0.59 (4.09)

4F0ZB
0.53 (3.95)

Sortage 1IJA/4879 148/(β) 2LN7A
0.69 (3.23)

3FN5A
0.74 (2.84)

3RCCR
0.61 (3.23)

4TQXA
0.73 (2.69)

PyJ 1FAF/4403 79/(α) 1GH6A
0.67 (2.60)

3QPPA
0.37 (3.43)

1GH6A
0.56 (2.48)

2PF4E
0.70 (2.12)

ERp18 2K8V/15964 157/(α/β) 2DMMA
0.43 (3.94)

3VWWB
0.53 (3.71)

1XWCA
0.44 (3.80)

3IRAA
0.59 (3.21)

ApolPBP1A 2JPO/15256 142/(α) 2WC5A
0.64 (2.98)

3TNWD
0.30 (4.19)

2WCMA
0.62 (3.09)

2WC5A
0.65 (3.03)

Pru Av 1 1E09/4671 159/(α/β) 3KDIA
0.76 (2.72)

3US7A
0.83 (2.44)

4PSBA
0.83 (2.53)

3US7A
0.83 (2.44)

LC1 1M9L/4265 199/(α/β) 1QYYA
0.56 (4.19)

2WSMA
0.31 (5.80)

5IL7B
0.46 (3.62)

5IL7A
0.62 (4.23)

cg2496 2KPT/16569 148/(α/β) 5ANPB
0.70 (2.62)

3PVHA
0.67 (2.56)

3DFLA
0.30 (5.40)

3PVHA
0.69 (2.36)

NCAM 1EPFA/4162 191/(β) 4UOWW
0.80 (1.83)

3QP3C
0.80 (1.75)

3B43A
0.70 (2.33)

2IEPA
0.76 (2.15)

PG 2HZE/4113 108/(α/β) 3L4NA
0.78 (2.29)

4I2UA
0.78 (1.96)

3C1SA
0.75 (2.52)

4N10A
0.82 (2.27)

AT5g22580 1RJJ/6011 111/(α/β) 5B0DB
0.66 (2.92)

1TR0C
0.68 (2.38)

5B0FB
0.66 (2.71)

2QYCB
0.68 (3.01)

N-WASP 1MKE/5554 144/(α/β) 1QC6A
0.62 (2.75)

2XQNM
0.64 (2.39)

3SYXA
0.37 (3.49)

3OANA
0.63 (2.31)

Grx2 1G7O/4318 215/(α) 3TOTA
0.66 (3.93)

2WRTG
0.64 (3.85)

2GDRF
0.21 (5.49)

4LMWA
0.79 (2.97)

Average 0.67 (3.10) 0.58 (3.25) 0.52 (3.56) 0.69 (2.81)
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RMSD = 3.0 Å)). This was expected given that a ≤ 95% 
sequence identify cutoff allows near identical homologs 
to be used in modeling. We also tested the performance of 
CS23D (Wishart et al. 2008) and CS-Rosetta (Shen et al. 
2008) on the 15 proteins listed in Table 2. Both of these 
programs perform fairly well for these test cases. In par-
ticular, CS23D has an average TM-score of 0.70 (TM-Align 
RMSD = 2.82 Å) whereas CS-Rosetta has an average TM-
score of 0.56 (TM-Align RMSD = 3.64 Å). The purpose 
of this evaluation is to show that threading algorithms are 
applicable to a wide range of applications and to assure users 
that chemical shift threading methods can attain a structure 
modeling performance similar to sequence-only threading 
or comparative modeling methods.

As a second test for E-Thrifty, we selected a number of 
recent CASD-NMR-2013 (Rosato et al. 2015) targets which 
we called TEST2. The TEST2 proteins consist of ten targets 
for which the majority of these proteins are structurally dis-
similar to most (or even all) proteins in the PDB. It is impor-
tant to note that both POMONA and DALI failed to find 
template(s) for one of the TEST2 proteins (2LOJ) using the 
≤ 30% sequence identity threshold, as indicated by “N/A” in 
Table 3. In particular, POMONA returned no result, whereas 
DALI identified two possible template chains, 4YNXA and 
4YNXB, but both had > 30% sequence identity to the query 
protein. For this “difficult” data set, E-Thrifty achieved an 
average TM-score of 0.64 (TM-Align RMSD = 2.58 Å) with 
≤ 30% identity range (Table 3). As seen in Table 3, E-Thrifty 

Table 2  Template recognition performances of four threading and two protein structure prediction programs on TEST1 proteins using sequence 
identity cutoff as ≤ 95%

The result includes E-Thrifty, POMONA, PSI-BLAST, DALI identified template information and structure prediction by CS23D and CS-
Rosetta. Template information includes the PDB ID of the template and the TM-score of full-length model generated using the corresponding 
template. A TM-score evaluation of predicted structures by CS23D and CS-Rosetta is also presented. RMSD values are shown in Angstroms (Å)

Query E-Thrifty POMONA PSI-BLAST CS23D CS-ROSETTA DALI

Protein
name

PDB/
BMRB ID

Template
TM-score 
(RMSD)

Template
TM-score 
(RMSD)

Template
TM-score 
(RMSD)

TM-score 
(RMSD)

TM-score 
(RMSD)

Template
TM-score 
(RMSD)

KaiA 1M2F/5031 1YS7A
0.74 (2.61)

2WRZA
0.51 (3.51)

4D2OB
0.32 (4.79)

0.50 (4.43) 0.55 (3.84) 3R0JA
0.71 (2.99)

NEDTH 1F3Y/4448 4S2XA
0.77 (2.71)

2KDVA
0.81 (2.56)

4S2YA
0.77 (2.75)

0.72 (3.35) 0.34 (5.15) 4S2YA
0.79 (2.58)

NCS-1 2LCP/4378 4BY5B
0.66 (3.38)

1S1EA
0.70 (3.57)

4BY5D
0.68 (3.45)

0.68 (3.60) 0.63 (3.89) 1BJFB
0.70 (3.39)

Sortage 1IJA/4879 3RCCF
0.68 (3.08)

2W1KB
0.72 (2.95)

3RCCR
0.61 (3.23)

0.84 (2.17) 0.45 (4.10) 4TQXA
0.73 (2.69)

PyJ 1FAF/4403 1GH6A
0.67 (2.60)

1QDBB
0.43 (2.66)

2PF4H
0.64 (2.80)

0.30 (3.81) 0.77 (1.92) 2PF4E
0.71 (2.12)

ERp18 2K8V/15,964 3PH9B
0.63 (3.28)

3PH9B
0.67 (3.39)

3PH9A
0.63 (3.35)

0.73 (2.65) 0.44 (4.81) 1SENA
0.75 (2.73)

ApolPBP1A 2JPO/15,256 2FJYB
0.85 (2.22)

2FJYB
0.83 (2.35)

2KPHA
0.87 (1.84)

0.83 (1.77) 0.40 (4.17) 2KPHA
0.87 (1.84)

Pru Av 1 1E09/4671 4Z3LA
0.85 (2.16)

4C9CA
0.86 (2.10)

4C9IF
0.88 (2.05)

0.89 (1.88) 0.86 (2.25) 4C94B
0.91 (1.95)

LC1 1M9L/4265 2OMZ
0.53 (3.53)

2WSMA
0.31 (5.80)

5IL7B
0.46 (3.62)

0.94 (1.61) 0.57 (4.21) 5IL7A
0.62 (4.23)

cg2496 2KPT/16,569 5ANPB
0.70 (2.62)

3PVHA
0.67 (2.56)

3DFLA
0.30 (5.40)

0.36 (3.84) 0.77 (1.76) 3PVHA
0.69 (2.36)

NCAM 1EPFA/4162 5AEAA
0.92 (1.50)

2XY2A
0.88 (1.60)

5AEAB
0.81 (1.90)

0.76 (2.51) 0.42 (4.35) 2V44A
0.88 (1.60)

PG 2HZE/4113 1JHBA
0.86 (1.70)

1KTEA
0.85 (1.68)

1JHBA
0.83 (1.70)

0.91 (1.18) 0.88 (1.51) 1KTEA
0.89 (1.60)

AT5g22580 1RJJ/6011 5B0DB
0.67 (2.89)

1TR0C
0.69 (2.64)

2Q3PA
0.66 (3.18)

0.66 (3.10) 0.41 (3.75) 2QYCB
0.68 (2.68)

N-WASP 1MKE/5554 1QC6A
0.63 (2.42)

2XQNM
0.65 (2.39)

3SYXA
0.37 (3.49)

0.41 (4.48) 0.62 (2.73) 3OANA
0.63 (2.31)

Grx2 1G7O/4318 3IR4A
0.88 (1.64)

3IR4A
0.94 (1.30)

3IR4A
0.84 (1.75)

0.92 (1.91) 0.28 (6.12) 3IR4A
0.95 (1.25)

Average 0.74 (2.60) 0.70 (2.74) 0.64 (3.0) 0.70 (2.82) 0.56 (3.64) 0.77 (2.42)
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performance is closer to the average TM-score achieved by 
the “gold standard” structure superposition program DALI 
than performances of other methods. Moreover, most of the 
top 10 hits obtained by E-Thrifty for the 10 targets were 
also identified by DALI through 3D structural superposi-
tion (data not shown), which confirms that E-Thrifty gen-
erally finds the correct answer for most (if not all) cases. 
The average TM-scores for POMONA and PSI-BLAST 
were 0.55 (TM-Align RMSD = 3.10  Å) and 0.50 (TM-
Align RMSD = 3.22 Å), respectively. Again, the E-Thrifty 
results were significantly better for TEST2 proteins when 
compared to PSI-BLAST and POMONA (p values of 0.005 
and 0.009, respectively). CS-Rosetta and CS23D are also 
run on the same set of proteins yielding average TM-scores 
of 0.57 (TM-Align RMSD = 3.0 Å) and 0.62 (TM-Align 
RMSD = 2.60 Å), respectively. Examples of full-length 
E-Thrifty template models for four proteins selected from 
TEST1 and TEST2 are shown in Fig. 2.

In addition to the studies of the TEST1 and TEST2 pro-
teins, we also investigated the performance of E-Thrifty on 

14 recent, randomly selected, BMRB entries with ≤ 95% 
sequence identity cutoff (TEST3). The results including the 
TM-score and RMSD from the TM-align program (Zhang 
and Skolnick 2004) are shown in Table 4. As can be seen 
in this table, E-Thrifty reports an average TM-score of 0.69 
(TM-Align RMSD = 2.30  Å) for these newly deposited 
entries. A total of 13/14 proteins (93%) have approximate 
TM-scores ≥ 0.50, while only a single protein (BMRB: 
30079, PDB: 5JTK) has a TM-score (0.42) below this 
threshold. Further investigation through the PDB shows 
that 5JTK is one of the few recent examples of a completely 
“novel” fold being recently deposited into the PDB. Inter-
estingly, the top template identified for this particular entry 
(PDB: 4A7H, chain B) by the other chemical shift-based 
method, POMONA, only has a TM-score of 0.23.

E‑Thrifty accurately handles “trick” proteins

Distinguishing between proteins with completely different 
folds but high sequence identity is an extremely challenging 

Table 3  Template recognition performances of E-Thrifty, POMONA, PSI-BLAST, CS23D and CS-Rosetta protocols on TEST2 (ten blind tar-
gets from the CASD-NMR-2013 competition) proteins are shown

Note that CS23D and CS-Rosetta were run without any homology threshold on these proteins. The final column describes the highest possible 
alignment quality within the specified sequence identity threshold (≤ 30%) for these ten proteins. Each threading program column includes the 
PDB ID of the identified template, TM-score and TM-Align RMSD of the full-length model generated using the corresponding template. NA 
(TM-score = 0.0) in any column indicates “No Answer” for the corresponding method
a The average TM-score and RMSD in the final row are calculated over nine entries (excluding 2LOJ, for which DALI has “NA”). RMSD values 
are shown in Angstroms (Å)

CASD-NMR targets E-Thrifty POMONA PSI BLAST CS23D CS-ROSETTA DALI

Protein
name

PDB/BMRB 
ID

Length/(fold) Template
TM-score 
(RMSD)

Template
TM-score 
(RMSD)

Template
TM-score 
(RMSD)

TM-score 
(RMSD)

TM-score 
(RMSD)

Template
TM-score 
(RMSD)

NTPASE 2LCI/17613 134/(α/β) 5GAJA
0.84 (2.02)

2L69A
0.75 (2.36)

5GAJA
0.82 (2.37)

0.91 (1.44) 0.78 (2.94) 5GAJA
0.84 (2.02)

BUB1 2LAH/17524 160/(α) 4AEZC
0.80 (2.27)

3ESLB
0.81 (2.47)

3ESLA
0.80 (2.25)

0.85 (1.73) 0.63 (3.88) 3ESLA
0.80 (2.25)

FUS 2LA6/17508 99/(α/β) 2J0QG
0.72 (2.57)

1RK8A
0.75 (2.48)

4FXVA
0.71 (2.55)

0.67 (2.72) 0.66 (2.39) 3EX7G
0.76 (2.15)

NFU1 2M5O/19068 97/(α/β) 1TH5A
0.54 (2.33)

3R5GA
0.47 (3.40)

3B0HB
0.28 (4.53)

0.63 (3.16) 0.73 (2.51) 1TH5A
0.65 (2.69)

DNAJC2 2M2E/18909 73/(α) 2XB0X
0.64 (2.66)

3ZNVA
0.44 (3.11)

4EEFI
0.54 (2.89)

0.59 (2.76) 0.69 (2.25) 2CQQA
0.62 (1.99)

NKX 3.1 2L9R/17,484 69/(α) 2DMPA
0.68 (2.21)

2R5YB
0.66 (2.18)

3NAUB
0.51 (2.88)

0.71 (1.85) 0.52 (3.24) 1HF0B
0.71 (2.59)

NFU1 2LTM/18489 107/(α/β) 2K1HA
0.57 (3.54)

2XIQA
0.30 (4.50)

2K1HA
0.15 (3.85)

0.48 (3.86) 0.53 (3.46) 2FFMA
0.64 (2.51)

YR313A 2LTL/18487 119/(α/β) 1PQXA
0.59 (3.50)

2QTFA
0.27(4.37)

4L6EA
0.26 (4.96)

0.39 (3.39) 0.50 (2.46) 2FFMA
0.59 (2.73)

TSTM 2LOJ/18214 63/(β) 2FE0A
0.31 (3.01)

N/A 2JRAB
0.38 (2.07)

0.36 (2.43) 0.40 (2.32) N/A

IF3-like fold 2LN3/18145 83/(α/β) 3ZIIA
0.74 (2.12)

3PP7A
0.51 (2.75)

4RJVD
0.47 (2.73)

0.61 (2.47) 0.27 (3.73) 3ZIEB
0.71 (2.48)

Averagea 0.64 (2.58) 0.55 (3.10) 0.50 (3.22) 0.62 (2.60) 0.57 (3.0) 0.70 (2.38)
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task for sequence-based threading methods (Shen et al. 
2008). One such example is the protein G pair known as 
GA-95 (PDB: 2KDL, BMRB: 16116) and GB-95 (PDB: 
2KDM, BMRB: 16117) (Alexander et  al. 2009). Pro-
tein GB-95 is a native, β-sheet rich protein that shares a 
high degree of sequence identity (> 80%) with a specially 
designed, mostly helical protein GA-95. Here, we investi-
gated how E-Thrifty performed in predicting the structures 

of these two proteins when compared to other methods 
(POMONA and PSI-BLAST). As can be seen in Fig. 3, 
E-Thrifty generated accurate structures for both proteins, 
yielding TM-scores of 0.54 and 0.74 for GA-95 and GB-95 
respectively. The TM-scores of POMONA-identified tem-
plates for GA-95 and GB-95 were 0.33 and 0.80 respec-
tively. On the other hand, the TM-scores of the PSI-BLAST 
identified templates for GA-95 and GB-95 were 0.37 and 
0.39 respectively. Clearly, PSI-BLAST was misled by the 
high sequence identity between these two very different 
folds. On the other hand, E-Thrifty (and to a lesser extent 
POMONA) were not fooled because both exploited chemical 
shift-derived structural information to avoid the sequence 
matching “trap”.

Another example of a “trick” protein fold is a denatured 
protein. In this situation, if sequence information alone is 
used, the sequence of the unfolded protein would match 
well with one or more folded proteins, yielding an incor-
rect structure prediction. For this example we used the data 
on denatured ubiquitin in 8 M urea (BMRB: 4375). While 
E-Thrifty was able to generate 3D coordinates for an ensem-
ble of unfolded structures, POMONA failed to produce a 
structure, and PSI-BLAST, as expected, identified a tem-
plate corresponding to folded ubiquitin (PDB: 5KGF, chain 
M). Importantly, the E-Thrifty generated unfolded ensemble 
exhibited stronger agreement with the observed chemical 
shifts and TALOS-N predicted torsion angles (see Table S1) 
in comparison to its folded counterpart (PDB: 5KGF, chain 
M). In other words, only E-Thrifty was able to identify 
unfolded proteins and generate viable 3D coordinates for 
those proteins using both sequence and chemical shift data.

Fig. 2  The full-length E-Thrifty 
template models for four query 
proteins are shown. Query 
proteins (red) are shown 
superimposed with the template 
models (blue) using PyMOL. 
The TM-score of the aligned 
residue pairs between query and 
template models is displayed 
beside each superimposed 
model. All protein models were 
generated using PyMOL (http://
www.pymol.org)

Table 4  E-Thrifty performances 
on 14 recent BMRB entries are 
shown

The columns describe the 
BMRB ID, TM-score, and TM-
Align provided RMSD, respec-
tively. RMSD values are shown 
in Angstroms (Å)

BMRB TM-score (RMSD)

34002 0.55 (3.01)
30118 0.84 (1.97)
30098 0.84 (1.90)
30088 0.77 (1.40)
30079 0.42 (3.48)
30050 0.82 (2.13)
30048 0.76 (2.01)
30034 0.49 (3.29)
30023 0.72 (2.55)
30017 0.68 (2.31)
30007 0.79 (1.69)
30003 0.56 (1.97)
30023 0.72 (2.55)
30048 0.76 (2.01)
Average 0.69 (2.30)

http://www.pymol.org
http://www.pymol.org
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E‑Thrifty’s sensitivity to missing chemical shifts

It is notable that E-Thrifty was able to find a high qual-
ity, structurally similar homolog for one of the CASD-
NMR-2013 targets, “YR313A” (2LTL) despite its complete 
lack of 13CO backbone chemical shift assignments. On the 
other hand, POMONA failed to detect a good quality tem-
plate (i.e. a template with a TM-score ≥ 0.5) for “YR313A” 
due to the missing 13CO shifts. To further explore how well 
E-Thrifty performed with partial or incomplete chemical 
shift assignments, we chose a subset of five proteins from 
TEST1 and TEST2. Using these proteins, we systemati-
cally excluded 13C, 1H, and 15N chemical shifts from each of 
these proteins and assessed E-Thrifty’s structure prediction 
performance. With the exception of a few cases, E-Thrifty 
reported roughly the same results for these test proteins with 
partial assignments as it showed with the full assignments 
with a 30% sequence identity cut-off (Table S2). We believe 
there are several reasons for E-Thrifty’s robustness towards 
incomplete chemical shift assignment. First, the inclusion of 
sequence and secondary structure pre-filtering stages assists 
with choosing a pool of relevant (in terms of sequence and 
secondary structure) templates before E-Thrifty’s sequence-
structural alignments are performed. Second, the embedded 
structure parameter calculators in E-Thrifty such as CSI 2.0, 
CSI 3.0, and ShiftASA have been previously shown to be 
quite insensitive to moderate levels of assignment incom-
pleteness (Hafsa and Wishart 2014; Hafsa et al. 2015a, b). 
Obviously, there is a point at which missing chemical shifts 
begin to adversely affect performance. For example, if a 
significant number of chemical shifts are missing, in par-
ticular 1Hα shifts and/or all 13C (13Cα, 13Cβ, 13CO) shifts, we 
observed a much poorer performance (see Table S2). As a 
result, E-Thrifty now performs a shift completeness check 
on all queries and generates a warning if a large number of 
1Hα and 13Cα chemical shifts are missing.

TM‑score distributions of models from E‑Thrifty 
and other methods

The quality (TM-score) of E-Thrifty models was also 
compared to the quality of of homologs found by DALI 
as well as the top structures generated by POMONA. For 
this comparison, DALI homologs with a Z-score ≥ 2, and 
the top 250–300 alignments from POMONA and E-Thrifty 
were chosen. The TM-score distribution of the templates 
identified by the two threading programs (POMONA and 
E-Thrifty) and DALI (a structure matching program) for 
two proteins, Pru Av 1 protein (PDB: 1E09, BMRB: 4671) 
and the P-LOOP NTPase fold (PDB: 2LCI, BMRB: 17613) 
derived from TEST1 and TEST2 set, respectively, is shown 
in Fig. 4. Note that 550 DALI, 550 POMONA, and 550 
E-Thrifty alignments were used in this comparison. Rela-
tive to POMONA, E-Thrifty shows a comparable or better 
performance in almost all TM-score sub-ranges (see Fig. 4). 
It is notable that E-Thrifty’s performance was nearly as good 
as POMONA (307 vs. 329 in 550 alignments) in terms of 
identifying generally similar folds (TM-score ≥ 0.5). These 
high-quality templates consist of more than 55% of the total 
templates identified by E-Thrifty. In the case of random and 
unrelated fold rejection (TM-score ≤ 0.3), E-Thrifty showed 
a better performance (only 5% of total alignments) than 
POMONA (which had 12% of total alignments).

Detecting remote homologs

All ten targets selected from the CASD-NMR-2013 com-
petition (the TEST2 data set) are proteins with very low 
sequence identity (< 30%) to any known structure in the 
PDB. Two proteins, 2LOJ (BMRB: 18214) and 2LN3 
(BMRB: 18145), proved to be particularly challenging for 
almost all of the programs we tested. Both of these proteins 
have low sequence identity homologs in the PDB. E-Thrifty 
was able to correctly identify the most likely template for 
2LN3 (3ZIIA, TM-score = 0.73) according to DALI. For 

Fig. 3  E-Thrifty performances 
for “trick” proteins GA (95) 
and GB (95). The MODELLER 
generated E-Thrifty compara-
tive models (blue) and the query 
proteins (red) are shown super-
imposed. The TM-score and 
backbone RMSD of each model 
are referred below
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2LOJ, E-Thrifty and PSI-BLAST identified 2FE0A and 
2JRAA as the best templates with TM-scores of 0.31 and 
0.37, respectively. DALI also failed to find a template with 
a better TM-score (i.e. TM-score > 0.37) within its threshold 
Z-score ≥ 2 and ≤ 30% identity threshold. Further searches 
through the PDB to identify other structural homologs for 
2LOJ revealed only one other homolog, 4YNX (with > 50% 
sequence identity), which was also identified by DALI. This 
structure was solved in 2015, which was after our exclusion 
date. Therefore, at the time of its deposition in 2013, 2LOJ 
appears to have been one of those truly novel protein folds 
that are now identified only very rarely.

E‑Thrifty performance using different combinations 
of sequence/structure features

We analyzed E-Thrifty’s performance using different 
sequence/structure feature combinations with a sequence 
identity threshold of ≤ 30%. This was done to assess which 
properties (sequence, secondary structure, chemical shifts, 
torsion angles, etc.) were most important for E-Thrifty’s 
overall performance. For this assessment, we randomly 
chose seven proteins from both the TEST1 and TEST2 sets. 
As can be seen in Table S3, using sequence as the only 
input, E-Thrifty produces an average TM-score of 0.51 
(compared to a TM-score of 0.67 for the full E-Thrifty pro-
gram). Using simple sequence alignments, only 4/7 of these 

proteins generated high quality matches (TM-score > 0.50) 
or found the correct “gold standard” structural homolog. 
Using the combination of sequence and shift-derived sec-
ondary structure, E-Thrifty showed an improved average 
TM-score of 0.61 (compared to 0.67 for the full program). 
Using these two features, 6/7 proteins generated high quality 
(TM-score > 0.50) matches or found the correct “gold stand-
ard” structural homolog. Using the combination of sequence, 
shift-derived secondary structures, and shift-derived tor-
sion angles, E-Thrifty shows an average TM-score of 0.66 
with 6/7 of the test proteins generating high quality (TM-
score > 0.50) matches. Interestingly, POMONA, which also 
uses these three features, was able to achieve a TM-score of 
0.63. The primary intent of these experiments was to inves-
tigate contributions of different types of input data into the 
performance of E-Thrifty. These results clearly show that 
more information is better, and illustrate the important con-
tribution of the three input features (sequence, secondary 
structure and torsion angles) in obtaining the overall thread-
ing performance of E-Thrifty.

E‑Thrifty template accuracy and correlation 
with MODELLER structures

We analyzed the accuracy of E-Thrifty-identified templates 
by calculating the TM-scores of E-Thrifty templates with 
respect to the corresponding target structures for all of the 
TEST1 and TEST2 proteins. Average TM-scores of 0.67 and 
0.65 were observed for the reference proteins in TEST1 and 
TEST2, respectively, and the corresponding E-Thrifty tem-
plates corresponding to ≤ 30% sequence identity, whereas 
the average TM-score was 0.75 between the TEST1 pro-
teins and their corresponding E-Thrifty templates with 
≤ 95% sequence identity. The average TM-scores from the 
E-Thrifty models of the TEST1 proteins (with ≤ 30% ID 
templates), the TEST2 proteins (with ≤ 30% ID templates), 
and the TEST1 proteins (with ≤ 95% ID templates) were 
nearly identical: 0.67, 0.64, and 0.74, respectively (Tables 
S4-S6). While analyzing these results, we also noticed a 
strong correlation (r = 0.98) between the TM-scores of 
the starting input templates and the TM-scores of the final 
MODELLER structures with respect to the reference struc-
tures. These results indicate that MODELLER successfully 
preserves the fold of E-Thrifty-identified templates during 
its comparative modelling and structure optimization steps.

It is important to note that, E-Thrifty target-template 
alignment coverage provides valuable information about the 
effectiveness of the template in modeling the target structure. 
E-Thrifty uses a cutoff or a minimal threshold for target-
template alignment coverage (< 65% of the query sequence 
length) to identify when no useful template has been found. 
We have tested this thresholding approach on a number of 
cases and it appears to prevent the server from providing 

Fig. 4  TM-score distribution of full-length models using input tem-
plates identified by DALI, E-Thrifty and POMONA for the P-LOOP 
NTPase fold (PDB: 2LCI, BMRB: 17613) and the Pru Av 1 protein 
(PDB: 1E09, BMRB: 4671)
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non-converged or incorrect structures (data not shown). 
If no match is found that exceeds this threshold, E-Thrifty 
returns a message “We are sorry, E-Thrifty could not find 
a useful template!”. In addition, a secondary check is also 
performed on all output MODELLER structures to assess 
whether anything may have gone awry with the MODEL-
LER runs (leading to an RMSD change of > 3.5 Å from 
the original input structure) and to prevent any “divergent” 
structures from being presented. In these cases E-Thrifty 
returns a message “We are sorry, the model building step 
appears to have failed!”.

Query protein size limitations for E‑Thrifty

The largest protein assessed among the TEST1 and TEST2 
sets was 215 residues in length. Given that larger proteins 
are now being fully assigned by higher field NMR instru-
ments using heteronuclear TROSY experiments, we decided 
to investigate what the upper size limit is for E-Thrifty, in 
terms of query protein length. A set of four large monomeric 
proteins with sequence lengths ranging from 255 to 341 
residues was examined using a sequence identity cutoff of 
< 95%. In all cases, E-Thrifty returned satisfactory answers 
with TM-scores ranging from 0.5 to 0.7 (data not shown). 
The run-times varied from 12 to 18 min (from the smallest to 
the largest proteins). The time taken to identify the templates 
typically took 6–8 min, while an additional 6–10 min was 
required for MODELLER refinement. Overall, there appears 
to be no real size limitation to what E-Thrifty can handle. 
Indeed, the only limitation appears be what NMR can meas-
ure in terms of obtaining reasonably complete chemical shift 
assignments.

CS‑GAMDy refinement of E‑Thrifty models

CS-GAMDy (Berjanskii et al. 2015) is a newly developed 
NMR chemical shift-based protein structure refinement 
method. It uses a knowledge-based scoring function and 
structural information derived from chemical shifts through 
a combination of molecular dynamics and a multi-criterion 
genetic algorithm to perform structure refinement. The soft-
ware is able to effectively refine and improve a wide range 
of approximate or even erroneous models. In our study, we 
used CS-GAMDy to refine the full-length models gener-
ated by MODELLER using the E-Thrifty identified tem-
plates. Examples of full-length models prior and follow-
ing the refinement by CS-GAMDy for three query proteins 
(extracted from TEST1 and TEST2) are shown in Figure 
S3, with the corresponding Cα-RMSD values. Note that 
the reported Cα-RMSD is calculated only over the defined 
secondary structure regions of the superimposed proteins 
(query and template) using Superpose program (Maiti et al. 
2004). As Figure S3 shows, CS-GAMDy was able to refine 

a number of local structural defects observed in the template 
models generated using MODELLER (e.g. lack of folding 
in helix and β-sheet regions) and improve the Cα-RMSD 
between well-formed secondary structure regions.

The E‑Thrifty web server

E-Thrifty has been implemented as a web server, which 
can be accessed at http://ethrifty.ca. The E-Thrifty program 
was written using several programming languages includ-
ing C++, Python, Perl, and R. The E-Thrifty web server 
has been implemented using PHP and CGI-scripting. The 
E-Thrifty server accepts BMRB (NMR-Star 2.1 or NMR-
Star 3.1), SHIFTY and NEF-formatted (Gutmanas et al. 
2015) chemical shift files and produces multiple output files. 
These output files include: (1) an alignment file showing the 
sequence-structure alignments for the top hits; (2) a sum-
mary file containing alignment scores, chemical shift scores, 
total scores, e-value, and the cluster membership associated 
with each hit and (3) a 3D structure (PDB coordinates) of 
the query protein using the top scoring template (or multiple 
templates) from the clusters. The E-Thrifty server supports 
a number of user-selectable options related to comparative 
modeling which includes the sequence identity threshold 
for template selection, the model building mode (model 
generation from a single template or multiple templates), 
and exclusion of flexible terminal regions in the modeling 
process. In general, the run-time for the E-Thrifty server 
is ~ 6–8 min on medium sized proteins (< 200 residues), 
whereas it generally takes ~ 10–15 min for larger proteins 
(> 200 residues). Note that The E-Thrifty run-times can 
climb to ~ 40–60  min (for medium sized proteins) and 
~ 60–90 min (for larger proteins) when full-scale structural 
alignments must be performed against the nrPDB. However, 
this only occurs rarely. A screen shot of the E-Thrifty web 
server home page and its output is illustrated in Figure S4.

Limitations and potential improvements

One of the limitations of E-Thrifty is that it relies on cate-
gorical, somewhat imprecise character-based representations 
to describe both the query structures and the corresponding 
database structures. For example, real-valued φ/ψ angles are 
converted into a discretized 9-letter torsion alphabet; while 
real-valued fractional ASA (fASA) values are classified 
into an even simpler 3-letter alphabet. Approaches that use 
numeric torsion angles and numeric fASA values might be 
expected to further improve E-Thrifty’s performance. This is 
because numeric values would be far more precise and would 
capture far more subtle information about these torsion angle 
and fASA features. While E-Thrifty makes use of a number 
of high quality dynamic programming alignment routines, 
a further improvement in its sensitivity for detecting remote 

http://ethrifty.ca
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homologs could potentially be achieved by including more 
powerful Hidden Markov Model profile alignments. These 
alignment methods have consistently proven to be very effec-
tive in detecting distant homologs (Krogh et al. 1994; Eddy 
1998; Karplus et al. 1998) and appear to play a key role in 
the success achieved with programs such as HHpred (Söding 
2005). While improved alignment methods could be particu-
larly beneficial, improved scoring functions may prove to 
be equally useful. Indeed, we suspect further improvements 
could be achieved by designing a suitable Z-score value for 
a more effective assessment of E-Thrifty sequence-structure 
alignment quality.

Due to the high computational cost of generating sta-
tistical ensembles of disordered proteins, the E-Thrifty 
webserver calculates only so-called uncertainly ensembles 
(Bonomi et al. 2017) for this class of proteins. The main 
objective of the E-Thrifty algorithm is to identify good 
templates for comparative modelling of folded proteins. 
Describing conformational heterogeneity in disordered 
proteins is beyond the scope of this technique. However, we 
believe that E-Thrifty’s models of disordered proteins can 
still be useful to gain initial insights into residual structures 
in these proteins or/and to be employed as starting models in 
more specialized methods of generating statistical ensembles 
of disordered proteins (e.g. maximum entropy methods).

Next steps for E‑Thrifty

As a chemical shift threading method E-Thrifty is particu-
larly good at automatically generating “approximate” or 
initial 3D protein models. However, to obtain truly high-
quality, atomic resolution structures it will be necessary to 
couple E-Thrifty to other kinds of programs that can per-
form true structural refinement. As highlighted in Figure S3, 
E-Thrifty can be easily coupled to CS-GAMDy (Berjanskii 
et al. 2015) to perform chemical shift refinement. These 
refinement methods were shown to consistently improve 
the quality and accuracy of the starting structures. While 
CS-GAMDy refinement calculations can take several hours 
to several days, it is not unreasonable to imagine having 
E-Thrifty tightly coupled to CS-GAMDy (either as a stand-
alone program or as a web server) in the near future. Further 
enhancements to E-Thrifty will likely include the addition 
of other structure refinement options such as XPLOR-NIH 
(Schwieters et al. 2003), AMBER (Pearlman et al. 1995), 
or DYANA (Güntert et al. 1997). Adding these tools to the 
pipeline would also allow E-Thrifty to incorporate other 
experimental NMR measures such as NOEs, J-couplings, 
and residual dipolar couplings into its structure generation 
and refinement protocols. In the rare situations where no 
structural homolog can be found, it may be possible to con-
sider blending Cheshire (Cavalli et al. 2007), CS-Rosetta 
(Shen et al. 2008), and other ab initio structure predictors 

with E-Thrifty to improve model selection in these ab initio 
methods. Likewise, integrating a maximum entropy method 
of building protein ensembles, such as ENSEMBLE (Choy 
and Forman-Kay 2001) or chemical shift-biased metady-
namics (Camilloni and Vendruscolo 2014), into E-Thrifty 
would enable generation of statistical ensembles of disor-
dered proteins. All these additions would lead to the crea-
tion of a much more fail-safe and far more comprehensive 
chemical shift-based structure generation pipeline.

Conclusion

In this study, we have described a novel and effective protein 
fold recognition method, called E-Thrifty, that uses chemical 
shift threading to generate high quality 3D protein struc-
tures for proteins having little or no sequence identity to 
any protein in the PDB. We believe this represents a sig-
nificant step towards “solving” protein structures using only 
chemical shift information. As outlined above, E-Thrifty 
uses chemical shift derived secondary structures, chemical 
shift derived fASA values and chemical shift derived torsion 
angles to perform a comprehensive alignment between the 
query sequence (with experimentally determined chemical 
shift assignments) and a large database of known protein 
structures and predicted chemical shifts. E-Thrifty exploits a 
number of recently developed chemical shift analysis tools—
CSI 2.0 (Hafsa and Wishart 2014), CSI 3.0 (Hafsa et al. 
2015a), ShiftASA (Hafsa et al. 2015b), TALOS-N (Shen 
and Bax 2013), and ShiftX2 (Han et al. 2011)—to generate 
chemical shifts or chemical-shift derived information for 
both the query and the database proteins. A Smith–Water-
man local alignment algorithm with a variable gap penalty 
function was found to be the best tool for performing the 
sequence-structure alignment. The weighting coefficients 
used in scoring functions and fitness scores were optimized 
through both a parameter grid search and a linear regres-
sion analysis. E-Thrifty includes a chemical shift fitness 
score and an e-value scoring system to fully evaluate the 
alignments between the query and the database proteins. In 
addition, E-Thrifty performs a cluster analysis step for all 
identified folding templates to group them according to their 
structural similarity. The templates identified by E-Thrifty 
can then be used for comparative modeling with programs 
such as MODELLER (Sali and Blundell 1993) and subse-
quently for chemical shift-based structure refinement (Ber-
janskii et al. 2015).

In terms of performance, E-Thrifty achieved an aver-
age TM-score of 0.67 for query sequences having ≤ 30% 
sequence identity (as measured on an independent test set 
of 15 proteins). E-Thrifty’s performance was found to be 
comparable to the “gold standard” DALI, which had an 
average TM-score of 0.69. In contrast to E-Thrifty or other 
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structure prediction routines, DALI uses experimentally 
derived coordinate data to identify structural homologs of 
proteins by structural superposition (i.e. DALI knows the 
answer, whereas E-Thrifty predicts the answer). E-Thrifty 
was also evaluated on a number of recent CASD-NMR-2013 
targets and achieved an average TM-score performance of 
0.64 on 10 test proteins with ≤ 30% sequence identity. The 
performance of E-Thrifty clearly demonstrates its ability to 
“predict” a 3D fold by using only chemical shift information. 
With its exceptional performance, we believe that E-Thrifty 
could be a very useful contribution towards the goal of rapid, 
automated protein structure generation and refinement using 
NMR chemical shifts as the only source of experimental 
data.
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