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Abstract Multidimensional NMR can provide unmatched

spectral resolution, which is crucial when dealing with

samples of biological macromolecules. The resolution,

however, comes at the high price of long experimental

time. Non-uniform sampling (NUS) of the evolution time

domain allows to suppress this limitation by sampling only

a small fraction of the data, but requires sophisticated

algorithms to reconstruct omitted data points. A significant

group of such algorithms known as compressed sensing

(CS) is based on the assumption of sparsity of a recon-

structed spectrum. Several papers on the application of CS

in multidimensional NMR have been published in the last

years, and the developed methods have been implemented

in most spectral processing software. However, the publi-

cations rarely show the cases when NUS reconstruction

does not work perfectly or explain how to solve the

problem. On the other hand, every-day users of NUS

develop their rules-of-thumb, which help to set up the

processing in an optimal way, but often without a deeper

insight. In this paper, we discuss several sources of prob-

lems faced in CS reconstructions: low sampling level,

missassumption of spectral sparsity, wrong stopping

criterion and attempts to extrapolate the signal too much.

As an appendix, we provide MATLAB codes of several CS

algorithms used in NMR. We hope that this work will

explain the mechanism of NUS reconstructions and help

readers to set up acquisition and processing parameters.

Also, we believe that it might be helpful for algorithm

developers.

Keywords Non-uniform sampling � CLEAN � Iterative

soft thresholding � Iteratively re-weighted least squares �
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Introduction

The role of multidimensional NMR spectroscopy in the

progress of biomolecular studies cannot be overestimated.

The effectiveness of NMR is a fruit of decades-long efforts

to improve spectrometer hardware, pulse sequences, sam-

ple preparation methods and, last but not least, signal

processing techniques. Among the latter ones, non-uniform

sampling (NUS) has become a standard solution to reduce

data collection times.

To describe how NUS processing works, let us turn to

linear algebra terms.

A usual signal processing task in NMR is to find the

spectrum x of a measured FID signal y by solving the

system of equations

Fx ¼ y; ð1Þ

where F is an inverse Fourier transform matrix. Conven-

tional sampling fulfilling the Nyquist theorem (Nyquist

2002) corresponds to the full-rank square matrix F, and the

number of unknowns matching the number of equations
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jxj ¼ jyj. When sparse non-uniform sampling is employed,

a shorter vector ~y is acquired. Square inverse Fourier

transform matrix F in Eq. (1) is then replaced with a

rectangular one, denoted ~F. The new system of equations,
~Fx ¼ ~y, becomes underdetermined (jxj[ j~yj) and can be

solved only under certain additional assumptions. Numer-

ous reconstruction methods exploiting NUS developed

over the years used various kinds of assumptions, e.g.

maximum entropy of x (Hoch and Stern 2001), knowledge

on empty regions in a spectrum (Matsuki et al. 2009) or

models of a spectrum (Orekhov and Va 2011). Effective

alternatives to NUS involved radial sampling approaches

(Coggins et al. 2010) and non-FT methods for conven-

tional sampling (Zhang and Brüschweiler 2004; Man-

delshtam 2000).

Compressed sensing (CS), gaining popularity in NMR in

recent years (Kazimierczuk and Orekhov 2011; Holland

et al. 2011), is based on NUS and assumes that the spec-

trum is sparse, i.e., the number of significant points (K) is

limited comparing to the size of full sampling/spectrum

grid (n). Then, spectrum x is found by ‘p-norm (0\p� 1)

minimization:

argmin
x2Cn

jj ~Fx� ~yjj‘2
þ kjjxjj‘p ð2Þ

or

arg min
x2Cn

kxk‘p subject to k ~Fx� ~yk‘2
� �: ð3Þ

It can be shown that for x� being a solution of (3) for some

�, there exists certain k for which x� is also a solution of

(2). Conversely, if x� solves (2) with a certain k, then there

exists � such that x� solves (3) [see Theorem B.28 in

(Foucart and Rauhut 2010)].

Cândes et al. (2006a) have shown that the ‘1-norm con-

straint [p ¼ 1 in (3) and (2)] allows to find the sparsest

spectrum that matches the experimental data ~y. This works

equally well for p\1) (Foucart and Rauhut 2010, Proposi-

tion 3.2). A strictly sparse x is reconstructed perfectly from

the number of sampling points of the order of Klog(n/K),

where n is the full grid size, K denotes the number of non-

zero points (Foucart and Rauhut 2010). The same applies to

K highest points of approximately sparse spectra (Candès

et al. 2006a). The latter statement is of crucial importance for

the case of NMR. NMR spectra, though rarely being strictly

sparse (a Lorentzian peak assymptotically approaches zero,

but is never equal to it), are often approximately sparse: the

number of points in a spectrum contributing to meaningful

intensities is much less that the number of points contributing

to noise. In this case, we can still successfully use CS

approaches in NMR. The assumption of the sparsity of x is

more appropriate here if the imaginary part of a spectrum is

zeroed by Virtual Echo (Mayzel et al. 2014), or simply the

real part of a spectrum is taken as the second term of Eq. (2)

(Stern and Hoch 2015).

Out of the algorithms proposed to solve Eq. (2), iterative

soft thresholding (IST) (Kazimierczuk and Orekhov 2011;

Hyberts et al. 2012b) with optimizations (Sun et al. 2015)

and iteratively re-weighted least squares (IRLS) (Kaz-

imierczuk and Orekhov 2011) are worth mentioning.

Sparsity of a spectrum is also implicitly assumed in various

modifications of the CLEAN algorithm (Barna et al. 1988;

Kazimierczuk et al. 2007a; Coggins and Zhou 2008; Sta-

nek and Koźmiński 2010a; Kazimierczuk and Kasprzak

2015). Recent algorithms adapted to exponentially decay-

ing signals are also highly promising (Qu et al. 2015).

For strictly sparse signals, the result of ‘1-norm mini-

mization is known to be equivalent to the decomposition of

the signal in an overcomplete basis (Chen et al. 2001). This

resembles known singular value decomposition approach

that was used for general spectral analysis prior to CS

developments, as well as for sparsity-enhancing FID signal

processing [e.g. de-noising (Fedrigo et al. 1996), solvent

suppression (Zhu et al. 1997), signal extrapolation

(Barkhuijsen et al. 1985)]. The invention of IST, which

also solves the ‘1-norm minimization problem (Stern et al.

2007), allowed to significantly decrease the computational

complexity of the procedure. Moreover, not only strictly

sparse cases, but also approximately sparse ones (NMR

spectra among them) can often be effectively treated by

this approach.

In the present paper we study conditions under which

popular CS algorithms yield wrong reconstructions in

NMR: either ignore peaks which should be present in a

spectrum or produce false artificial peaks or peak splittings.

So far, this topic has rarely been extensively discussed,

especially in a comparative manner. Our goal is to show

similarities between various CS methods, provide simple

explanations of spectral distortions and ways to correct

them. The reader is encouraged to verify the statements

using the MATLAB codes provided as a Supplementary

Material.

Methods

This section presents definite CS reconstruction methods

and experimental procedures used to verify them.

For the considerations below we will keep the following

notations: y is a measurement vector acquired with full

sampling, ~y is a measurement vector acquired with NUS

(shorter than y, with certain data points skipped). Let us

also introduce vector ~y0 for NUS, of the same size as a fully

sampled one, but with omitted data points set to zero.

As an introduction, we will explain the general principle

of all CS reconstruction methods in terms of ‘‘artifact
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cleaning’’. The FT of ~y0, being a starting point of most of

CS algorithms, differs from a perfect spectrum of full data

y by the presence of artifacts. The artifacts are the effect of

the convolution of a perfect spectrum with FT of a sam-

pling schedule. The latter FT is often called point spread

function (PSF) (Kazimierczuk et al. 2007a; Hyberts et al.

2012a; Maciejewski et al. 2009). In case of NUS, the

artifacts resemble noise, while in case of more regular

sampling schedules [e.g. radial (Marion 2006), spiral

(Kazimierczuk et al. 2006) or concentric (Coggins and

Zhou 2007)] they take more regular form [see (Kazimier-

czuk et al. 2007a) for examples]. Strong artifact patterns

originating from strong peaks can cover small resonances.

Thus, it is usually desirable to clean them. Most popular CS

methods iteratively deconvolve the spectrum from the

artifact pattern.

These ‘‘NUS artifacts’’, that are intuitively understand-

able for an NMR spectroscopist, have much in common

with the mathematical concept of matrix coherence that

underlies the CS theory. The coherence of an undersampled

FT matrix ~F is defined as a maximum among scalar

products of all pairs of its columns f [see also Definition

5.1 in (Foucart and Rauhut 2010)]:

lð ~FÞ :¼ max
i2½n�

max
j2½n�nfig

jhf i; f jij ð4Þ

where ½n� ¼ 1; 2; . . .; nf g. Let us note that the coherence of

a matrix ~F is equal to the highest artifact in PSFðxÞ, i.e.,

maxx 6¼0 jPSFðxÞj.
A more general concept of ‘1-coherence, or s-column-

coherence (Definition 5.2 in Foucart and Rauhut 2010),

predicts the worst-case artifact maximum resulting from

the overlap of many PSFs with all possible relative posi-

tions. In other words, it gives the estimation for the highest

artifact in a spectrum with s peaks at any positions:

lsð ~FÞ :¼ max
i2½n�

max
S�½n�nfig;jSj � s

X

j2S
jhf i; f jij ð5Þ

The iterative deconvolution of the artifact pattern is

more effective, if lsð ~FÞ is small. For example, the theory

guarantees, that one of the simplest CS algorithms,

orthogonal matching pursuit (described below) reconstructs

every vector x with s non-zero elements after at most s

iterations if:

lsð ~FÞ þ ls�1ð ~FÞ\1 ð6Þ

[see Theorem 5.14 in (Foucart and Rauhut 2010)]. Exper-

imental NMR signals, due to Lorentzian peak shapes, are

not strictly sparse. In addition, they contain noise. Thus, the

usability of lsð ~FÞ is limited. However, the general rule,

which binds the reconstruction performance with the arti-

fact level in the direct FT of experimental data ~y, is true. It

is generally recommended to have a look at the spectrum

with artifacts before performing NUS reconstruction, to see

how difficult it will be, and thus how credible the result

might be.

Compressed sensing algorithms

CLEAN and orthogonal matching pursuit (OMP)

A predecessor of orthogonal matching pursuit (OMP)

algorithm has been known under the name of CLEAN in

astronomy since 1974 (Högbom 1974). In 1988 (Barna et al.

1988), it was used in 2D NMR experiments for the first time,

and was later improved (Kazimierczuk et al. 2007a; Coggins

and Zhou 2008; Stanek and Koźmiński 2010a; Kazimierczuk

and Kasprzak 2015). CLEAN belongs to a group of greedy

CS methods, which means that it solves a global problem by

making a locally optimal choice in each iteration. At first, we

will describe its most basic version, known in CS literature as

matching pursuit (Mallat 1993).

The procedure of the algorithm is illustrated in Fig. 1. At

the starting point (the first iteration), the sought vector x is

set to zero. At each iteration, the global maximum of the

spectrum with artifacts (Fourier transform of ~y0) is found. It

is added to x (step (1) in Fig. 1). Then, the inverse FT of the

updated x is taken (step 2). Data points corresponding to

omitted measurements are set to zeros in this time-domain

reconstruction (step 3). The result is subtracted from ~y0

(step 4). The FT of this difference will give the updated

spectrum with artifacts. At this point the next iteration

begins. After a sufficient number of iterations, the output x,

i.e., the reconstructed spectrum, will contain meaningful

peaks, but not artifacts.

The difference between OMP and CLEAN is that in

OMP the heights of all peaks acquired in x are redefined at

each iteration (which corresponds to the orthogonal pro-

jection of the signal ~y onto a subspace spanned by the

columns of ~F corresponding to the positions of the peaks

found so far, hence the name orthogonal matching pursuit),

while in CLEAN the height of once-found peak is pre-

served throughout all iterations.

A more rigorous description of OMP is given in Algo-

rithm 1. The set of indices that determine non-zero com-

ponents of sparse vector x is called the support of x. Here

we will denote it as I ¼ supp x.

Two types of stopping criteria are commonly used in

OMP and CLEAN. It is either the norm of the residual �

(the difference between initial ~y and ~Fx; � should be set

equal to the ‘2-norm of noise in order to provide an optimal

output) or the maximum number of iterations (equal to the

maximum number of non-zero components in x). In

Algorithm 1, both criteria are applied.
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Iterative soft thresholding

As pointed out by Sun et al. (2015), in NMR literature there

are two variants of the CS algorithm referred to as iterative

soft thresholding (IST). One keeps the balance between the

accordance with the data and sparsity, while the other

enforces strict accordance with the measured data. The

former was used in e.g. (Drori 2007; Hyberts et al. 2012b)

and in recent versions of CS module in mddnmr software

(Orekhov et al. 2004–2016), while the latter e.g. in Sun

et al. (2015), Stern et al. (2007), and early works of our

group (Kazimierczuk and Orekhov 2011). After Sun et al.,

we will call the first one IST-D and the latter IST-S.

IST-D is based on a similar idea as CLEAN, but, instead of

selecting one highest point at each iteration, all points above a

definite threshold are selected. As stated by Drori (2007),

IST-D is equivalent to solving Eq. (3) with p ¼ 1. The

scheme for this algorithm is presented in Fig. 2 and in

Algorithm 2. Steps (2)–(4) are the same as in CLEAN

(compare Figs. 1, 2), and only step (1) differs. The output here

consists of the sum of thresholded spectra from each iteration.

Similarly to CLEAN, the constraining parameter � enters

Algorithm2 as astopping criterion for the main loop. The smaller

� in Algorithm 2, the better the agreement of ~Fx with the mea-

surement ~y, and the less sparse the output x of Algorithm 2.

Fig. 1 Overview of the CLEAN

algorithm. Steps marked (1)–(4)

described in the main text

Algorithm 1 OMP
Input:
– measurement matrix F̃ ∈ Mm×n(C)
– measurement vector ỹ ∈ Cm

– accuracy parameter 0
– maximum number of iterations Niter

Ouput:
– x ∈ Cn

Initialization:
– I = ∅, x = 0

The main loop:
for k ∈ 1 : Niter do

if ỹ − F̃ x 2 ≥ then
I = I ∪ { argmax

j∈{1,2,...n}
|F̃ (ỹ − F̃ x)j |}

xk = argmin
supp(z)⊂I

ỹ − F̃ z 2

else
Break

end if
end for

Algorithm 2 IST-D
Input:
– measurement matrix F̃ ∈ Mm×n(C)
– measurement vector ỹ ∈ Cm

– accuracy parameter 0
– maximum number of iterations Niter
– relative threshold τ

Ouput:
– x ∈ Cn

Initialization:
– x0 = 0, t = τ · | max (F̃ x) |

The main loop:
for k ∈ 1 : Niter do

if ỹ − F̃ x 2 ≥ then
xk = xk−1 + δt(F̃ ∗(ỹ − F̃ xk−1))
Possible modification: τ = τ · Niter−k

Niter

t = τ · | max (F̃ xk) |
else

Break
end if

end for
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Another version of the algorithm, IST-S, is presented

in Fig. 3. The difference between the two IST versions is

in steps (3)–(4). After the inverse Fourier transform of

updated x, measurement points omitted in NUS are not

set to zeros, but their values are added to ~y0 (initial zeros

in ~y0 are substituted with new values). Values of actually

measured points are, on the contrary, kept constant

throughout the procedure. The omitted measurements

only are thus reconstructed in this version, whereas the

measurements actually taken are not modified. The final

iteration ends with the replacement step.

As shown by Stern et al. (2007), IST-S corresponds to

solving Eq. (2) by conjugate gradient search. The two steps

of the procedure, thresholding and replacement, correspond

to the descent along the gradient of the second and the first

term of the minimized function (Eq. 2). The assumption

about the experimental error (noise) is implicitly contained

in k, a parameter of sparsity/data agreement balance

introduced in Eq. 2.

The output of IST-S, according to Stern et al. (2007),

should be the spectrum acquired at a certain number of

iterations (enough for convergence) after the step (1), i.e.

thresholding. It is also worth mentioning that then IST-S

and IST-D converge to the same output. In practice,

however, it is possible to perform the iteration to the

end, i.e., carry out steps (2) and (3) as well, and take the

FT of the result in step (3) as an output. In this case the

exact data agreement with the measured data points of

the FID is kept, and only the non-measured points are

reconstructed. Then, the output of IST-D and IST-S

differs.

Algorithm 3 IST-S
Input:
– measurement matrix F̃ ∈ Mm×n(C)
– measurement vector ỹ ∈ Cm

– accuracy parameter 0
– maximum number of iterations Niter
– relative threshold τ

Ouput:
– x ∈ Cn

Initialization:
– x0 = 0, t = τ · | max (F̃ x) |

The main loop:
for k ∈ 1 : Niter do

xk = δt(xk−1 + F̃ ∗(ỹ − F̃ xk−1))
Possible modification: τ = τ · Niter−k

Niter

t = τ · | max (F̃ xk) |
end for

Iterative re-weighted least squares

Iterative re-weighted least squares (IRLS) (Candès et al.

2008) reformulates the sparse reconstruction task (2) or (3)

into regularized least-squares minimization problem. The

Table 1 summarizes various least squares problems and

their closed-form solutions. The standard least squares

Fig. 2 Overview of the IST-D

algorithm solving the problem

given by Eq. 3. Steps marked

(1)–(4) described in the main

text
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procedure is applied when the number of equations (i.e.,

the number of rows of the measurement matrix A in the

first row of Table 1) exceeds the number of unknowns. For

NMR signal processing it never happens: the least-squares

problem has infinitely many solutions, and each of them

zeros the minimized function. However, the least squares

problem can be uniquely solved in this case under some

additional assumptions about the solution. One type of

assumption (see the second row of Table 1) requires the

vector satisfying the constraint ~Fx ¼ ~y to have the smallest

possible ‘2-norm. Another common type of assumption,

known as Tikhonov regularization, is particularly useful

when the measurements are corrupted by noise. In this case

the ‘2-norm constraint is also employed. We present a

closed form solution for this problem in the third row of

Table 1 (note that it can be viewed as a modification of the

solution in the second row of Table 1).

The solution of Tikhonov regularization problem is not

sparse: it can be shown that ‘p-norms with p[ 1 do not yield

sparse solutions [for simple example, see (Urbańczyk et al.

2016)]. However, the problem can be modified by

introducing ‘p-norm with arbitrary 0\ p� 1, and thus

ensuring that the spectrum is sparse. In this case, the problem

does not have a closed-form solution, but has to be solved

iteratively. At each iteration, the solution x provides the

weights di ¼ xij jp�2
for the next iteration. They form the

diagonal weight matrix W2 ¼ diagðd1; d2; . . .Þ. Through this

iterative process, the kxkp‘p norm is approximated by the

weighted ‘2-norm kWxk2
2. After sufficiently many iterations,

we get x which approximates the solution of (2).

The IRLS implementation uses two positive parameters

denoted by e andk. The first parameter e takes into account the

fact that some coordinates of x can be equal to zero (which

makes the weights wi ¼ xij jp�2
ill-defined). The second

parameter k balances the agreement of the solution x to the

measurement data and the sparseness of x. A remarkable

modification of IRLS uses a third parameter d corresponding

to a small decrease of p in each iteration (Yagle 2009). After

k � 1
d iterations, we get an approximate solution x of ‘0-op-

timization problem. The implementation of the d-modified

version of IRLS is described in Algorithm 4.

Fig. 3 A scheme of IST-S algorithm solving problem given by Eq. (3). Steps marked (1)–(3) described in the main text

Table 1 Least squares

problems: standard least-

squares, Tikhonov

regularization and re-weighted

regularization

Name Problem Minimized function Solution

Least squares minx jjAx� yjj2 jjAx� yjj2‘2
x ¼ ðATAÞ�1ATy

Least squares reg. ~Fx ¼ ~y
min jjxjj2‘2

�
jjxjj2‘2

x ¼ ~FT ð ~F ~FT Þ�1~y

Tikhonov reg. jj ~Fx� ~yjj‘2
� �

min jjxjj2‘2

(
jj ~Fx� ~yjj2‘2

þ kjjxjj2‘2
x ¼ ~FT ð ~F ~FT þ kIÞ�1~y

Re-weighted reg. jj ~Fx� ~yjj‘2
� �

min jjWxjj2‘2

(
jj ~Fx� ~yjj2‘2

þ kjjWxjj2‘2
x ¼ W�2 ~FT ð ~FW�2 ~FT þ kIÞ�1~y
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Low-rank reconstruction

In the general problem of compressed sensing, the assump-

tion that the sought-for spectrum is sparse can be expressed

in various ways. In the algorithms described above, sparsity

implied that most of the spectrum components are close to

zero. Now, we will present a method exploiting another

approach to sparsity: as few peaks in the spectrum as pos-

sible. The method is referred to as low-rank reconstruction

and was introduced into NMR by Qu et al. (2015). Within the

framework of this approach, a spectrum consisting of one,

possibly broad, Lorentzian peak and thus having many non-

zero components will theoretically be considered strictly

sparse, unlike in previous methods. One way to quantify the

number of peaks in a spectrum is to calculate the nuclear

norm of a Hankel matrix made up of the FID signal. Hankel

matrix is a matrix of the following form:

Hðf Þ ¼ Rf ¼

f1 f2 f3 . . . fQ

f2 f3 f4 . . . fQþ1

..

. ..
. ..

. . .
. ..

.

fn�Q fn�Qþ1 fn�Qþ2 . . . fn�1

fn�Qþ1 fn�Qþ2 fn�Qþ3 . . . fn

2

66666664

3

77777775

;

ð7Þ

where fi is the i-th measurement point of the fully sampled

FID (i runs from 1 to n). The nuclear norm, denoted as

jj:::jj�, is the sum of singular values of a matrix. Thus, the

problem of sparse reconstruction can be formulated as:

min
x
ðkRxk� þ aky � Uxk2

2Þ: ð8Þ

R here is the operator that rearranges x into a Hankel

matrix. The number Q of its rows should be from 2 to

n� 1. In practice, Q should be chosen so that it is bigger

than the expected number of meaningful peaks in the

spectrum.

Singular values are an analog of eigenvalues for non-

square matrices: they are square roots of eigenvalues of

HTH (and equally of HHT ). It can be shown that the

number of non-zero singular values of matrix H is equal to

the number of linearly independent rows of this matrix.

The latter, in its turn, is equal to the number of decaying

oscillations of definite frequencies in the FID (due to the

autoregressive properties of the FID also exploited in linear

prediction methods)—in other words, to the number of

Lorentzian peaks in spectrum of x. Thus, when the sum of

singular values of the FID Hankel matrix is minimized, the

number of peaks in the spectrum is minimized as well [see

(Qu et al. 2015)].

U in (8) is an operator that selects the points actually

sampled in the experiment from the full FID vector x.

Notably, the reconstruction procedure is performed exclu-

sively in the time domain. Thus, the output of the algorithm

will not be the reconstructed spectrum, but the recon-

structed FID.

a in (8) is the data agreement parameter which defines

the balance between the data agreement and the sparsity of

x.

For a general outline of the low-rank matrix comple-

tion method it is enough to state the following steps: (1)

the initial solution is constructed as x ¼ UTy; (2) Hankel

matrix of the form (7) is constructed out of this solution;

(3) the nuclear norm (the sum of singular values) of this

matrix is minimized, balanced with a data agreement

term according to (8). This final step is realized by

thresholding the singular values of this matrix. That is,

all singular values lower than some definite threshold are

set to zero (soft thresholding).

For a more detailed and formal description, it should be

mentioned how the third step is exactly realized. It is done

by:

• transforming the unconstrained minimization into the

constrained one with the help of a new variable Z, and

adding Lagrangian multipliers D:

max
D

min
x;Z

ðkZk� þ aky � Uxk2
2 þ hD;Rx� ZiÞ:

ð9Þ

Here h::: ; :::i is the real part of the inner product of

two matrices;

• using the augmented Lagrangian with a parameter

b[ 0:

max
D

min
x;Z

ðkZk� þ aky � Uxk2
2 þ hD;Rx� Zi þ bkRx� Zk2

FÞ;

ð10Þ

Algorithm 4 IRLS
Input:
– measurement matrix F̃ ∈ Mm×n(C)
– measurement vector ỹ ∈ Cm

– weight parameter ε > 0
– iterations parameter δ
– agreement with data parameter λ

Ouput:
– x ∈ Cn

Initialization:
– x = F̃

T
(F̃ F̃

T
+ λI)−1ỹ

The main loop:
if k ≤ 1

δ
then

D = diag(d1, d2, . . . , dn) where di =
1

|xi|1+kδ + ε

x = D−1F̃
T
(F̃D−1F̃

T
+ λI)−1ỹ

end if
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where k:::kF is the Frobenius norm of a matrix:

kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼1

Pn

j¼1

jMijj2
s

;

• solving (10) with the gradient ascent method with

respect to D, with a step size s.

During the last step, the necessity to threshold the singular

values of H arises. The exact solution to the problem as

described in Qu et al. (2015) is presented in Algorithm 5.

Algorithms performance: theoretical outlook

The real efficiency of the particular NUS reconstruction

program is as much dependent on the principles of the core

algorithm as on other factors, such as automatic setting or

optimal hard-coding of parameters, etc. Nevertheless, some

summary of the theoretical facts about the aforementioned

algorithms can be given:

• The CLEAN algorithm is the fastest, but fails in case of

spectra with a high dynamic range of peak intensities,

unless modified (Stanek and Koźmiński 2010a; Cog-

gins and Zhou 2007). Its efficiency relies strongly on

the validity of the stopping criterion.

• IST is somewhat slower but effective even for NOESY

spectra. Based on FFT, it does not have high numerical

requirements and can converge very rapidly if opti-

mized (Sun et al. 2015).

• IRLS has higher numerical requirements than IST, as it

involves matrix inversion, which has to be stored in the

memory. It is typically faster than IST only for small 2D

datasets, with numerical requirements rising with the

number of time-domain points to power 3. However, it

can provide better reconstructions at low sampling levels

(Kazimierczuk and Orekhov 2012), which is in line with

observations from other fields (Chartrand 2007).

• The low-rank method is theoretically best adapted to

NMR spectra, as the FID signal becomes strictly sparse

when put into a Hankel matrix. So far, however, the

possible advantages of the low-rank method over

classical CS approaches have been shown only on

simulations (Qu et al. 2015). Current implementations

of the low-rank method are limited to 2D spectra and

are slower than IRLS.

Experiments

We have applied the CS algorithms described above to

various kinds of 2D and 3D spectra. In particular, we have

been interested in practical aspects of the reconstruction:

the minimum level of sampling sparseness providing good

quality spectra and its dependence on the size of the full

sampling grid; the consequences of missetting of parame-

ters (sparsity constraint) and attempts to extrapolate the

signal using CS methods.

Algorithm 5 Low-rank matrix completion
Input:
– undersampling scheme U ∈ Mm×n(C)
– measurement vector y ∈ Cm

– number of columns in Hankel matrix Q (1 < Q < n). Operator R rearranges x into Hankel matrix
H(n−Q+1)×Q : Rx = H.

– data agreement parameter α > 0
– parameter for augmented Lagrangian β > 0
– step size τ > 0
– tolerance of convergence η > 0

Initialization:
– D(n−Q+1)×Q = 1 (lagrangian multiplier)
– Initial solution x = UTy
– Z = Rx
– xlast = x
– Δx = 2η

The main loop:
while Δx ≥ η do:
– x = (αUTU + βRT R)−1[αUTy + βRT (Z − D

β
)]

– Z = S 1
β
(Rx+ D

β
). S 1

β
is the operator of soft thresholding of matrix H singular values with the threshold

of 1
β
.

– D ← D + τ(Rx − Z)
– Δx = xlast−x

x

end while
Output: x
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Sampling schedules used to provide NUS data below are

constructed by selecting a given number of indices m out of

the full grid n with uniform probability.

Small molecule spectra

Three samples were prepared. The first sample was pre-

pared by mixing 10.8 mg of glucose in 600 ll D2O. The

second sample contained 20.52 mg of maltose in addition

to 10.8 mg of glucose in 600 ll D2O. Similarly, the third

sample contained 9mg of xylose in addition to 20.52 mg of

maltose and 10.8 mg of glucose in 600 ll D2O. Thus, the

concentration of all compounds was 100 mM.

The experiments were performed on an Agilent

600 MHz DDR2 NMR spectrometer equipped with a tri-

ple-resonance HCN probe. All the measurements were

performed at 298 K. The experiments were performed with

conventional 13C HSQC pulse sequence with no multi-

plicity editing. Hard pulses of 8 ls for 1H and 17.1 l for
13C were used. The spectral widths were 30,166 Hz (13C)

and 9,615 Hz (1H). An interscan delay of 2 s was used. The

sampling was performed with 512 points with two scans

per point. The NUS datasets were created by taking the

subsets of the data from the full dataset. For tests of sam-

pling sparseness, the IRLS algorithm with 20 iterations was

used for the reconstruction at sampling levels from 16 to

512 points (Kazimierczuk and Orekhov 2011). IRLS was

chosen taking into account the considerations given above

in the ‘‘Algorithms performance—theoretical outlook’’.

Additionally, a NOESY spectrum of the aforementioned

mixture of glucose, maltose and xylose was measured

using a conventional pulse sequence and a full sampling

grid of 512 points in the indirect dimension. The spectral

widths were set to 9615.384 Hz in both dimensions. Four

points per scan were used with an interscan delay of 2 s.

The mixing time was kept at 0.2 s.

Protein spectra

Protein experiments were performed on double-labeled

SH3 domain of alpha spectrin protein from chicken brain

(1mM protein sample in 10/90 % D2O=H2O, 10 mM

sodium citrate, 0.02 % NaN3, pH 3.5 obtained from Giotto

Biotech). Measurements were performed on a Varian

700 MHz DDR2 spectrometer equipped with a triple-res-

onance room-temperature HCN probe at 298 K.

For the signal extrapolation test, the 15N HSQC pulse

sequence was used (Kay et al. 1992) with 1 s recycle delay,

8 scans and 2056 points in the indirectly measured

dimension.

For the test of minimum sampling sparseness, the HSQC

experiment was repeated with 128 sampling points and 4

scans. The 3D HNCO experiment was run on the same

sample with 128 points in 15N dimension and 64 points in

CO dimension. The IRLS algorithm with 20 iterations was

used for the reconstruction at sampling levels differing by 5

points between 15 and 125 NUS points for the HSQC and

15 to 900 NUS points for the HNCO. The results were

averaged over 20 different sampling schedules for each

sampling level.

Results and discussion

Sampling sparseness

One of the basic theorems of compressed sensing binds the

number of sampling points m needed for a good recon-

struction with a number of significant points in a spectrum,

K [see equation 1.3 in (Foucart and Rauhut 2010)].

Namely, m should be in the order of K logðn=KÞ, where n is

the size of a full grid. In fact, the relation has a probabilistic

form, and it is only a chance of a good reconstruction that

grows with the number of samples.

On the other hand, in the literature on fast NMR

methods as well as in many software packages the term

‘‘sampling sparseness’’ is often used to denote a percentage

of n to be measured. Many authors state that certain min-

imum percentage of n is typically required for the recon-

struction, suggesting the relation in the form of m ¼ a � n
(Sidebottom 2016; Le Guennec et al. 2015; Foroozandeh

and Jeannerat 2015; Hyberts et al. 2014). Such a relation is

in obvious contradiction to K logðn=KÞ. It is true that we do

not know the number of significant points K beforehand;

thus, we do not have the possibility to apply expression

m	K logðn=KÞ directly before NUS measurements to

establish the number of points m that should be measured.

This is the reason why some rules of thumb were devel-

oped, including those of the percentage formulation.

However, one should be careful with them and bear in

mind that they do not reflect the mathematical basis of CS.

This point was also raised by other authors (Hyberts et al.

2014).

Figure 4a shows the spectra of three samples of carbo-

hydrates: one-, two- and three-component mixtures at

various levels of sampling. The data were acquired under

the same experimental conditions, the only thing that dif-

fers is a number of peaks and thus a number of ‘‘signifi-

cant’’ spectral points K. As expected from CS theory, with

growing K, the growing levels of sampling are required to

reconstruct the spectrum. All peaks in one-component

(glucose only) spectrum seem to be reconstructed from

even 22 points, while the three-component spectrum

requires ca. 35 points.
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It is interesting to see what happens when the number of

sampling points is too low to reconstruct all peaks properly.

According to CS theory, even at low m the highest K points

of the spectrum should still be recovered well [see Theo-

rem 1.2 in (Candès et al. 2006b)], while others are sup-

pressed. This can be seen from spectra in Fig. 4. Also, a

glance at residuals plot in Fig. 4 shows that the behavior of

the algorithm for NUS NMR spectra is in line with the

theory. Initially, the curve declines rapidly—this is when

peaks are being reconstructed. For higher sampling levels,

low spectral points (noise) are also being recovered, which

corresponds to the plateau region. The plot is smooth and

goes down monotonically, so it would be possible to

implement the concept of Targeted Acquisition that was

used before for the MDD method (Jaravine and Orekhov

2006); it is based on the on-the-fly processing of the data

during an experiment and stopping it when the number of

spectral peaks stabilizes.

Keeping in mind the impressive results from 2D HSQC

spectra that are well reconstructed from a very small

fraction of the data, let us now turn the results of a similar

reconstruction for NOESY spectrum of the three-compo-

nent sample shown in Fig. 5. Although the plot of the

residuals looks similar for HSQC spectra, much more

NUS points are required to reconstruct small cross-peaks.

This is because the diagonal peak is so much stronger

than off-diagonal cross-peaks and thus has bigger contri-

bution to the sparsity term in the penalty function. The

algorithm starts to reconstruct small peaks only if m is

high enough to well reconstruct more significant non-zero

points of the spectrum, which contribute mostly to the

diagonal peak.

It should also be borne in mind that many of NUS

reconstruction software packages reconstruct indirect

spectral dimensions separately for each point of the direct

dimension (after FT of the direct dimension signal). This

means that the condition Klog(n/K) has to be considered

separately for each ‘‘column’’ of 2D spectral matrices from

Fig. 4. It may happen that for some of them the number of

sampling points is sufficient to reconstruct all the peaks,

while for others it is not. As a result, peaks may be missing

or narrowed in both dimensions.

Another consequence of m / Klogðn=KÞ relation can be

seen if we consider growing spectral dimensionality with-

out changing K, e.g., acquiring 2D HSQC and 3D HNCO

spectrum of the same sample (as shown in Fig. 6). The

number of points contributing to peaks scarcely changes—

only the size of the full grid n differs. However, the

required number of sampling points depends on log(n/K),

so the difference is rather small. This again shows that

referring to relative sampling sparseness expressed in a

percentage of n can really be misleading.
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Fig. 4 Results of experiment checking Klog(n/K) relation. Left panel

sugar region of spectra 2D 13C HSQC of various mixtures of glucose,

maltose and xylose at various sampling levels. Right panel the fidelity

of a reconstruction (residue) vs. the number of NUS points used for

glucose (red), glucose?maltose (black) and glucose ? maltose ?

xylose (green)
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It is interesting to observe how four peaks in HNCO

spectrum are reconstructed consecutively for growing

sampling level, which corresponds to ‘‘stairs’’ on the curve

in Fig. 6.

To conclude this part, setting the sampling level in the

experiment, one should rather compare the absolute num-

ber of sampling points to a number of highest spectral

points to be reconstructed than to the size of the full

sampling grid. For 2D spectra with large grids and low

number of peaks (e.g. broad-band 13C HSQC) or high

dimensional spectra (3D?), this may lead to huge time

savings. For spectra with many peaks differing signifi-

cantly in the intensity (like NOESY), the gain is less. In

other words, if a spectrum is highly compressible, then the

significant reduction of experimental time is possible.

It should also be mentioned that, for an arbitrary spec-

trum, the proportion between m and Klog(n/K) does not

depend on a particular sampling schedule, but on the type

of sampling ((Foucart and Rauhut 2010), Theorem 9.2 on

page 273). Several approaches to provide a better sampling

type for NMR signals have been proposed recently (Eddy

et al. 2012; Hyberts et al. 2010; Kazimierczuk et al.

2008, 2007b). To simplify the discussions in this paper, we

use NUS with uniform density, as described in section

‘‘Experiments’’.

Algorithm parameters

All of the CS algorithms described above require certain

parameters to be set by the user. In particular, the balance

between the sparsity of the result and the accordance with

the measured data (k) and parameters associated with the

thermal noise level (stopping criteria) are worth discussing.

Most often, such parameters are set automatically

according to definite assumptions. Let us, however,

investigate here the consequences of their missetting.

For this aim, we have taken the spectrum of the glucose

and maltose mixture described above. We have selected a

definite row (512 measurement points long) of this 2D

spectrum and undersampled it to 64 NUS points (see

Fig. 7). Then, we applied different algorithms (OMP, 2

versions of IST, IRLS and Low Rank reconstruction)
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Fig. 5 Results of experiment checking Klog(n/K) relation for a

NOESY spectrum with high dynamic range of signal intensities. Left

panel part of 2D NOESY spectrum of a mixture of glucose, maltose

and xylose at various sampling levels. Right panel the fidelity of a

reconstruction (residue) vs. the number of NUS points

Fig. 6 Results of experiment checking Klog(n/K) relation for

growing dimensionality. A narrow region of direct dimension

(8.885–8.845 ppm) was taken for the reconstruction. The fidelity of

a reconstruction (residue) vs. the number of NUS points is plotted for

2D 15N HSQC (blue) and 3D HNCO (red) spectra. The residue was

calculated and averaged for 20 different sampling schedules for each

sampling level
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varying their input parameters. The results are presented in

the figures below.

Here we present qualitative results only. The quantita-

tiveness of CS reconstruction, which is particularly

important e.g. in relaxation studies, has recently been

extensively studied (Stetz and Wand 2016; Linnet and

Teilum 2016). Generally, two factors may disturb the rel-

ative intensities: too low sampling level as compared to the

number of significant points and too high sparsity con-

straint (k) . Both may cause the suppression of lower peaks.

As predicted by the theory, the reconstruction fidelity at

low sampling levels is better when IRLS is applied (Linnet

and Teilum 2016). Even this approach, however, is very

ineffective when compared to model-based MDD method,

which treats serial 2D relaxation data as one object (Linnet

and Teilum 2016). Now, let us turn to qualitative results of

the algorithms described above.

OMP results are presented in Fig. 8. The output spec-

trum depends here solely on the stopping criterion. The

noise level can be used for this aim: when the algorithm

starts producing peaks within the noise level, it should be

stopped. Figure 8 presents the cases of overestimated noise

level, optimally chosen one and underestimated one

(stopping the algorithm too early, optimally and too late,

accordingly).

It is worth mentioning that normally OMP does not

provide smooth peaks but splits a Lorentzian peak into

separate narrow neighbouring peaks. Here, exponential

weighting is applied to the output, which hampers this

effect.

Parameters required for IST are: (1) threshold, and (2)

stopping criterion. We took various thresholds allowing the

algorithm run till convergence (optimal stopping criterion).

The cases of too low threshold, optimal one and too high

one are plotted in Fig. 9. Here, IST-D algorithm is used.

With too low threshold, the reconstructed spectrum,

clearly, has unsuppressed artifacts; with too high threshold

it fails to reconstruct all the peaks. The threshold here

corresponds to the assumed sparsity level.

For IST-S, which keeps the strict accordance with the

measured data, the optimal result is practically the same as

for IST-D. With too low initial threshold, it also has similar

artifacts as in Fig. 9a. However, it is hardly possible to

force IST-S to neglect peaks, as the threshold here has to be

decreased from iteration to iteration.

For IRLS, the parameters are: (1) the sparsity ‘‘weight’’

k, which sets the balance between the sparsity constraint

and the data agreement; (2) the regularization parameter e;
(3) the norm used in Eq. (2). Here, we kept the norm equal

to 0.5 and changed k and e.
As can be seen from Fig. 10a–c, with optimal e, both

optimal and low k give good reconstruction. With too high

k, peaks are neglected, as Fig.10c shows (this happens for

any value of e). With too low e, even optimal k leads

Fig. 7 A row from the glucose-maltose 2D spectrum. Red—512

measurement points. Blue—spectrum with artifacts from NUS data

(64 NUS points zero-filled to give the spectrum of the same length)

(a) (b) (c)

Fig. 8 Results of processing for OMP algorithm: a high stopping criterion (
7 average noise). b Optimal stopping criterion (
3 average noise).

c Low stopping criterion (0:5
 average noise)
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improper reconstruction, as in Fig. 10d. With too high e,
even low k (meaning low sparsity) leads to peak neglection

(Fig. 10e).

For low rank reconstruction, the idea of balancing the

sparsity and data agreement is similar, but, instead of using

the factor k giving the ‘‘weight’’ of the sparsity term, here

factor a for the data agreement term is used. In Fig. 11, two

cases are shown: too low a and the optimal one. When the

data agreement term is underestimated, the algorithm,

despite neglecting some of the peaks, produces a broader

peak instead of two (or more) neighboring ones. Here, it

tried to broaden the peak at 62 ppm to compensate for

neighbouring noise peaks.

Signal extrapolation

To study the effectiveness of signal ‘‘extrapolation’’ using

CS algorithms, the FID from the protein 15N HSQC

experiment described above has been used. A definite

column of the 2D spectrum was selected (2056

(a) (b) (c)

Fig. 9 Results of processing for IST-D algorithm: a Low threshold = 0.25. b Optimal threshold = 0.9. c High threshold = 0.998

(a) (b) (c)

(d) (e)

Fig. 10 Results of processing for IRLS algorithm: a Optimal � ¼ 104 and k = 500. b Optimal � ¼ 104, low k ¼ 10�5. c Optimal � ¼ 104, high

k ¼ 105. d Low � ¼ 10, optimal k ¼ 500. e High � ¼ 105, low k ¼ 10�5
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measurement points long). Then, the FID was truncated to

various lengths, and missing points at the end were

reconstructed with IST-D.

The initial spectrum, as well as the spectra of the FID

truncated to 64 and 1024 points out of 2056 (magnified),

are presented in Fig. 12.

We have applied IST-D with various levels of sparsity k
(i.e., threshold values) to both cases.

The results of reconstruction for the extreme truncation

(64 points) are given in Fig. 13 (black). The non-truncated

FID and its spectrum are plotted in red for comparison.

Expectedly, the result of reconstruction is strongly depen-

dent on setting of k. When the assumed sparsity is too low

(Fig. 9a), the algorithm does not effectively reconstruct the

FID: zero values in the truncated part are not changed

much. Thus the ‘‘sinc’’ artifacts are not suppressed in the

spectrum.

With an optimal level of sparsity, the algorithm does

provide the reconstruction of the truncated part, but, as can

be seen in Fig. 9b, the smaller peak of the spectrum is still

neglected. The decay rate is not estimated quite accurately,

besides, additional modulations of the FID arise. These

modulations, in extreme cases, can be visible as peak-

splittings in a spectrum, which has been reported by Stern

et al. (2007) and Qu et al. (2015).

Finally, with a too high k (Fig. 13c), the reconstruction

is too sparse—a peak is artificially narrowed (no decay in

time domain) and its intensity is lowered.

In neither of the cases is the small peak on the right

properly reconstructed.

To study a case easier for reconstruction, the same FID

was truncated to 1024 measurement points (about half the

full length of the signal). Again, reconstruction with IST-D

was performed.

The results are presented in Fig. 14. This time, IST

algorithm works efficiently for broader range of k—with

optimum similar as before (Fig. 14b), but also very low

(Fig. 14a), though, as can be seen from the FID plot, the

decay rate is a little overestimated there, and also there

are slight additional modulations of the FID in both

cases. High sparsity (Fig. 14c) gives in this case similar

results as to those of the previous case with extreme

truncation: the reconstructed FID has very low decay

rate.

(a) (b)

Fig. 11 Results of processing for low-rank algorithm: a Low a = 20. b Optimal a = 1000

(a) (b) (c)

Fig. 12 A cross-section through indirect dimension of 2D 15N HSQC spectrum (a) and spectra of signal truncated to 64 and 1024 points (blue in

panels (b) and (c), accordingly). c is zoomed-in to visualize ‘‘sinc’’ wiggles
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(a)

(b)

(c)

Fig. 13 Extrapolation of 64 points signal with IST with various thresholds: a Low threshold (0.2). b Optimal threshold (0.99). c High threshold

(0.999)
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The results confirm the observations reported before

(Hyberts et al. 2012b) that 2
 extrapolation using CS

algorithms is rather effective.

It is interesting to note that the main difficulty of CS-

based extrapolation lies in the determination of a decay rate

of an FID signal. Especially for heavily truncated signals,

(a)

(b)

(c)

Fig. 14 Extrapolation of 1024 points signal with IST with various thresholds: a Low threshold (0.2). b Optimal threshold (0.99). c High

threshold (0.999)
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the result depends on a proper adaptation of k. As is known

e.g. from diffusion NMR spectroscopy, the decoding of

exponential decays (inverse Laplace transform) is not a

trivial task (Callaghan 2011). The underestimation of decay

rates leads to peak narrowing or peak splitting, while the

overestimation leads to incomplete reconstruction. Perhaps

some approaches to smoothen the reconstruction, similar to

those known from diffusion spectroscopy (Urbańczyk et al.

2016), or others dedicated to NUS, could be useful (Hy-

berts et al. 2016).

Possible modifications

Several modifications of the CS algorithms discussed

above have been introduced over the years to improve their

effectiveness and make them adapted to NMR spectra.

Below we summarize some of the modifications.

Zero-filling and virtual echo

It is noteworthy that the ‘p-norm used in the penalty function

(2) involves both real and imaginary parts of x. Because the

phase in the indirect spectral dimensions is usually known a

priori, we can assume that the real part gives an absorptive

Lorentzian function under FT, and the imaginary part gives a

dispersive one. For decaying signals, the dispersive peaks

have long ‘‘tails’’, and thus ImðxÞ is far from being sparse.

Thus, the algorithm will strongly tend to minimize the

imaginary part. This often leads to the reconstructed signal in

the form of an ‘‘echo’’: complex FID is combined with its

own conjugated reflection. While the resulting spectrum

contains a suppressed imaginary part and thus is indeed

sparser, the real part is also disturbed. The common trick to

avoid it is to zero-fill the signal twice at the input to the

reconstruction algorithm to provide ‘‘space’’ for the mirror

reflection (Mayzel et al. 2014). At the output, the signal is

truncated back to the original size.

The observation that sparsity-constrained reconstructing

algorithms tend to create an ‘‘echo’’ led to the invention of

‘‘Virtual Echo’’ concept, where the zero-filled signal is

combined with its own conjugated reflection at the input

(Mayzel et al. 2014). In this way, the number of the

unknowns (missing points to be reconstructed) is reduced,

and the effectiveness of the procedure is increased. As

pointed out by Stern adn Hoch (2015), the same benefit can

be achieved by changing the penalty function to use

jReðxÞj‘p instead of jxj‘p .

Automatic setting of sparsity constraint

The need to manually set up a balance k between the data

agreement and the sparsity of the result may be considered as

a difficulty in using CS methods. One of the solutions to solve

it is to use the plot of the value of the first term of functional

(2) vs. its second term for various settings of k (Hansen

1992). The curve is typically L-shaped, and experience

shows that the best k corresponds to the point where the curve

turns from a sharp decrease to a flat line. The approach might

be effective, but computationally demanding, as it requires

many repetitions of the reconstruction process.

Similarly costly, although with a stronger mathematical

basis, is the method of Bregman iterations, where sparsity-

constrained minimization is also carried out several times

with different settings of k (Osher et al. 2005). The pro-

cedure starts from high k, and thus in the first step only the

highest components are found. Then, the signal is updated

by removing these high components, and the minimization

is repeated for lower k. A somewhat simplified version of

Bregman iterations, often applied in multidimensional

NMR due to its robustness, is to change k with every

iteration, starting from very high values (Hyberts et al.

2012b). Nevertheless, even using a constant value of k can

give satisfying results (Hyberts et al. 2012b, 2014).

Adapting greedy methods

Greedy algorithms like CLEAN are rather ineffective in

case of NMR spectra with a high dynamic range of peak

intensities (Coggins et al. 2012). Improvements can be

achieved by adapting the algorithm to operate on peaks

rather than single points i.e. to subtract groups of points in

each iteration, possibly requiring them to form a Lor-

entzian line. The idea was implemented in semi-automatic

program by Kazimierczuk et al. (2007a) and later in other

approaches (Stanek and Koźmiński 2010b; Coggins et al.

2012; Kazimierczuk and Kasprzak 2015).

Noise treatment

The CS signal reconstruction in NMR faces the problem of

noise, which, contrary to the actual signal, is not com-

pressible. Unfortunately, CS algorithms will anyway tend

to seek for sparse, ‘‘peaky’’ representation of noise. To

prevent them from doing so, a stopping criteria (e.g., final

threshold in IST or number of peaks in OMP) or regular-

ization parameters (� in IRLS method) have to be

introduced.

However, it is neither practical nor convenient to require

the assumption of noise level as an input parameter. Thus,

automatic settings are often desirable.

Remedies

The following options can be considered as remedies for

CS reconstruction pitfalls:
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1. Using m / Klogðn=KÞ relation. Given m measure-

ments of FID signal, only K highest spectral points are

properly reconstructed with CS. Cândes et al. proposed

to predict number K from this relation and set the e in

IRLS method to be close to the Kth highest point of the

spectrum. To be more precise, it is proposed to change

e parameter iteratively by putting e ¼ maxfjxðlÞji0 ; e0g,

where:

– jxjðiÞ denotes the decreasing reordering of jxij-
vector;

– i0 ¼ m

4 log n=m
is the formula which is heuristically

justified by m / Klogðn=KÞ relation;

– xðlÞ is the lth approximate to the solution of the

IRLS problem.

[see (Candès et al. 2008)]. One can easily imagine

using a similar approach e.g. in IST, where the

threshold would not be lowered more than below the

Kth highest point.

2. Keeping experimental points unperturbed. This is the

approach used in IST-S. It prevents the algorithm from

‘‘over-iterating’’ leading to false ‘‘noise-peaks’’. The

sparsity of the result depends only on k and not on the

number of iterations.

3. Checking convergence. False ‘‘sparsyfication’’ of the

noise can be avoided by interrupting the reconstruction

procedure once the change in the residual of the

reconstruction is low. Usually, however, the recon-

struction is carried out for each point of the direct

spectral dimension separately. This may lead to peak

shape disturbances along that dimension if the algo-

rithm stops at different stages due to some local

minima.

4. Cross-validation (Ward 2009). Part of the sampling

points (e.g. 25 %) can be used to automatically

validate the result obtained from the rest of the

sampling points at different sparsity levels and to

select the level that fits best. The problem with this

approach is that the part of the data used for cross-

validation is wasted, i.e., it does not contribute to the

final spectrum. Very recently the effectiveness of

cross-validation method has been demonstrated on

NUS NMR data (Wu et al. 2016).

5. Bootstrap (Efron 1982). Data can be divided into

subsets, and a spectrum can be reconstructed from each

of them. False peaks originating from noise or

reconstruction artifacts will appear at different posi-

tions, depending on a sampling schedule, while the

actual resonances will stay constant. Again, the

problem is the sensitivity loss due to the data division,

as well as longer reconstruction times.

6. In case of methods that change experimental points,

the final sparse spectrum may be corrected for possibly

missing peaks and look more natural if the residual of

the reconstruction is re-added to the spectrum. It

should be remembered, however, that when decaying

sampling density is used to improve sensitivity (Barna

et al. 1987), an appropriate scaling factor for the

residual has to be introduced.

Conclusion

Sparsity-constrained reconstructions have dominated the

field of non-uniform sampling in recent years. We have

discussed the properties of these algorithms, in particular

their basic principles and influence of crucial parameters.

The above discussion is definitely not complete, and thus

we encourage readers to experiment with MATLAB codes

of the methods discussed included in the Supplementary

Data. Our intention was to make the example codes as

simple as possible. In fact, the software packages available

on the market contain several additional optimizations and

often automatic setup of many parameters. Still, we find it

didactic to see how the algorithms work in their most

generic versions. We hope that a closer look will explain

some of the mysterious aspects of apparently ’black box’

techniques.
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Lineshapes and artifacts in multidimensional Fourier transform

of arbitrary sampled NMR data sets. J Magn Reson 188:344–356

Kazimierczuk K, Zawadzka A, Koźmiński W, Zhukov I (2007b)
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Stanek J, Koźmiński W (2010a) Iterative algorithm of discrete Fourier

transform for processing randomly sampled data sets. J Biomol

NMR 47:65–77
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