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of a short NMR experiments carried out while the protein is 
stable (12 h in the presented case). Non-uniform sampling 
enables sufficient resolution to be acquired for each short 
experiment. Identical NMR datasets are acquired and sen-
sitivity is monitored after each co-added spectrum is recon-
structed. The procedure is repeated until sufficient signal-
to-noise is obtained. We discuss how maximum entropy 
reconstruction is used to process the data, and propose a 
variation on the previously described method of automated 
parameter selection. We conclude that combining NUS 
with iterative co-addition is a general approach, and par-
ticularly powerful when applied to unstable proteins.

Keywords Non-uniform sampling · Targeted acquisition · 
Jittered sampling · Maximum entropy reconstruction · 
Proteins

Introduction

Since the first protein structure in solution was solved using 
nuclear magnetic resonance (NMR) spectroscopy in 1984 
by Wüthrich and co-workers (Havel and Wüthrich 1984), 
11,628 NMR structures have been deposited in the World-
wide Protein Data Bank. While the biggest protein analysed 
by solution NMR spectroscopy has a molecular weight of 
900  kDa (Fiaux et  al. 2002), in practice NMR is mainly 
used for smaller proteins or protein domains due to the 
signal overlap and broadening associated with larger pro-
teins. In routine applications of biomolecular NMR, struc-
tural characterisation of proteins is carried out by applica-
tion of multidimensional triple resonance experiments that 
commonly require weeks of NMR data-acquisition time 
(Ikura et al. 1990). This approach becomes impractical for 

Abstract NMR spectroscopy is a powerful method in 
structural and functional analysis of macromolecules and 
has become particularly prevalent in studies of protein 
structure, function and dynamics. Unique to NMR spectros-
copy is the relatively low constraints on sample preparation 
and the high level of control of sample conditions. Proteins 
can be studied in a wide range of buffer conditions, e.g. 
different pHs and variable temperatures, allowing studies 
of proteins under conditions that are closer to their native 
environment compared to other structural methods such 
as X-ray crystallography and electron microscopy. The 
key disadvantage of NMR is the relatively low sensitivity 
of the method, requiring either concentrated samples or 
very lengthy data-acquisition times. Thus, proteins that are 
unstable or can only be studied in dilute solutions are often 
considered practically unfeasible for NMR studies. Here, 
we describe a general method, where non-uniform sam-
pling (NUS) allows for signal averaging to be monitored in 
an iterative manner, enabling efficient use of spectrometer 
time, ultimately leading to savings in costs associated with 
instrument and isotope-labelled protein use. The method 
requires preparation of multiple aliquots of the protein sam-
ple that are flash-frozen and thawed just before acquisition 
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metastable proteins that are only fleetingly monodisperse 
and/or folded under the conditions required for structural 
analysis.

Non-uniform sampling (NUS) can dramatically reduce 
NMR data-acquisition time of triple resonance spectra, by 
sub-sampling the full time-domain grid (Rovnyak et  al. 
2004). NUS data, however, cannot be processed by the con-
ventional discrete Fourier transform (DFT) approach and 
requires non-DFT methods (Mobli and Hoch 2014). Sev-
eral spectral reconstruction methods have been presented 
that are capable of processing NUS data; a family of related 
iterative reconstruction methods—including iterative soft 
thresholding, compressed sensing and maximum entropy 
reconstruction—have proven to yield stable and reliable 
frequency-domain spectral representations and are cur-
rently employed routinely in many laboratories (Holland 
et  al. 2011; Kazimierczuk and Orekhov 2011; Mobli and 
Hoch 2014; Stern et al. 2007).

The earliest application of NUS in NMR demonstrated 
that the distribution of sampling points strongly affects the 
outcome of the spectral reconstruction, and it was proposed 
that random samples drawn from an exponentially decaying 
probability density function (PDF) that mimics the decay 
of the signal would, much like window functions, yield the 
best outcome in terms of sensitivity and resolution (Barna 
et  al. 1987). Thus it was clear that the distribution of the 
sampling points on the time-domain grid can affect both the 
sensitivity and resolution of the data, and formal relation-
ships between the distribution and sensitivity later showed 
that NUS was, per unit time, capable of improving the 
signal-to-noise (S/N) of a given NMR experiments (Rovn-
yak et al. 2011). In cases where the signal is heavily under-
sampled, it has been speculated that additional gains can be 
achieved by further augmenting the PDF through optimisa-
tion of some metric in a transform domain of the sampling 
function (Lustig et  al. 2007). Later work, however, has 
shown that this is not possible for NMR data where the sig-
nal frequencies and phases are not known a priori (Schuy-
ler et al. 2011). Instead, promising results have been found 
in efforts directed towards providing pseudo-random sam-
pling distributions that retain the incoherence of random 
sampling, while reducing the overall dependence of the 
features of the reconstructed spectrum on the seed-depend-
ent realisation of the sampling distribution (Hyberts et al. 
2010; Kazimierczuk et al. 2008; Mobli 2015). To achieve 
this, jittered sampling has emerged as a general method that 
can be adapted to any arbitrary PDF, yielding highly seed-
independent results (Mobli 2015; Worley 2016).

Therefore, at present the most robust and time-efficient 
method of acquiring multidimensional NMR data appears 
to be by random, weighted NUS, drawn from a PDF 
divided in equiprobable jittered regions, and processed 
by an iterative reconstruction method. Indeed, in the past 

decade our group has solved the structure of ~30 peptides 
and proteins, where we have exclusively used NUS and 
maximum entropy reconstruction, in place of traditional 
sampling and DFT, for triple-resonance experiments used 
in resonance assignments. These have, however, in general 
involved highly stable proteins at moderately high concen-
trations (>300 μM).

Here, we present an approach involving the application 
of NUS and maximum entropy to a more challenging sys-
tem not ideally suited for NMR analysis. The method is 
demonstrated on a metastable domain of the MyD88 adap-
tor-like (MAL) protein, which is a key component in the 
Toll-like receptor (TLR) signalling cascade of the human 
innate immune system (Thomas et  al. 2012). Although 
MAL is a cytosolic protein, the four previously published 
crystal structures of the MAL TIR domain  (MALTIR) (resi-
dues 79–221; ~16 kDa) show a mixture of reduced and oxi-
dised cysteine residues (Lin et al. 2012; Snyder et al. 2014; 
Valkov et al. 2011; Woo et al. 2012). The role of the oxi-
dised cysteines and their effect on the protein structure and 
function remains poorly understood. Solution-state stud-
ies by NMR promise to provide critical insights into the 
redox state of the protein and how this may affect the pro-
tein structure. Previous crystallography studies have opti-
mised high-yield expression of the protein in Escherichia 
coli and the protein could be readily prepared and flash-
frozen for subsequent analysis (Valkov et al. 2011). In our 
early attempts to stabilise the protein for NMR studies, it 
was apparent that the protein was only stable as a mono-
mer at (i) low concentration (<300 μM), (ii) low tempera-
tures (<19 °C), (iii) high salt concentrations (>200  mM 
NaCl) and (iv) high pH (>8.4). Even under such unfavour-
able NMR conditions, the protein is only stable for a brief 
(12 h) period of time, making it particularly ill-suited for 
NMR studies. Indeed, a survey of the BMRB’s ~12,000 
submissions shows that only 144 (1.2%) of these are at a 
pH greater than 8.4 and only 32 (0.3%) of these are at a 
temperature less than 19 °C.

To obtain NMR data of suitable quality with minimum 
time requirements, we first defined an NUS sampling 
schedule that would provide sufficient resolution in the 
indirect dimensions, and used jittered sampling with expo-
nential weighting to ensure reproducibility and sensitivity 
enhancement. Within the time constraints of the experi-
ment, we acquired eight scans (transients) per dataset, 
which in itself yielded a spectrum with insufficient sensitiv-
ity for analysis. To overcome this, we repeated the experi-
ment multiple times, co-adding the resultant datasets, and 
evaluated the reconstructed spectrum until sufficient S/N 
had been obtained for subsequent analysis. This ensured 
that a minimum number of experiments were acquired for 
each multidimensional experiment. We demonstrate the 
application of this approach using the 3D HBHA(CO)NH 
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experiment. Our approach is related to the targeted acqui-
sition approach previously described for NUS (Jaravine 
and Orekhov 2006). However, while acquisition of addi-
tional sample points poses a relatively small time burden, 
increasing the sensitivity of the data by increasing the num-
ber transients is a more time-consuming task, potentially 
providing a more significant time saving and is likely to 
be practically easier to implement. We discuss the advan-
tages of the approach and how it may be implemented as 
a general tool in multidimensional NMR spectroscopy. We 
also discuss how parameter selection in maximum entropy 
reconstruction affects the outcome and propose a modifi-
cation to automated parameter selection that aids spectral 
analysis in such challenging systems.

Methods

Production of MAL and NMR sample preparation

The plasmid coding for the C116A mutant of  MALTIR 
 (MALTIRC116A) was transformed into E. coli BL-21 (DE3) 
cells by heat-shock, and grown overnight in a starter culture 
of Luria’s broth (LB) in the presence of 100 mg/L ampicil-
lin while shaking at 37 °C. The protein was then expressed 
in the same media while shaking at 37 °C until the cells 
reached an optical density (OD) of 0.7 at the wavelength of 
600 nm. The sample was centrifuged at 800 x g, washed in 
M9 salts and resuspended in minimal M9 media containing 
13C glucose and 15N ammonium chloride, until the cell den-
sity reached an OD of 0.8 at the wavelength of 600 nm. The 
temperature was then reduced to 20 °C and the cells were 
induced with 1  mM isopropyl-1-thiogalactopyrano-side 
(IPTG) for overnight expression. The protein was purified 
as previously described (Valkov et  al. 2011). Aliquots of 
the protein were flash-frozen in  N2(l) and stored at −80 °C. 
NMR data were acquired at 291  K using a 900  MHz 
AVANCE III spectrometer (Bruker BioSpin, Germany) 
equipped with a cryogenically cooled probe.

300 μL of a solution containing 300 μM 13C/15N-labelled 
 MALTIRC116A, in 20 mM TRIS buffer at pH of 8.6, 200 mM 
NaCl, and 5%  D2O was added to a susceptibility-matched 
5 mm outer-diameter microtube (Shigemi Inc., Japan).

NUS data acquisition

The 3D HBHA(CO)NH experiment from the Bruker pulse 
sequence library was used and NUS data acquisition ena-
bled through Topspin 3.0. Sampling schedules were pre-
pared by first establishing the full time-domain grid, 
containing 64 increments (128 points –  T2max = 7.9  ms) 
in the indirect 1H dimensions and 50 increments (100 
–  T2max = 17 ms) in the indirect 15N dimension, resulting in 

a total of 3200 coordinates containing 12,800 data records. 
600 data coordinates (~19%) were sampled using NUS. 
The grid points were weighted by a PDF defined based on 
the decay of the signal according to Eq. 1.

where lwkand swk are the linewidth and spectral window 
in the kth dimension, respectively. The 15N dimension is 
acquired using constant time and a nominal 1 Hz weighting 
was applied. The indirect 1H dimension is acquired using 
a semi-constant time approach and an estimated weight-
ing corresponding to a line-width of 15  Hz was applied. 
Based on the above PDF, the predefined time-domain grid 
was divided into 600 equiprobable regions as previously 
described (Mobli 2015). A sample point was drawn from 
each region based on the underlying PDF, using the one 
pass approach (Eq. 2) previously implemented for multidi-
mensional NMR (Mobli et  al. 2010), where each point is 
given a rank according to

where where x(i) is a random number between 0 and 
1. The highest rank r(i) is then retained from each region. 
To acquire a single repetition of the experiment required 
~43  min. Each experiment was set up to acquire 8 tran-
sients/scans per increment resulting in a total of ~6 h. Two 
such datasets could be acquired within the stability win-
dow (12 h) of the sample. A total of 9 datasets—all using 
the same sampling schedule—were acquired (72 tran-
sients or ~51.6  h total). All datasets were acquired con-
secutively over a period of 5 days. Care was taken to opti-
mise spectrometer settings for each sample and to use the 
same receiver gain values to allow for linear co-addition. 
All parameters were stable during this period include the 
phase of the individual datasets and required no further 
adjustments.

Spectral reconstruction

Non-Fourier analysis of our spectrometer data was per-
formed using the Rowland NMR Toolkit (Stern et al. 2002). 
An automated processing script generator was used to con-
vert the data into the Toolkit format. The direct dimension 
was processed using the traditional DFT approach (using a 
Gaussian window function with a ~20 Hz linewidth, with 
water suppression achieved through time-domain decon-
volution). The indirect dimensions were processed using 
maximum entropy reconstruction. Although the theory has 
been provided in detail previously, we will here summarise 
some key aspects relevant to the current study (Daniell and 
Hore 1989). Here, the entropy term is defined as

(1)p(i) =

L∏
k=1

e
−i�lwk

swk

(2)r(i) = x(i)
1⟋p(i)
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where xn =
|fn|
def

 and def is treated as an adjustable parame-

ter. As noted previously (Daniell and Hore 1989), when the 

value of def becomes very small, the 

�
xn+

√
4+x2

n

2

�
 term 

goes towards xn and the entropy resembles a scaled version 

of the Shannon entropy 

�
S(f ) = −

N−1∑
n=0

xn log xn

�
. Hence, 

low values of def, drive the spin ½ entropy (Eq. 3) towards 
the Shannon entropy. The maximum entropy spectrum is 
that which maximises the entropy (Eq. 3), while retaining 
consistency with the experimental data. Consistency is 
defined by first calculating the unweighted χ-squared 
statistic,

where mi is the inverse DFT of the candidate spectrum 
and di is the measured time response. Then a threshold, C0 
(referred to as AIM in the Rowland NMR Toolkit) is defined 
and consistency is achieved by maintaining C(� , �) ≤ C0. 
The two constraints (3 and 4) are optimised by maximising 
the object function:

where λ is a Lagrange multiplier. Setting the value of C0 
to a very small value, or similarly by setting the value of λ 
to a large value, ensures that the mock data does not devi-
ate from the experimental data, in general leading to more 
linear reconstructions (Paramasivam et  al. 2012). In prac-
tice, either the value of C0 or the value of λ is treated as an 
adjustable parameter.

Maximum entropy parameter selection

Automated maximum entropy reconstruction—AUTO 
(Mobli et  al. 2007) The value of C0 (AIM) is determined 
by evaluating the noise content of the last acquired FID. 
The noise value for the 9 experiments was determined and 
found to be consistent in all datasets. To ensure consistent 
setting of AIM and to aid robustness in comparisons, the 
value of AIM was determined for the co-addition of all 9 
datasets, assuming this would produce the most accurate 
noise value. This value was then scaled by

√
nscans to find 

the value for different co-additions. The scaling factor, 

(3)S(f ) = −

N−1�
n=0

⎧
⎪⎨⎪⎩
xn log

⎛
⎜⎜⎜⎝

xn +
�

4 + x2
n

2

⎞
⎟⎟⎟⎠
−

�
4 + x2

n

⎫
⎪⎬⎪⎭

(4)C(f , d) =

M−1∑
i=0

||mi − di
||2

(5)Q(� , �) = S(� ) − �C(� , �)

def, was set based on the initial AIM value and the num-
ber of points in the dataset (def = AIM ×

√
M∕

√
N), as 

described previously. The AUTO approach uses the con-
stant λ method, where the strongest signals are used to pre-
form trial reconstructions using the determined values of 
AIM and def, while the value of λ for each reconstruction 
is recorded and averaged. This averaged value is then used 
together with the predefined value of def to reconstruct the 
full spectrum.

Maximum entropy interpolation—MINT (Paramasivam 
et al. 2012). In this strategy the value of C0 is set signifi-
cantly below the noise level, in principle leading to over-
fitting of the data. Again to implement this approach in 
practice, the constant λ approach was used, and rather than 
setting a small value of C0, a large value of λ is chosen. The 
value of λ is iteratively raised until a limit is reached where 
the reconstruction converges in a reasonable timeframe. As 
described, the method does not discuss the setting of def 
and we have here used the same setting of def as defined by 
the AUTO approach.

Shannon-weighted augmentation of reconstruction 
parameters—SHARP. This approach is a variation of the 
AUTO approach where the value of def is scaled down, 
resulting in an entropy function, which is weighted towards 
the form of the Shannon entropy [see above and (Daniell 
and Hore 1989)]. In practice, scaling down def results in 
longer convergence times, similar to what is observed when 
increasing the value of λ. Although the reconstruction 
times increase dramatically as def is lowered, the appear-
ance of the spectrum is most strongly affected by the ini-
tial reductions in def (by  10−1–10−2) and stabilises at val-
ues scaled by  10−3 or less. In SHARP, the value of def as 
defined by AutoMaxEnt and then by default scaled by a 
factor of  10−3 (defSHARP = defAUTO/103). All other param-
eters, including setting of constant λ, is performed as in the 
AUTO approach.

Results and discussion

Nine sparsely sampled 3D HBHA(CO)NH experiments 
were acquired using the same sampling schedule. The 
data were acquired under identical conditions, including 
the receiver gain setting, to facilitate summation. All of 
the samples used were from the same original stock, so 
there was little/no variation in sample condition for each 
experiment. An important consideration in the presented 
approach is that the protein of interest must be produced 
in sufficient quantity that multiple NMR samples can be 
prepared and stored for subsequent analysis. In our experi-
ence, once overexpression is achieved in E. coli, the cost 
of preparing large amounts of protein is not prohibitive. 
For a 16 kDa protein, a 2 L bacterial culture producing a 
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yield of 10  mg/L of protein allows for preparation of ~4 
mL of 300 μM solution, which can be used to prepare >10 
samples (in 300 μL NMR cells). Further, we find that the 
majority of proteins can be flash-frozen in liquid nitrogen 
and thawed gently on ice without significant loss of pro-
tein. This is indeed the practice in many crystallography 
laboratories, where the procedure ensures strict mainte-
nance of sample conditions during optimisation of crystal 
conditions.

The datasets were converted to the Rowland NMR 
Toolkit format and summed using the previously described 
planemath tool within the software suit (Mobli et al. 2006). 
This generated 9 datasets, the original experiment and eight 
additions to this by subsequent datasets (Fig. 1). This rep-
resents realisations of the data where the number of scans/
transients is increased from 8 to 72 by increments of 8. The 
final dataset, being the sum of 9 experiments, will have 3 
times the S/N of the original experiment (as signal strength 
increases linearly with each additional scan, while random 
noise contributions only increase by a factor of 

√
nscans).  

The co-additions of the experiments were reconstructed 
independently using maximum entropy reconstruction with 
automated parameter selection (AUTO method described 
above).

Figure 2 shows the plots where sensitivity is plotted as a 
function of number of increments acquired for a decaying 
signal (Rovnyak et al. 2011). As noted previously, the sen-
sitivity increases rapidly as data are acquired initially, and 
reaches a maximum at ~1.25 × T2 and steadily decreases 
after this point. There is therefore a point for any given 
experiments where the maximum sensitivity is reached 
by sampling alone. At this point, the only way to improve 
S/N is to acquire additional iterations of the experiment 
and, as the signals add linearly and the noise does not, an 
improvement of 

√
nscans can be achieved. In Fig. 2, we have 

plotted separate curves for nine co-additions of a given 
experiment. To aid in interpretation, the x-axis is plotted 
as the number of increments (rather than time), assuming 
a SW of 2500 Hz, and the curve is constructed assuming 

Fig. 1  The co-addition 
scheme used to sum the nine 
HBHA(CO)NH datasets. 
Each individual experiment 
was acquired with 600 NUS 
samples taken from a 64 × 50 
(1H/15N respectively) grid using 
jittered random sampling, with 
eight scans per increment. The 
data were summed in the time 
domain and stored for subse-
quent reconstruction

Exp. 1 (8 scans) 8 scans
16 scans
24 scans

32 scans

40 scans

48 scans

56 scans

64 scans

72 scans

Exp. 2 (8 scans)

Exp. 3 (8 scans)
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Fig. 2  Sensitivity improvements as a function of sampling (incre-
ments) and signal addition (scans). The plot is generated assuming a 
 T2 of 30 ms (10 Hz line-width) and a sweep width of 2500 Hz. Each 
line represents accumulation of an additional dataset, in effect dou-
bling the acquisition time. The nine lines represent the sensitivity 
gain achieved by addition of each of the nine datasets used here. The 
regions I, II and III illustrate the gain in sensitivity by sampling addi-
tional increments (distance between the horizontal black and green 
lines), compared to increase in sensitivity if the same amount of time 
is spent on signal averaging (distance between the black and red line). 
The grey boxes illustrate the additional gain in sensitivity achieved 
by signal averaging compared to acquisition of additional time incre-
ments. It can be seen that signal averaging for later data increments 
provides a significantly higher S/N increase than at lower evolution 
times, compared to sampling additional time increments



124 J Biomol NMR (2017) 68:119–127

1 3

a line-width of 10  Hz. The plots illustrate that as addi-
tional scans are added, the improvements in S/N reduce 
per unit time, a consequence of the nonlinear change in 
S/N with signal averaging (S∕N ∝

√
nscans). We note that 

the improvements in S/N are with regards to the underly-
ing data and are therefore independent of the reconstruction 
method used.

In Fig. 2, we have further defined three regions (I, II and 
III), where each region signifies doubling of the acquisition 
time. The three regions are taken at the beginning, middle 
and late in the signal evolution time. The distance between 
the black and the green horizontal lines in each region sig-
nifies the improvement in S/N achieved by acquisition of 
additional time points. The distance between the black and 
the red horizontal lines shows the improvements in S/N that 
can be achieved by signal averaging instead of the acquisi-
tion of additional points. The shaded area shows the benefit 
of signal averaging, compared to acquisition of additional 
data points (non shaded area between black and green 
bars). The figure illustrates that while sampling the early 
time points ~0.2 × T2 (or in this case ~16 increments), there 
is barely any benefit in increasing the number of scans and 
time is better spent acquiring additional points, which in 
linear sampling additionally improves resolution, while in 
NUS reduces the level of noise due to sampling artifacts. 
However, as the evolution time is increased to ~0.4 × T2 (or 
~32 increments) the benefits of signal averaging become 
more pronounced and beyond 0.8 × T2 (~64 increments), 
S/N improvements are only possible through signal aver-
aging. An intriguing consequence of this analysis (Fig. 2) 
is that signal averaging is more beneficial at later evolu-
tion times than at earlier evolution times. Non-uniform 
signal averaging is an area related to NUS, which has not 
yet been investigated in depth and our results are in agree-
ment with a previous analysis showing a benefit where later 
time points are signal averaged more than early time points 
(Hodgkinson et al. 1996).

The above observations (Fig. 2) are indeed borne out in 
our experiments. We have monitored the spectral recon-
structions by assessing the signal intensity in the 1H-15N 
projection of the 3D experiment, and also by monitor-
ing the signal intensity of known weak signals along the 
indirect 1H dimension (Fig.  3). In our experiments, we 
can clearly see a sharp initial increase in S/N through co-
addition and also the plateauing of improvements beyond 
the co-addition of the first 7 datasets, reaching a point of 
diminishing returns. In practical terms, to increase the 
S/N by a factor of 2 for the initial experiment requires co-
addition of 4 experiments (from 8 to 32 scans); this results 
in ~18 h of additional experiment time. However, to again 
double the sensitivity requires an additional ~86 h of acqui-
sition time (or co-addition of another 12 datasets). There-
fore, for the majority of NMR experiments, extending the 

experiment time beyond ~60 h by signal averaging would 
result in prohibitively long acquisition times (>7 days per 
3D experiment).

Based on these findings, a general approach would be 
to: (i) define an NUS scheme that would ensure sufficient 
resolution in all dimensions, while optimising sensitivity 
per unit time (Rovnyak et al. 2011); (ii) acquire a minimum 
number of scans per increment (in some cases limited by 
phase cycling); (iii) reconstruct the spectrum using a suita-
ble algorithm; (iv) assess the spectrum with respect to some 
spectral qualities, ideally in an automated manner as previ-
ously described (Jaravine and Orekhov 2006); (v.a.) if the 
data is of sufficient quality terminate the procedure (v.b.), if 
data quality is insufficient go to step (ii) and co-add to the 
existing dataset until convergence or (v.c.) terminate data 
acquisition if ~60 h of acquisition time is reached—beyond 
this time the experiment can be considered impractical in 
most cases. This approach would ensure that a minimal 
amount of time is spent on each experiment—while termi-
nating impractical experiments. It should be noted that the 
reconstruction method used in step (iii) may influence the 
sampling schedule used in step (i) and what spectral quality 
is assessed in step (iv), this however does not influence the 
general procedure.

Finally, we sought to assess the effect of parameter 
selection on the reconstructions. The reconstructions so far 
have all been performed according to the AUTO scheme; 
however, a method of parameter selection was recently 
introduced, called MINT, to obtain more linear MaxEnt 
reconstructions. In contrast to these methods, it is also pos-
sible to weight the entropy function from that derived for a 
spin 1/2 system, towards a form that closer resembles the 
Shannon entropy, by reducing the value of the parameter 
def; we refer to this as SHARP, where the AUTO method 
is used to define C0 close to the noise level, but the value 
of def is significantly scaled down (see also the Methods 
section). The value of λ is found in the same way as for 
AUTO, but instead using the scaled def value. The scaling 
of def has a significant effect on both the appearance of the 
spectrum and the convergence of the reconstruction.

In Fig. 4, we sought to demonstrate how scaling of def 
affects the number of iterations (loops) required for conver-
gence and also show the effect of the scaling on the spec-
trum. The same trace as in Fig. 3f is used. The figure shows 
that def can be scaled by 2 or 3 orders of magnitude with-
out significant computational burden, but that beyond this, 
the effect on the reconstruction is small while the effect 
on convergence becomes significant. These results are 
compared to the AUTO and MINT approaches previously 
described (Fig.  4). In the example where def is scaled by 
 10−4, Fig. 4f, the plane used for this comparison converged 
after ~30 iterations. The spectrum as a whole, however, 
included planes that required many thousand iterations to 
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Fig. 3  Sensitivity improve-
ments by co-addition. a The 
15N-1H HSQC spectrum of 
 MALTIRC116A. Representative 
strong and weak resonances 
are highlighted by a green and 
orange box, respectively. b–f 
The reconstruction of 1, 3, 5, 
7 and 9 co-additions of the 
HBHA(CO)NH experiment. 
The traces correspond to the 
indirect 1H dimension (HBHA 
dimension) for the weak peak 
(orange box in a). g–k) Same 
as b–f, but for traces corre-
sponding to the strong peak 
(green box in a). All spectra 
reconstructed using maximum 
entropy reconstruction with 
automated (AUTO) parameter 
selection
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converge requiring very long reconstruction times overall 
(several hours on 24 CPUs). Where def is scaled by  10−3 
the convergence of all the planes is much faster (full recon-
struction in less than 1 h on 24 CPUs). It may be that in 
practice the value of def must be scaled incrementally simi-
lar to what is done with the value of λ in MINT parameter 
selection, however, in our experience most spectra con-
verge rapidly with the  10−3 scaling of def, and we define 
this as the default scaling in SHARP.

The improvements observed, by scaling def, have indeed 
previously been noted, and argued to be a consequence of a 
narrowing of the dispersive imaginary components, leading 
to an increase in the absorptive real part of the spectrum 
(Daniell and Hore 1989). We note that there is some non-
linear scaling in SHARP, where the smallest peak in Fig. 4e 
is ~30% of the height of the tallest peak in that trace, while 
the corresponding value for MINT is 50% (Fig. 4b). In our 
experience the advantages achieved by SHARP in facili-
tating analysis far outweigh any detrimental effects of the 
non-linear behaviour.

Combining NUS with SHARP parameter selection 
for maximum entropy reconstruction and the co-addition 
approach described, we have successfully been able to 
assign the resonances of  MALTIRC116A in the structured 
regions of the protein. The above approach was in our 
experience the only way to access this data, and for very 
challenging systems it may indeed be the only viable 
approach. For the general case, the manual assessment 
of improvements is tedious and would require automa-
tion, but should under such circumstances provide a very 

time-efficient approach to acquisition of lengthy multidi-
mensional experiments.

Concluding remarks

Structural studies of proteins by NMR spectroscopy 
requires acquisition of multiple high resolution, multidi-
mensional experiments, often requiring weeks of acquisi-
tion time. This places proteins that are poorly soluble or 
unstable outside the scope of traditional NMR analysis. 
Here, we have combined non-uniform sampling with itera-
tive data acquisition, to minimise the time required for indi-
vidual experiments. NUS allows a dataset to be acquired 
with sufficient resolution along all indirect dimensions in a 
very short timeframe (a few hours). The resultant spectrum 
will, for dilute samples, be of insufficient sensitivity for res-
onance assignment or structural characterisation. However, 
multiple such NUS datasets may be acquired and co-added 
until sufficient sensitivity is achieved for analysis. This will 
allow the analysis of proteins that are poorly stable even at 
low concentrations.

We find that for decaying signals, co-addition is par-
ticularly beneficial for increasing S/N for samples at long 
evolution times, whereas for short evolution times, signal 
averaging provides similar gains in S/N as the acquisition 
of additional sample points. At short evolution times, the 
gains in S/N achieved by signal averaging compared to the 
acquisition of additional sample points are far outweighed 
by the beneficial effect of acquiring these additional 

Fig. 4  The effect of parameter 
selection on the reconstruction. 
The traces are taken at the same 
coordinate as indicated in Fig. 3 
b–f. a and b the previously 
reported AUTO and MINT 
approaches to parameter selec-
tion, both preforming similarly. 
c–f The effect of scaling the 
value of def by 1–4 orders of 
magnitude. Scaling beyond 
three orders of magnitude 
results in no observable spectral 
improvements but is associated 
with an increase in computa-
tional time, as indicated by the 
number of iterations required 
for convergence. Scaling of def 
by  10− 3 is defined as Shannon-
weighted augmentation of 
reconstruction parameters 
(SHARP)
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samples, which in linear sampling serve to increase reso-
lution and in NUS serve to reduce sampling artifacts. In 
contrast, at long evolution times signal averaging is the 
only way to increase S/N. These findings suggest that non-
uniform signal averaging approaches may be best applied 
where longer evolution times are signal-averaged more than 
early time points. We, further, introduce a new automated 
parameter selection procedure for maximum entropy recon-
struction that can significantly aid analysis of noisy spec-
tra and implement its use in the previously described auto-
mated script generator (Mobli et al. 2007).

Finally, we note that the example shown here required 
a total ~50  h of acquisition time to yield sufficient sensi-
tivity for assignment of the sidechain Hα/Hβ atoms of 
 MALTIRC116A. This is a significant time burden and indeed 
a total ~400 h (2.5 weeks) of instrument time was required 
to achieve resonance assignment in the structured regions 
of the protein. This is despite using the very time efficient 
approach described. In the case of MAL, the long time-
frame is justified given the important role of the protein 
and the unique role of NMR in providing insights into the 
redox state and solution structure of the protein. The impli-
cations of our work for the structure and redox state of 
 MALTIRC116A will be reported elsewhere.
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