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Abstract Resonance assignment is a prerequisite for

almost any NMR-based study of proteins. It can be very

challenging in some cases, however, due to the nature of

the protein under investigation. This is the case with

intrinsically disordered proteins, for example, whose NMR

spectra suffer from low chemical shifts dispersion and

generally low resolution. For these systems, sequence

specific assignment is highly time-consuming, so the pro-

spect of using automatic strategies for their assignment is

very attractive. In this article we present a new version of

the automatic assignment program TSAR dedicated to

intrinsically disordered proteins. In particular, we demon-

strate how the automatic procedure can be improved by

incorporating methods for amino acid recognition and

information on chemical shifts in selected amino acids. The

approach was tested in silico on 16 disordered proteins and

experimentally on a-synuclein, with remarkably good

results.
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assignment � Amino acid-selective experiments � 13C
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Introduction

Nuclear magnetic resonance (NMR) is the most powerful

method available for studying intrinsically disordered

proteins (IDPs) at atomic resolution. It allows us to obtain a

variety of information, including structural propensities,

dynamics, and interactions with other molecules. But IDPs

are rather difficult objects to study with NMR. The high

mobility of the polypeptide chain results in exceptionally

narrow ranges of chemical shifts. This effect is amplified

by the high incidence of sequential repeats; stretches of

three or four residues of the same type are often present in

IDPs’ sequences. Also, the high abundance of disorder-

promoting amino acids and underrepresentation of others

(Dunker et al. 2008) contributes to low chemical shifts

dispersion. The usually high content of prolines breaks the

chains of sequential connectivities obtained via amide

proton detected experiments. The combination of the above

factors makes the complete sequence-specific resonance

assignment of IDPs a challenging task.

High-dimensional (C4D) experiments (Kazimierczuk

et al. 2013; Nowakowski et al. 2015) enable the spreading

of cross-peaks over a larger spectral space, and thus better

resolution. However, such techniques require the use of

non-uniform sampling (NUS) to accelerate data acquisi-

tion. Several methods for processing NUS data have been

proposed that make it possible to develop experiments of

high dimensionality (Mobli and Hoch 2008; Coggins et al.
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2010; Orekhov and Jaravine 2011; Freeman and Kupče

2012; Hiller and Wider 2012; Kazimierczuk et al. 2012;

Holland and Gladden 2014). These methods have been

applied successfully to IDPs. Efforts have also been made

to develop carbon direct-detected techniques (Bermel et al.

2009; Felli and Pierattelli 2014), which are invaluable

where the fraction of prolines is high or where amide

protons undergo fast chemical exchange (Gil et al. 2013).

Carbon direct-detected techniques also show superior

chemical shift dispersion compared to amide protons-de-

tected experiments (Brutscher et al. 2015). Moreover, these

two strategies can be combined: Several 13C-detected

approaches for high-dimensionality have been proposed

(Nováček et al. 2011, 2012; Bermel et al. 2012b; Nováček

et al. 2013; Bermel et al. 2013; Dziekański et al. 2015).

During the resonance assignment process, the amino

acid types of at least some of the residues must be recog-

nized in order to map the chains of sequentially-linked

residues onto the polypeptide. Given a single uniformly-

labeled protein sample (e.g. without selective isotope

labeling), three main methods are used for this purpose: (1)

using the statistical values of chemical shifts for various

nuclei of different amino acids; (2) using topological

information; and (3) using amino acid type selective

experiments.

Method (1) is widely used as usually it does not require

additional experiments. Cb and Hb chemical shifts, which

are particularly useful for this purpose, are often recorded

within a set of assignment experiments. The statistical

values are available from the Biological Magnetic Reso-

nance Bank (BMRB) database (Ulrich et al. 2008), where

average Cb and Hb chemical shifts for each amino acid are

calculated based on at least a few thousand chemical shifts.

For IDPs, additional statistics are available (Tamiola et al.

2010), which consider not only the residue type but also the

residue’s closest neighbors (i - 1 and i ? 1) and are

therefore more reliable.

In method (2), the detection of some nuclei limits the

range of possible amino acids. For example, the presence

of Cb chemical shift excludes glycine, the presence of HN

chemical shift excludes proline, and the presence of two

different Hbs excludes alanine, isoleucine, threonine, and

valine.

Method (3)—amino acid selective experiments—was

first proposed by Dötsch and his coworkers (Dötsch et al.

1996a, b, c; Dötsch and Wagner 1996). The approach is

based on the triple-resonance CBCA(CO)NH pulse

sequence (Grzesiek and Bax 1992), modified to acquire a

signal for certain topology-selected amino acid types. The

resulting 2D 1H–15N-HSQC-like spectra contain only res-

onances originating from the desired amino acid residues.

This concept has since been extensively developed,

other researchers adding new selection criteria (Feng et al.

1996; Rios et al. 1996; Schubert et al. 1999, 2000, 2001a,

b, c, 2005; Barnwal et al. 2008). The result has been many

different strategies, such as the multiplicity selective in-

phase coherence transfer (MUSIC) approach developed by

Schubert and his collaborators. For selection, several types

of pulse sequence components can be employed, including

multiple quantum filters (for 13CHn or 15NHn), band-se-

lective pulses on 13C and/or 15N (for specific nuclei exci-

tation), delay tuning (for choosing the desired coherence

transfer pathway), and setting an appropriate number of

coherence transfer steps (for choosing side-chains of the

desired length). Instead of selecting specific correlations,

editing can be implemented and combined with the idea of

Hadamard encoding to speed up data collection (Lescop

et al. 2008; Pantoja-Uceda and Santoro 2008; Lescop and

Brutscher 2009; Feuerstein et al. 2012; Pantoja-Uceda and

Santoro 2012). More recently, amino acid selection has

also been incorporated into 13C-detected experiments

(Bertini et al. 2006; Pantoja-Uceda and Santoro 2011;

Chakraborty et al. 2012; Jaipuria et al. 2012; Bermel et al.

2012a).

In the current study we show how different amino acid

recognition methods can be exploited in automatic reso-

nance assignment, and how the completeness and relia-

bility of the assignment can benefit from this type of

information. We present an improved version of the

TSAR (Tool for SMFT-based Assignment of Resonances)

program (Zawadzka-Kazimierczuk et al. 2012) designed

for automatic resonance assignment using experiments of

high dimensionality (C4D). Our improved version

includes the information provided by 13C-detected amino

acid-selective experiments (Bermel et al. 2012a). Addi-

tionally, the IDPs’ chemical shifts’ statistics (Tamiola

et al. 2010) are incorporated to enable more efficient

chain mapping. Finally, we present a small modification

of the 4D HCBCACON pulse sequence (Bermel et al.

2012b) in which peaks of residues possessing a single

aliphatic Cc carbon are of the opposite sign with respect to

that of all other residues.

The approach has been tested in simulations on 16 dis-

ordered proteins and experimentally on a-synuclein pro-

tein, using both 1H-detected (Piai et al. 2014) and 13C-

detected experiments (Bermel et al. 2012b, 2013) as a

source of sequential correlations. To speed up data col-

lection, all spectra were acquired using NUS, making use

of recently developed sampling and processing strategies

(Kazimierczuk et al. 2009; Kazimierczuk and Orekhov

2011). Data from the high-dimensional experiments was

processed using the sparse multidimensional Fourier

transform (SMFT) algorithm (Kazimierczuk et al. 2009),

whereas data from the 2D amino acid-selective experi-

ments was processed using the compressed sensing (CS)

algorithm (Kazimierczuk and Orekhov 2011).
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Materials and methods

All the NMR experiments were performed at 16.4 T on a

Bruker Avance spectrometer operating at 700.06 MHz 1H,

176.03 MHz 13C and 70.94 MHz 15N frequencies, equip-

ped with a 13C cryogenically cooled probehead optimized

for 13C-direct detection. A sample of 1.0 mM uniformly
13C, 15N labeled human a-synuclein in 20 mM phosphate

buffer at pH 6.5 was prepared as previously described

(Huang et al. 2005). EDTA and NaCl were added to reach

the final concentrations of 0.5 and 200 mM respectively,

and 10 % D2O was added for the lock. All experiments

were performed at 285.5 K.

The specific parameters for each amino acid selective

experiment are reported in the original publication (Bermel

et al. 2012a). Those relating to the c-selective-HCBCA-
CON experiment are given in the legend of the figure de-

scribing the pulse sequence (see Figure S1, Supplementary

Material). For 13C band-selective p/2 and p flip angle

pulses, Q5 (or time reversed Q5) and Q3 shapes (Emsley

and Bodenhausen 1992) with durations of 300 and 220 ls
respectively were used, except for p pulses that should be

band-selective on the Ca region (Q3, 860 ls) and for the

adiabatic p pulse to invert both C0 and Ca (smoothed Chirp

500 ls, 25 % smoothing, 80 kHz sweep, 11.3 kHz RF field

strength (Bohlen and Bodenhausen 1993)). The 13C band

selective pulses on Cali, Ca, and C0 were given at the center

of each region, and the adiabatic pulse was adjusted to

cover the entire 13C region.

Decoupling of 1H was achieved with waltz16 (Shaka

et al. 1983) (1.7 kHz) sequences, and decoupling of 15N

with garp4 (Shaka et al. 1985) (1.0 kHz) sequences. Each

experiment was performed in a pseudo 2D mode, with

States method applied in all indirect dimensions to achieve

quadrature detection. All experiments employ the IPAP

approach to remove splitting in the direct acquisition

dimension caused by the homonuclear Ca–C0 cou-

plings (Bermel et al. 2008).

The experimental parameters are given in Table 1. All

experiments were performed using on-grid non-uniform

sampling. The ‘‘Poisson disk’’ sampling scheme (Kaz-

imierczuk et al. 2008) was chosen to generate the time

schedules with RSPack software. All spectra were acquired

using Bruker TopSpin 1.3 software. The experimental data

was converted with nmrPipe (Delaglio et al. 1995) and then

processed using either the Compressed Sensing (Kaz-

imierczuk and Orekhov 2011) IRLS algorithm with an

iteratively changed lp norm (p 1 -[ 0) with 30 iterations

(2D datasets) or the Sparse Multidimensional Fourier

Transform (SMFT) (Kazimierczuk et al. 2009) (4D and 5D

datasets) implemented in the Reduced program. Finally, the

Sparky program (Goddard and Kneller 2002) was used to

display the spectra, and TSAR (Zawadzka-Kazimierczuk

et al. 2012) was used to assign the resonances. The RSPack,

Reduced and TSAR programs are available free of charge

for academic users at http://nmr.cent3.uw.edu.pl/software.

Results and discussion

Methods

The TSAR program (Zawadzka-Kazimierczuk et al. 2012)

was developed to analyze data from experiments of high

dimensionality processed using the sparse multidimen-

sional Fourier transform (SMFT) algorithm (Kazimierczuk

et al. 2009). In this method, instead of computing the full

multidimensional spectrum, a set of 2D cross-sections only

are calculated. This can be done using the peak list of a

lower-dimensional basis spectrum that shares some of the

dimensions with the high-dimensional spectrum. For each

basis peak, a single cross-section can usually be calculated.

Depending on the type of experiment, each cross-section

displays one or more peaks; if the experiment provides

sequential connectivities, some peaks are redundant in the

cross-sections originating from adjacent residues. Impor-

tantly, if several multidimensional spectra have to be

analyzed together, they must all be processed using the

same basis peak list. The strategy for resonance assignment

using this kind of input relies on a comparison of the

positions of peaks, creating chains of cross-sections.

Recognition of the amino acid type of some of the residues

makes it possible to map the cross-sections chains onto the

protein sequence, which completes the assignment. In the

past, TSAR employed just two of the three methods for

amino acid identification described in the Introduction to

this paper, namely (1) BMRB chemical shift statistics for

Cb, Hb, Ca, Ha nuclei, and (2) topological information.

The main goal of the present work was to implement

method (3), i.e. amino acid-selective experiments. Previous

TSAR version only exploited the change of the sign of

peak intensities in the absence of Cb nucleus for glycine

residues, which occurs in experiments where Ca transverse

magnetization evolves for c.a. 1/JCa–Cb. To see if it was

possible to achieve automated assignment of highly over-

lapping IDP resonances, we decided to use 2D spectra with

N and C0 dimensions, which provide superior resolution

and make it possible to detect prolines. Two types of such

spectra are available (Bermel et al. 2012a): CACON-based

and CANCO-based. In the 2D (CA)CON amino acid-se-

lective spectrum, a C0
i-1–Ni peak appears if residue i - 1

is of the specified type. In the 2D (CA)NCO amino acid-

selective spectrum, a C0
i-1-Ni peak appears if residue

i - 1 or residue i is of that type. Comparing the two
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Table 1 Experimental parameters used in the NMR experiments

Spectral widths & maximal

evolution times

No. of

scans

Interscan

delay (s)

No. of

hyper-complex

points

Duration of

experiment

Relative data points

density

(%)

2D A-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

12 1.5 40 55 min 15.6

2D A-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

12 1.5 40 55 min 48.8

2D D-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

8 1.5 40 40 min 15.6

2D D-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8

2D E-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

8 1.5 40 40 min 15.6

2D E-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8

2D FHYW-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

16 1.5 40 1 h, 15 min 15.6

2D FHYW-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

16 1.5 40 1 h, 15 min 48.8

2D G-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

8 1.5 40 35 min 15.6

2D G-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8

2D N-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

8 1.5 40 40 min 15.6

2D N-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8

2D Q-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

100.0 ms

8 1.5 40 40 min 15.6

2D Q-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8

2D S-sel

(CA)CON

8800 Hz

(13C0)
2550 Hz

(15N)

49.8 ms

8 1.5 32 30 min 25.0

2D S-sel

(CA)NCO

8800 Hz

(13C0)
2550 Hz

(15N)

31.8 ms

8 1.5 40 40 min 48.8
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spectra allows us to discriminate C0
i-1–Ni peaks related to

i - 1 or i residues (Fig. 1).

To use such experiments in parallel with SMFT-pro-

cessed high-dimensional data, the basis peaks correspond-

ing to the selected amino acids must be found. This can be

done if the dimensions of the amino acid-selective exper-

iments—in our case amide nitrogen and carbonyl carbon

dimensions—are also present in the basis spectrum. The

basis peak list can then be plotted on the amino acid-se-

lective spectrum and the basis peaks corresponding to the

given amino acid easily identified (Fig. 2). Information on

these basis peaks numbers can then be fed into the TSAR

program to support the assignment process (for the format

of TSAR input files, see Supplementary Material). Of

course, it may happen that two basis peaks show up at the

position of the amino acid-selective spectrum peak, for

example if they are overlapping, or if the amino acid-se-

lective spectrum is not resolved enough. This makes the

task more difficult, but TSAR is still able to manage its

task. As mentioned above, the only requirement for com-

bining SMFT-processed data with the amino acid-selective

data is to have C0 and N dimensions in the basis spectrum.

Therefore, although (CA)CON and (CA)NCO experiments

exploit carbon detection, they can be combined with both

carbon-detected (e.g. with 3D CACON basis spectrum) and

also with proton-detected (e.g. with 3D HNCO basis

spectrum) experiments for resonance assignment, which

makes them even more generally applicable.

In this study we also make use of another method for

obtaining amino acid-related information. We modify the

4D HCBCACON pulse sequence (Bermel et al. 2012b) so

Fig. 1 Analysis of amino-acid selective experiments. As an example,

asparagine-selective 2D (CA)CON (left) and (CA)NCO (right)

spectra are reported. The basis peak list (black dots) is plotted on

top of both spectra. For each C0
i-1–Ni cross-peak, the comparison of

the two spectra allows us to determine if asparagine residue is at

position i-1 or i

Fig. 2 Alanine-selective 2D (CA)CON spectrum (red) with the basis

peak list superimposed (black dots). On the left, the close-up view of

the spectral region inside the blue square is reported. In the example,

during the automatic assignment stage, basis peaks on top of the NMR

signals are known by TSAR to be related to alanine residues. To make

the picture clearer, the number of each basis peak is shown only in the

spectral region extracted on the left

Table 1 continued

Spectral widths & maximal evolution times No. of

scans

Interscan

delay (s)

No. of

hyper-complex

points

Duration of

experiment

Relative data

points density

(%)

4D c-selective-
HCBCACON

8800 Hz

(13C0)
2550 Hz

(15N)

60.4 ms

12,500 Hz

(13Ca,b)

20.5 ms

5000 Hz

(1H)

15.0 ms

4 1.1 1540 28 h 0.051

In all experiments the number of complex points in acquisition dimension was set to 512

Experimental parameters for the 3D (H)CACON, 4D HCBCACON, 5D (HCA)CONCACON, 5D HNCACON, 5D (H)CACON(CA)CON, 3D

BT-HNCO, 5D BT-(H)NCO(CAN)CONNH, and 5D BT-HN(COCAN)CONNH experiments are presented in the original publications (Bermel

et al. 2012b, 2013; Piai et al. 2014)
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that the signs of the cross-peaks depend on the topological

properties of the residue. The delay for Cb scalar coupling

evolution is increased to 21.0 ms (see Supplementary

Material), which allows us to keep the efficiency of the

coherence transfer (additional relaxation losses can be

neglected for IDPs) and at the same time reverse peak signs

for some residues. If a residue i possesses exactly one

aliphatic Cc carbon (E, K, L, M, P, Q, R and T residues),

then the Hi
b–Ci

b peak has the opposite sign to that of all the

other residues. Such zero–one information adds to Cb and

Hb chemical shifts values, which was the only information

provided by the 4D HCBCACON experiment published

earlier (Bermel et al. 2012b). It thus improves the perfor-

mance of the automated assignment. The new pulse

sequence also allows us to unambiguously distinguish

some residues possessing Cb and Hb chemical shifts which

may be not so different: S can easily be discriminated from

T, I can be easily discriminated from L, and V can easily be

discriminated from E, K, M, P, Q, and R. Additionally, the

extension of the Ca/b chemical shift evolution increases the

resolution of that dimension, with consequent benefits for

the comparison of cross-peak spectral positions performed

by TSAR. In the old version, TSAR was prepared for single

amino acid recognition by peak sign, which was used only

for glycine. The current software version accepts sign

change in the presence of a user-defined set of residues.

The final major change enabling more efficient amino

acid recognition in TSAR is to incorporate the statistical Ca

and Cb chemical shift values calculated using a set of IDPs

(Tamiola et al. 2010). TSAR uses statistical chemical shift

values at two stages of the operation: (a) recognition of

possible amino acids for a single plane, before forming

cross-sections chains; and (b) cross-sections chains map-

ping. During stage (a), the working procedure of TSAR

implies that if some chemical shifts exceed the statistical

average with four standard deviations for certain amino

acids, then these amino acids are excluded from the range

of possible ones. During stage (b), if one chain matches in a

few sites or a few chains of similar length fit into one site,

the deviation from the statistical values in units of standard

deviations is calculated, and if the best score is at least

three times smaller than the second best, then the better

chain is assigned. In the new TSAR version, during stage

(b) the chain length is also considered. If up to three Cb

chemical shifts are known, then the better chain is assigned

only if the deviation score is at least ten times smaller than

the second best.

In the previous software version of TSAR, the BMRB

values were used at both stages. In the version of TSAR

presented here, the IDP-specific values (Tamiola et al.

2010) are used at stage (b). Such values cannot be

employed during stage (a) when the neighboring residues

are not yet known, as these values depend on the preceding

and following residue type. Thus, at the stage of amino acid

recognition for a single plane, the BMRB values are still

used. Nonetheless, some IDP-oriented changes were also

made at this stage: It was discovered that for IDPs it is

better to exclude an amino acid if the chemical shift

exceeds two (rather than four) standard deviations. Addi-

tionally, Ca chemical shifts were incorporated for amino-

acid recognition, while previously only glycine residues

could be identified based exclusively on Ca chemical shifts.

Simulations

The new methods of amino acid recognition were tested in

a set of simulations. Our aim was to verify the agreement

of the statistical values used in the new TSAR version with

the real chemical shifts of unstructured proteins. Also, by

using the simulations we wanted to check whether the 4D

c-selective—HCBCACON provided information that

improves the result of the assignment. An additional goal

was to evaluate the effectiveness of incorporating the data

from amino-acid selective experiments.

Sixteen proteins (see Table 2) were chosen from the

BMRB database. Their lengths ranged from 26 to 467

amino-acid residues. Thirteen of them were natively

unstructured, while the remaining three (BMRB IDs 15201,

16626 and 16627) were urea-unfolded proteins. Impor-

tantly, none of the proteins chosen by us, except for a-
synuclein, was used to prepare the IDPs’ statistics (Tamiola

et al. 2010). One of the proteins (BMRB ID 16912) is

partially folded, so in the simulations we just used its

unstructured C-terminal fragment (residues 79Ser-172Lys).

For each of the proteins, peak lists relative to six 13C-

detected experiments were generated using the chemical

shifts deposited in BMRB. The experiments included 3D

CACON, 5D (H)CACON(CA)CON (Bermel et al. 2013),

5D HNCACON (Bermel et al. 2012b), 5D (HCA)-

CONCACON (Bermel et al. 2013), 4D HCBCACON

(Bermel et al. 2012b), and 4D c-selective-HCBCACON.
The peak lists for the 4D and 5D experiments were gen-

erated in a format accepted by TSAR: The positions of the

peaks in the two dimensions not fixed for SMFT only were

given, together with information about the corresponding

basis peak. For all proteins, the data from amino-acid

selective experiments was also generated.

The artificial data was slightly perturbed: The peak

positions were jittered and peak overlap was included. The

latter perturbation in particular was realized in three dif-

ferent ways. First, in high-dimensional peak lists the peaks

of similar coordinates were joined into a single peak.

Second, cross-sections corresponding to overlapping basis

peaks were also overlapping: Peaks originating from both

overlapping basis peaks appeared on both cross-sections.

And third, peak overlap was also considered during the
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generation of data from amino-acid selective experiments,

leading to some ambiguity. The level of perturbations in

each of the above aspects was similar to that found for the

real IDP data (a-synuclein sample), so the quality of data is

similar to the quality of data in the case of real proteins.

In real cases there is an additional source of data

imperfection: The dataset is typically incomplete, i.e. some

peaks are missing. The level of completeness of the data

relates to many factors, including protein concentration,

measurement time, pulse sequence efficiency, relaxation

rates, and exchange rates. For the proteins used in the

simulations, the level of completeness of the data deposited

in BMRB ranged from 84.9 to 100 % of the protein resi-

dues (excluding the first residue, for which there is no basis

peak). The residue was considered to be ‘‘present’’ if all the

chemical shifts of the corresponding basis peak were

known. As a result, for some ‘‘present’’ residues, certain

resonances were unknown.

Several datasets were constructed for each protein. Each

dataset included the basis spectrum 3D CACON and one,

two or three 5D spectra providing the sequential connec-

tivities. Various numbers of linking experiments were used,

due to the fact that the TSAR program forms cross-sections

chains whose lengths depend on the quality of the experi-

ments providing sequential correlations. Thus, the datasets

containing different combinations of such experiments

allow us to evaluate the efficiency of amino-acid recogni-

tion methods for various chain lengths. In datasets A1–A6,

the linking experiment was 5D (H)CACON(CA)CON. In

datasets B1–B6, they were 5D (H)CACON(CA)CON and

5D HNCACON. In datasets C1–C6, the connectivities

were provided by 5D (H)CACON(CA)CON, 5D HNCA-

CON, and 5D (HCA)CONCACON spectra. For protein

19135, due to the lack of information about HN chemical

shifts in the BMRB entry, the experiments providing the

sequential connectivities were (H)CACON

(CA)CON and (HCA)CONCACON for datasets B1–B6.

Datasets C1–C6 were not constructed in this case.

For amino acid recognition, in some datasets either the

4D HCBCACON (Bermel et al. 2012b) or the new 4D c-
selective-HCBCACON experiments yielding Cb and Hb

chemical shifts was employed, while in others the infor-

mation provided by the amino acid-selective experiments

was used. The latter group consisted of 13C-detected 2D

(CA)CON- and (CA)NCO-based amino acid selective

experiments (Bermel et al. 2012a), including the following

selections: A, D, E, FHYW, G, N, Q, and S. Datasets A1,

B1, and C1 did not contain any additional information on

amino acids. Datasets A2, B2 and C2 exploited the 4D

HCBCACON experiment. Datasets A3, B3, and C3 used

the 4D c-selective-HCBCACON experiment, which carries

extra information in the peak signs. Datasets A4, B4, and

Table 2 Proteins used for simulations and number of residues of each of the types selected in amino-acid selective experiments

BMRB ID Sequence length No. of residues of each type Percentage of residues

detected by aa-selective

experiments used in datasets 6E G A Qa F/H/Y/W S N D

6968 140 18 18 19 9 6 4 3 6 39.3

11526 148 10 8 4 20 10 13 7 11 43.2

15176 120 14 6 6 11 10 15 3 3 41.7

15179 159 19 8 13 11 11 14 5 18 40.3

15201 148 6 20 10 15 26 13 8 8 41.2

15883 92 9 6 12 7 5 3 2 2 42.4

16445 48 5 6 2 6 1 2 0 1 39.6

16626 76 6 6 2 8 4 3 2 5 38.2

16627 56 5 4 6 5 6 0 3 5 39.3

16912b 94 25 0 4 2 6 1 0 27 55.3

17325 66 2 4 4 6 5 11 4 4 39.4

18417 253 44 18 58 12 10 16 4 10 40.3

18580 130 13 1 7 17 15 8 10 6 42.3

18851 26 1 1 7 3 1 0 1 0 38.5

18895 141 11 10 17 4 3 17 3 5 39.0

19135 467 36 39 44 34 23 58 15 17 45.2

Numbers of the amino acid types used in datasets A6, B6 and C6 appear in bold
a As shown in the section Experimental results, in the Q-selective experiment N residues also appear, thus the numbers of these two residues

were added here
b The protein is partially structured; the unstructured C-terminal fragment only (residues 79Ser-172Lys) was used for simulations
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Table 3 Automatic assignment results for simulated data—one linking experiment

BMRB ID Percentage of residues

present in BMRB

(in parenthesis: in long/

short TSAR chains)

Percentage of correctly/incorrectly assigned residues

Dataset A1 Dataset A2 Dataset A3 Dataset A4 Dataset A5 Dataset A6

6968 100 (69.1/30.9) 84.2/0.0 (32.4/0.0) 87.1/0.0 (86.3/0.0) 87.1/0.0 90.6/0.0 87.8/0.0 88.5/0.0

11526 94.6 (71.4/23.1) 43.5/0.0 (30.6/14.3) 70.7/2.7 (88.4/0.0) 87.8/2.0 90.5/0.7 76.9/2.7 89.8/0.7

15176 84.9 (55.5/29.4) 24.4/0.0 (14.3/1.7) 71.4/0.0 (69.7/2.5) 71.4/0.0 78.2/0.0 71.4/0.0 74.8/0.0

15179 89.2 (72.2/17.1) 29.7/0.0 (0.0/0.0) 79.7/0.0 (78.5/0.6) 79.7/0.0 84.2/0.0 81.6/0.6 79.1/0.0

15201a 97.3 (60.5/36.7) 33.3/0.0 (19.0/2.7) 87.8/0.0 (72.1/6.1) 87.8/0.0 88.4/0.0 85.7/0.0 65.3/0.0

15883 95.6 (87.9/7.7) 93.4/0.0 (71.4/22.0) 94.5/0.0 (94.5/0.0) 94.5/0.0 93.4/0.0 93.4/0.0 93.4/0.0

16445 87.2 (40.4/46.8) 0.0/0.0 (0.0/0.0) 12.8/0.0 (38.3/12.8) 12.8/0.0 23.4/0.0 21.3/0.0 21.3/0.0

16626a 94.7 (84.0/10.7) 93.3/0.0 (21.3/0.0) 90.7/0.0 (93.3/0.0) 90.7/0.0 94.7/0.0 93.3/0.0 94.7/0.0

16627a 100.0 (92.7/7.3) 96.4/0.0 (72.7/0.0) 96.4/0.0 (92.7/0.0) 96.4/0.0 96.4/0.0 96.4/0.0 96.4/0.0

16912b 100.0 (31.2/68.8) 7.5/0.0 (0.0/7.5) 31.2/2.2 (25.8/3.2) 31.2/2.2 35.5/0.0 34.4/1.1 25.8/1.1

17325 86.2 (72.3/13.8) 20.0/0.0 (20.0/0.0) 86.2/0.0 (84.6/0.0) 86.2/0.0 76.9/0.0 64.6/0.0 75.4/0.0

18417 91.3 (15.5/75.8) 4.0/0.0 (0.0/0.8) 17.9/1.6 (13.5/13.9) 19.8/1.6 40.5/0.4 22.2/1.6 7.9/0.0

18580 86.0 (53.5/32.6) 23.3/0.0 (0.0/0.0) 54.3/1.6 (45.7/3.9) 51.9/0.0 77.5/0.0 64.3/0.8 67.4/0.8

18851 92.0 (64.0/28.0) 0.0/0.0 (0.0/0.0) 60.0/4.0 (60.0/4.0) 60.0/4.0 72.0/0.0 60.0/4.0 56.0/0.0

18895 89.2 (47.1/41.4) 19.3/0.7 (0.0/15.7) 62.1/0.0 (64.3/0.0) 66.4/0.0 72.1/0.0 57.1/0.0 62.9/0.7

19135 99.8 (31.5/68.2) 4.1/0.0 (0.0/2.4) 47.4/0.9 (33.3/21.2) 48.9/0.9 57.3/4.7 37.8/1.9 36.5/0.6

a The protein was urea-unfolded
b The protein is partially structured; the unstructured C-terminal fragment only (residues 79Ser-172Lys) was used for simulations

Table 4 Automatic assignment results for simulated data—two linking experiments

BMRB ID Percentage of residues

present in BMRB

(in parenthesis: in long/

short TSAR chains)

Percentage of correctly/incorrectly assigned residues

Dataset B1 Dataset B2 Dataset B3 Dataset B4 Dataset B5 Dataset B6

6968 100 (94.2/5.8) 94.2/0.0 (94.2/0.0) 94.2/0.0 (94.2/0.0) 94.2/0.0 94.2/0.0 94.2/0.0 94.2/0.0

11526 94.6 (89.1/5.4) 93.9/0.0 (78.9/12.9) 92.5/0.0 (94.6/0.0) 93.2/0.0 93.9/0.0 93.9/0.0 93.9/0.0

15176 84.9 (68.9/16.0) 63.9/0.0 (19.3/14.3) 79.8/0.0 (72.3/3.4) 79.8/0.0 83.2/0.0 79.8/0.0 79.8/0.0

15179 89.2 (79.7/9.5) 73.4/0.0 (7.0/9.5) 87.3/0.0 (86.7/0.6) 87.3/0.0 86.1/0.0 86.1/0.0 85.4/0.0

15201a 97.3 (89.1/8.2) 83.0/0.0 (86.4/1.4) 95.9/0.0 (91.2/2.0) 95.9/0.0 95.9/0.0 95.9/0.0 95.9/0.0

15883 95.6 (95.6/0.0) 95.6/0.0 (95.6/0.0) 95.6/0.0 (95.6/0.0) 95.6/0.0 95.6/0.0 95.6/0.0 95.6/0.0

16445 87.2 (51.1/36.2) 42.6/0.0 (0.0/0.0) 68.1/0.0 (70.2/12.8) 68.1/0.0 83.0/0.0 83.0/0.0 83.0/0.0

16626a 94.7 (90.7/4.0) 94.7/0.0 (94.7/0.0) 92.0/0.0 (94.7/0.0) 92.0/0.0 94.7/0.0 94.7/0.0 94.7/0.0

16627a 100.0 (92.7/7.3) 98.2/0.0 (98.2/0.0) 98.2/0.0 (98.2/0.0) 98.2/0.0 98.2/0.0 98.2/0.0 98.2/0.0

16912b 100.0 (87.1/12.9) 46.2/0.0 (0.0/0.0) 89.2/0.0 (89.2/0.0) 89.2/0.0 89.2/2.2 89.2/0.0 89.2/0.0

17325 86.2 (61.5/24.6) 41.5/0.0 (24.6/0.0) 86.2/0.0 (86.2/0.0) 86.2/0.0 86.2/0.0 86.2/0.0 86.2/0.0

18417 91.3 (61.1/30.2) 50.0/0.4 (40.1/0.0) 67.9/0.8 (69.0/0.8) 67.9/0.8 74.6/1.6 72.2/1.6 68.7/0.4

18580 86.0 (77.5/8.5) 35.7/0.0 (10.1/7.0) 82.2/0.0 (82.2/0.0) 82.2/0.0 82.9/0.0 82.2/0.0 82.9/0.0

18851 92.0 (60.0/32.0) 16.0/0.0 (0.0/24.0) 84.0/0.0 (84.0/0.0) 84.0/0.0 84.0/0.0 84.0/0.0 84.0/0.0

18895 89.2 (72.9/15.7) 76.4/1.4 (52.1/25.0) 84.3/0.0 (84.3/0.0) 84.3/0.0 86.4/0.0 83.6/0.0 82.1/1.4

19135c 99.8 (79.6/20.2) 66.1/0.0 (27.3/4.5) 91.8/0.2 (86.3/1.9) 91.8/0.2 90.8/0.6 87.8/1.1 89.9/0.0

a The protein was urea-unfolded
b The protein is partially structured; the unstructured C-terminal fragment only (residues 79Ser-172Lys) was used for simulations
c This BMRB deposition lack HN chemical shifts, so for simulations the 5D HNCACON data was replaced with the 5D (HCA)CONCACON
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C4 employed all eight amino-acid selective 2D experi-

ments (selecting A, D, E, G, N, Q, S, and FHYW), both in

the (CA)CON and (CA)NCO versions. Datasets A5, B5,

and C5 employed all 2D amino acid selective experiments,

but in the (CA)CON version only. Datasets A6, B6, and C6

exploited some of the amino-acid selective experiments in

both the (CA)CON and (CA)NCO versions. The choice of

amino-acids to be selected was based on the sequence of

each protein (see Table 2), such that approximately 40 %

of residues were extracted from the total. This meant that

the numbers of aa-selective experiments varied from two

(as for protein 16912) to five (as for protein 15883),

depending on the abundances of different amino acids in a

given protein.

The datasets were analyzed using the new version of the

TSAR program, and the results compared with the original

BMRB assignment. Additionally, datasets A1, B1, C1, A2,

B2, and C2 were analyzed using the old version of the

TSAR program, to compare the efficiency of the amino-

acid recognition procedures in the old and new versions.

Datasets 3, 4, 5, and 6 are not accepted by the old version

of TSAR. The results are presented in Table 3 (datasets

A1–A6), Table 4 (datasets B1–B6), and Table 5 (datasets

C1–C6).

To assess the data, we need to consider the lengths of the

cross-sections chains formed by TSAR. The longer the

chain, the easier and more reliable its mapping onto the

protein sequence. Chains were divided into two groups:

long (C4 cross-sections) and short (1–3 cross-sections).

The length of the chains is influenced by several factors—

not just the protein size, but also the chemical shift dis-

persion, the number of missing basis peaks, the number and

quality of connectivity-yielding experiments, and the

number of prolines (in the case of HN-detected experi-

ments). As can be seen by comparing datasets A, B, and C,

the proportion of cross-sections within the long chains

generally increases in line with the number of linking

experiments (see Tables 3, 4 and 5). This reflects different

levels of assignment difficulty for the datasets A, B, and C.

Another factor also influences the complexity of the

assignment process: the incidence of repeats in the

sequence of proteins. This includes overrepresentation of

certain amino acid in the sequence, stretches of several

residues of the same amino acids, and multiple occurrences

of certain sequential motifs. This factor is more difficult to

measure, but should be considered when interpreting the

data. In this respect, protein 18851, which contains 11 Arg

residues within its 26-residues-long sequence (including

Table 5 Automatic assignment results for simulated data—three linking experiments

BMRB ID Percentage of residues

present in BMRB

(in parenthesis:

in long/short

TSAR chains)

Percentage of correctly/incorrectly assigned residues

Dataset C1 Dataset C2 Dataset C3 Dataset C4 Dataset C5 Dataset C6

6968 100 (94.2/5.8) 94.2/0.0 (94.2/0.0) 94.2/0.0 (94.2/0.0) 94.2/0.0 94.2/0.0 94.2/0.0 94.2/0.0

11526 94.6 (89.1/5.4) 90.5/0.0 (65.3/19.7) 91.8/0.0 (93.9/0.0) 92.5/0.0 93.2/0.0 93.2/0.0 93.2/0.0

15176 84.9 (65.5/19.3) 28.6/0.0 (20.2/10.1) 81.5/0.0 (76.5/1.7) 81.5/0.0 84.0/0.0 81.5/0.0 81.5/0.0

15179 89.2 (78.5/10.8) 77.2/0.0 (29.1/34.8) 86.7/0.6 (86.1/1.3) 86.7/0.6 84.8/0.0 85.4/0.0 84.2/0.0

15201a 97.3 (87.1/10.2) 81.6/0.0 (83.7/4.1) 95.9/0.0 (90.5/2.0) 95.9/0.0 95.9/0.0 95.9/0.0 95.9/0.0

15883 95.6 (95.6/0.0) 95.6/0.0 (95.6/0.0) 95.6/0.0 (95.6/0.0) 95.6/0.0 95.6/0.0 95.6/0.0 95.6/0.0

16445 87.2 (57.4/29.8) 48.9/0.0 (0.0/0.0) 74.5/0.0 (70.2/12.8) 74.5/0.0 83.0/0.0 83.0/0.0 83.0/0.0

16626a 94.7 (90.7/4.0) 94.7/0.0 (94.7/0.0) 92.0/0.0 (94.7/0.0) 92.0/0.0 94.7/0.0 94.7/0.0 94.7/0.0

16627a 100.0 (98.2/1.8) 98.2/0.0 (98.2/0.0) 98.2/0.0 (98.2/0.0) 98.2/0.0 98.2/0.0 98.2/0.0 98.2/0.0

16912b 100.0 (92.5/7.5) 44.1/0.0 (0.0/0.0) 93.5/0.0 (92.5/0.0) 93.5/0.0 91.4/0.0 93.5/0.0 93.5/0.0

17325 86.2 (69.2/16.9) 56.9/0.0 (44.6/0.0) 86.2/0.0 (86.2/0.0) 86.2/0.0 86.2/0.0 86.2/0.0 86.2/0.0

18417 91.3 (73.0/18.3) 57.5/0.8 (30.6/19.4) 77.8/2.0 (77.8/1.2) 77.8/2.0 80.6/1.2 78.6/1.2 74.2/0.4

18580 86.0 (79.8/6.2) 72.9/0.0 (46.5/7.0) 84.5/0.0 (84.5/0.0) 84.5/0.0 84.5/0.0 84.5/0.0 84.5/0.0

18851 92.0 (60.0/32.0) 16.0/0.0 (0.0/24.0) 84.0/0.0 (84.0/0.0) 84.0/0.0 84.0/0.0 84.0/0.0 84.0/0.0

18895 89.2 (82.1/6.4) 81.4/0.0 (67.1/10.7) 87.9/0.0 (87.1/0.0) 87.9/0.0 88.6/0.0 87.9/0.0 87.9/0.0

19135c 99.8 n.a. n.a. n.a. n.a. n.a. n.a.

a The protein was urea-unfolded
b The protein is partially structured; the unstructured C-terminal fragment only (residues 79Ser-172Lys) was used for simulations
c This BMRB deposition lacks HN chemical shifts, so the simulation with three connectivities-yielding experiments could not be performed
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one four-Arg stretch), is considered difficult to assign

despite its small size.

Several conclusions can be drawn from the resulting

data. First, it is evident that providing any type of infor-

mation on amino acids significantly improves the result of

the assignment (datasets 2, 3, 4, 5, and 6 vs. datasets 1).

This is not surprising, as the mapping of the cross-sections

chains onto the protein sequence is performed using amino

acid recognition. For instance, for the protein 15179, the

result for dataset A1 is 29.7 % correct assignments, which

can be increased to 84.2 % correct assignments for the

dataset A4. Where there are only a few cross-sections in

short chains (typically below 10 %), they can often be

correctly mapped onto the sequence even without the

additional information on amino acids. This is true for

protein 15883, for example, where 95.6 % correct assign-

ments were obtained for all datasets B1–B6, the maximum

possible taking into consideration the completeness of the

data. If the chains are very short (typically over 40 % of

cross-sections within short chains), extra information on

amino acids is beneficial, but the results may still not be

satisfactory. This is true for protein 16912 datasets A, for

example, where the result can be improved from 7.5 %

(A1) to 35.5 % (A4), but is still much too low. In such

cases, more experiments providing the sequential connec-

tivities are required (see datasets B and C for protein

16912).

Comparing the results obtained with the old and new

versions of TSAR (datasets A1, B1, C1, A2, B2, and C2),

we find that the new version generates more reliable

results: The proportion of incorrect assignments is signifi-

cantly lower. This improvement is due to the more careful

assignment of short chains. In many cases, introducing

stricter rules reduces the numbers of both correct and

incorrect assignments of short chains (see, for example,

protein 16445 datasets A2 and B2). This is both safe and

beneficial: Even if some short chains remain unassigned,

reducing the number of errors is advantageous. At the same

time, long chains are assigned more efficiently by

employing the chemical shift statistics for IDPs (see, for

example, protein 19135 dataset B2 and protein 15176

dataset C2). The positive effect of incorporating Ca

chemical shift statistics for non-glycine residues is reflec-

ted in the significant improvement in program’s perfor-

mance for datasets (A1, B1, C1).

The datasets A for protein 15201 allow us to verify the

usefulness of the approach—in particular the IDPs statis-

tics—for urea-unfolded proteins. A total of 87.8 % of

residues were correctly assigned for datasets A2 and A3,

compared to just 33.3 % for dataset A1. This indicates that

the statistical values correctly reflect the chemical shifts of

this urea-unfolded protein. In two other urea-unfolded

proteins (16626 and 16627), the cross-sections chains were

so long that even for dataset A1 almost complete assign-

ment was obtained. For protein 16627, the aliphatic

chemical shifts appear to be consistent with the statistics

used by TSAR, but for protein 16626 we observed a

reduction in the proportion of correct assignments by 1.6

percentage points for datasets containing aliphatic chemi-

cal shifts (A2, A3, B2, B3, C2, C3) compared to those

lacking such information. The reason for this was the

exclusion of the correct amino acid (Asp) from the set of

possibilities for one residue. This happened during the first

step of amino acid recognition: The Cb chemical shift

slightly exceeded the range for Asp (BMRB aver-

age ± 2 SD). Importantly, the mismatch between the

statistics and the real data does not result in incorrect

assignment. Overall, therefore, the procedures proposed in

this article appear to be applicable for urea-unfolded

proteins.

The next question examined during the simulations

concerned the amount of information from the 4D c-se-
lective-HCBCACON experiment versus the 4D HCBCA-

CON. In most cases, the result from datasets A2, B2, and

C2 was identical to the results from A3, B3, and C3

respectively. However, in several cases the result was

better when using the new c-selective experiment, inas-

much as the number of correct assignments rose or the

number of incorrect assignments fell (e.g. 11526 or 18895

datasets A2–A3). In only one case did replacing the

HCBCACON with the c-selective-HCBCACON decrease

the number of correct assignments, namely protein 18580

datasets A2–A3. At the same time, it also removed the

incorrect assignment. Overall, therefore, we recommend

using the c-selective-HCBCACON rather than the

HCBCACON as it yields extra information without taking

extra time.

The simulations indicate that it is usually beneficial to

employ amino-acid selective experiments in place of—or

in addition to—aliphatic chemical shifts. In twenty-four

cases, the result was better for dataset 4 than for the cor-

responding dataset 3; in only six cases did the opposite

apply. In two cases, however, using amino-acid selective

experiments as the only source of information on amino

acids caused problems. The first case was that of protein

18417 datasets B4 and B5, where an incorrect chain of two

cross-sections was mapped. The second case was that of

protein 19135 dataset A4, where an incorrect chain con-

structed of five cross-sections (with a single incorrect link

inside it) was mapped. However, in this second case over

68 % of cross-sections were within short chains and the

overall result was very low (around 60 % of assigned

residues), thus it was a ‘high-risk’ dataset. Overall, there-

fore, using amino acid-selective experiments appears to be

a reliable alternative. Of course, if Cb and Hb chemical

shifts are essential for further studies, the method of choice
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would be the 4D HCBCACON experiment. But if only the

backbone assignment is desired, it is worth considering

collecting amino acid-selective 2D spectra.

As shown by datasets 5 and 6, the completeness of the

resonance assignment falls when the amount of amino

acid-selective data is decreased, although the longer the

cross-sections chains, the less visible this effect. The pro-

portion of cross-sections in short chains is therefore a very

important parameter for suggesting how many amino acid

selective experiments are worth acquiring. Clearly, when

making the selections for a particular sample, the protein’s

sequence should be considered: It is more valuable to

identify the amino acids that are abundant in a given

molecule. By comparing datasets 5 and 6, we hoped to

identify whether it is more beneficial to acquire more

amino-acid selective experiments but only in the CACON

version (datasets 5), or fewer selections but in both the

CACON and the CANCO versions (datasets 6). Regret-

tably, no definite conclusion could be drawn here: In seven

cases the result was higher for dataset 5, and in eight cases

it was higher for dataset 6.

Overall, the results are satisfactory. For 11 proteins, over

95 % of residues whose chemical shifts were deposited in

BMRB were correctly assigned. Only in the case of one

protein was the proportion below 90 %. Incorrect assign-

ments were rare: They occurred for seven proteins in

datasets A (with one linking experiment), four proteins in

datasets B (with two linking experiments), and two proteins

in datasets C (with three linking experiments). Importantly,

the assignment result can usually be increased manually:

TSAR provides information that allows the user to get back

to doubtful fragments of spectra easily and complete the

assignment process. At the same time, incorrect assign-

ments can be identified; a manual inspection is always

recommended for short chains. In the simulations, almost

all incorrect assignments occurred for short chains or at the

very end of long chains, which is relatively easy to spot

during manual inspection of the result. The only cases of

incorrect assignment for long chains were protein 19135

dataset A4, as mentioned above, and protein 11526 dataset

A2 and A5 (4 cross-sections-long chain). In the case of

protein 11526, the reason was the very untypical

(56.52 ppm) Ca chemical shift of 21Val residue.

Experimental results

The new methods of amino acid recognition were also

tested on a-synuclein protein, using 13C- or 1H-detected

basis and high-dimensional experiments. In the case of
13C-detected data, amino acid recognition was achieved by

using 4D HCBCACON or 4D c-selective-HCBCACON
experiments, or by using the 2D amino-acid selective

experiments (eight selections: A, D, E, G, N, Q, S, and

FHYW, each in both the (CA)CON and (CA)NCO ver-

sions). For 1H-detected data, amino acid recognition was

achieved only using 2D amino-acid selective experiments;

no experiment providing Cb and Hb chemical shifts was

acquired in this case.

The selectivity of the amino acid-selective experiments

is reported in Table S1 in the Supplementary Material. In

all the spectra, only the peaks of the selected amino acid (or

amino acids) are present, with few exceptions: In Q-se-

lective 2D (CA)CON and 2D (CA)NCO experiments there

is a leakage of N peaks, but in the 2D (CA)NCO experi-

ment they have the opposite sign to the Q peaks and so are

very easy to recognize; in E-selective 2D (CA)CON

experiment, D peaks appear, but with opposite sign to the E

peaks; in G- and S-selective and 2D (CA)NCO

Table 6 Datasets of 13C-detected experiments

Basis experiment and sequential

link-providing experiment(s)

Percentage of cross-sections in

chains

Dataset Experiment(s) providing

information on amino acids

Total experiment

time (hours)

Long (C4) Short (1–3)

3D CACON

5D (H)CACON(CA)CON

68.6 31.4 A1 None 67

A2 4D HCBCACON 95

A3 4D c-selective-HCBCACON 95

A4 All 2D amino acid selective experiments 79

3D CACON

5D (H)CACON(CA)CON

5D HNCACON

78.6 21.4 B1 none 81

B2 4D HCBCACON 109

B3 4D c-selective-HCBCACON 109

B4 All 2D amino acid selective experiments 93

3D CACON

5D (H)CACON(CA)CON

5D HNCACON

5D (HCA)CONCACON

85.7 14.3 C1 None 152

C2 4D HCBCACON 180

C3 4D c-selective-HCBCACON 180

C4 All 2D amino acid selective experiments 164
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experiments, peaks originating form P residues are present,

but in the G-selective one they have the opposite sign to the

other peaks. TSAR was thus trained to handle such cases.

Regarding the completeness of the information, all the

expected peaks were retrieved for all the amino acid-se-

lective spectra.

Twelve datasets were constructed out of the 13C-de-

tected data (Table 6). Datasets A1–A4 contain only one

links-yielding 5D (H)CACON(CA)CON experiment.

Datasets B1–B4 include the 5D (H)CACON(CA)CON and

5D HNCACON experiments. Datasets C1–C4 comprise the

5D (H)CACON(CA)CON, 5D HNCACON, and 5D

(HCA)CONCACON experiments. Datasets A1, B1, and C1

do not contain any additional information on amino acids.

Datasets A2, B2, and C2 use the 4D HCBCACON exper-

iment. Datasets A3, B3, and C3 use the 4D c-selective-
HCBCACON experiment. Datasets A4, B4, and C4 use all

2D amino acid selective experiments, both in the

(CA)CON and (CA)NCO versions.

The results obtained by the TSAR program for different

datasets of 13C-detected experiments are presented in

Table 7. The data analysis shows the effectiveness of the

approach. Even using a single experiment yielding the

sequential connectivities, 83.5 % correct assignments were

achieved when combined with amino acid-selective data.

Using two linking experiments made it possible to achieve

86.3 % correct assignments and 2.2 % incorrect ones,

using a very limited amount of information on amino acid

types (glycine recognition based on the peaks’ signs and

the CA chemical shifts). Incorporating additional infor-

mation (CB chemical shifts or amino-acid selective

experiments) improved this result further still. For datasets

C1–C4, the result was 89.9 % correct assignments and no

incorrect ones.

Datasets A1, B1, C1, A2, B2, and C2 allowed us to

compare the performance of the old and the new versions

of the TSAR program (data from the other datasets could

not be processed by the old version). As with the simula-

tion, the results demonstrate that the new version of TSAR

performs better than the old one: In particular, the number

of incorrect assignments was lower in four of the datasets.

Only in one dataset (B1) the new program yield more

incorrect assignments than the old one (2.2 vs. 0.7 %), but

here the number of correct assignments was significantly

higher (86.3 vs. 70.5 %).

Using a c-selective-HCBCACON experiment (datasets

A3, B3, C3) instead of the standard HCBCACON experi-

ment (datasets A2, B2, C2) does not cause a significant

change in the assignment results. For datasets exploiting

one linking experiment only, it allows us to significantly

increase the number of correct assignments, but at the same

time increases the number of errors (datasets A3 vs. A2).

Using amino acid-selective experiments (datasets A4,

B4, C4, D4) seems to be a reliable alternative to measuring

Cb and Hb chemical shifts for amino acid recognition. In

the case of shorter cross-sections chains, TSAR performs

even better than using b chemical shifts (dataset A4 vs. A2

and A3). Nonetheless, for dataset B4 it introduces some

erroneous assignments (in short chains and one at the end

of a long chain). It is striking that the total experimental

time required for a set of 2D amino acid-selective experi-

ments less than half that required for the HCBCACON

(12 hours, compared to 28 hours; see Table 6).

Alternatively, 1H-detected experiments providing

sequential connectivities can be used for assignment, e.g. 5D

BT-HN(COCAN)CONNH and 5D BT-(H)NCO(-

CAN)CONNH experiments (Piai et al. 2014), which require

a 3D BT-HNCO as basis spectrum. Eighteen datasets fea-

turing such experiments were constructed in our study

(Table 8). Datasets D1–D6 contain the 5D BT-HN(CO-

CAN)CONNH experiment; datasets E1–E6 include the 5D

BT-(H)NCO(CAN)CONNH experiment; and datasets F1–

F6 contain both experiments. Different datasets contain

different combinations of amino-acid selection experiments.

Thus, datasets D1, E1, and F1 include all selections (A, D,

E, FHYW, G, N, Q, S) in both the (CA)CON and (CA)NCO

versions; datasets D2, E2, and F2 contain the same selec-

tions but only in the (CA)CON version; datasets D3, E3, and

F3 comprise A, E, G, FHYW, and Q selections in both the

(CA)CON and (CA)NCO versions; datasets D4, E4, and F4

include A, E, G, FHYW, and Q selections but only in the

(CA)CON version; datasets D5, E5, and F5 include A, E,

and G selections in both the (CA)CON and (CA)NCO ver-

sions; and datasets D6, E6, and F6 contain A, E, and G

selections, but only in the (CA)CON version.

The results provided by the TSAR program using these

datasets are summarized in Table 9. Here, again, the

robustness of the assignment procedure is confirmed.

While using all amino acid selection experiments, the

percentage of correct assignments obtained using just a

Table 7 Automatic assignment

results for 13C-detected

experiments

Dataset Percentage of correctly/incorrectly assigned residues

…1 …2 …3 …4

A… 65.0/0.0 (47.5/7.2) 79.9/0.7 (81.3/0.7) 83.5/2.9 83.5/0.0

B… 86.3/2.2 (70.5/0.7) 87.1/0.7 (90.6/2.9) 87.1/0.7 89.9/3.6

C… 89.9/0.0 (88.5/2.2) 89.9/0.0 (88.5/0.7) 89.9/0.0 89.9/0.0
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single 5D experiment to establish sequential correlations

was 79.9 % for BT-HN(COCAN)CONNH (dataset D1)

and 88.8 % for BT-(H)NCO(CAN)CONNH (dataset E1). It

is worth mentioning that incorrect assignment (one residue

within a short chain) occurred only for datasets A, where

the cross-sections chains were shortest.

Conclusions

In this study we present a refined version of the automatic

resonance assignment TSAR program, with improved

assignment efficiency and reliability for IDPs. The changes

were made with particular objectives in mind: to exploit

peaks’ signs depending on the originating residue; to

employ the chemical shift statistics established especially

for IDPs; and to analyze the data from amino acid-selective

experiments. Besides improving the TSAR program, we

also propose a modification of an existing 4D HCBCA-

CON experiment so that information on the amino acid

type is coded in the peak sign. These methods were tested

in simulations using 16 disordered proteins from the

BMRB data base, and then verified experimentally using a-
synuclein, a 140-amino acids-long IDP, for both proton-

and carbon-detected experiments.

The analysis shows that incorporating the above meth-

ods significantly improves the results of the assignment,

especially for datasets in which the cross-sections chains

are relatively short. Amino acid-selective experiments,

which are relatively quick when performed using non-

uniform sampling, can be used as an alternative to amino

acid recognition based on chemical shift analysis. The

proposed methods facilitate the resonance assignment of

IDPs and make it both more reliable and more complete.

Acknowledgments This study was supported by Grant No. IP2012

062772 from the Polish Ministry of Science and Higher Education for

the years 2013–2016, by the POMOST program of the Foundation for

Polish Science, and by the European Commission Projects IDP-

byNMR (Contract No. 264257), BioNMR (Contract No. 261863) and

INSTRUCT (Contract No. 211252).

Table 8 Datasets of 1H-detected experiments

Basis experiment and

sequential link-providing

experiment(s)

Percentage of cross-

sections in chains…
Dataset Experiment(s) providing information on amino acids Total

experiment time

(hours)
long

(C4)

short

(1–3)

3D BT-HNCO

5D BT-HN(COCAN)CONNH

60.9 39.1 D1 All selections, (CA)CON and (CA)NCO 26

D2 All selections, only (CA)CON 20

D3 A, E, G, FHYW, Q selections, (CA)CON and (CA)NCO 22.25

D4 A, E, G, FHYW, Q selections, only (CA)CON 18

D5 A, E, G selections, (CA)CON and (CA)NCO 18.5

D6 A, E, G selections, only (CA)CON 16.25

3D BT-HNCO

5D BT-

(H)NCO(CAN)CONNH

82.7 17.3 E1 All selections, (CA)CON and (CA)NCO 26

E2 all selections, only (CA)CON 20

E3 A, E, G, FHYW, Q selections, (CA)CON and (CA)NCO 22.25

E4 A, E, G, FHYW, Q selections, only (CA)CON 18

E5 A, E, G selections, (CA)CON and (CA)NCO 18.5

E6 A, E, G selections, only (CA)CON 16.25

3D BT-HNCO

5D BT-HN(COCAN)CONNH

5D BT-

(H)NCO(CAN)CONNH

84.2 15.8 F1 All selections, (CA)CON and (CA)NCO 37

F2 All selections, only (CA)CON 31

F3 A, E, G, FHYW, Q selections, (CA)CON and (CA)NCO 33.25

F4 A, E, G, FHYW, Q selections, only (CA)CON 29

F5 A, E, G selections, (CA)CON and (CA)NCO 29.5

F6 A, E, G selections, only (CA)CON 27.25

Table 9 Automatic assignment

results for 1H-detected

experiments

Dataset Percentage of correctly/incorrectly assigned residues

…1 …2 …3 …4 …5 …6

D… 79.9/0.7 76.1/0.7 73.9/0.7 55.2/0.7 55.2/0.0 39.6/0.0

E… 88.8/0.0 82.8/0.0 86.6/0.0 80.6/0.0 67.2/0.0 64.2/0.0

F… 91.8/0.0 91.8/0.0 90.3/0.0 90.3/0.0 90.3/0.0 90.3/0.0
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Dötsch V, Wagner G (1996) Editing for amino-acid type in

CBCACONH experiments based on the 13C beta-13C gamma

coupling. J Magn Reson B 111:310–313. doi:10.1006/jmrb.1996.

0100
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Dötsch V, Oswald RE, Wagner G (1996c) Amino-acid-type-selective

triple-resonance experiments. J Magn Reson B 110:107–111

Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW,

Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics

decade: an update on intrinsically disordered proteins. BMC Gen

9(Suppl 2):S1. doi:10.1186/1471-2164-9-S2-S1
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W, Brutscher B, Bermel W, Pierattelli R, Felli IC (2014) ‘‘CON-

CON’’ assignment strategy for highly flexible intrinsically

disordered proteins. J Biomol NMR 60:209–218. doi:10.1007/

s10858-014-9867-6

Rios CB, Feng W, Tashiro M, Shang Z, Montelione GT (1996) Phase

labeling of C-H and C-C spin-system topologies: application in

constant-time PFG-CBCA(CO)NH experiments for discriminat-

ing amino acid spin-system types. J Biomol NMR 8:345–350.

doi:10.1007/BF00410332

Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in

triple-resonance experiments: amino acid type-selective (1)H–

(15)N correlations. J Magn Reson 141:34–43. doi:10.1006/jmre.

1999.1881

Schubert M, Ball LJ, Oschkinat H, Schmieder P (2000) Bridging the

gap: a set of selective 1H-15N-correlations to link sequential

neighbors of prolines. J Biomol NMR 17:331–335. doi:10.1023/

A:1008362904205

Schubert M, Oschkinat H, Schmieder P (2001a) MUSIC, selective

pulses, and tuned delays: amino acid type-selective 1H–15N

correlations, II. J Magn Reson 148:61–72. doi:10.1006/jmre.

2000.2222

Schubert M, Oschkinat H, Schmieder P (2001b) MUSIC and aromatic

residues: amino acid type-selective 1H–15N correlations, III.

J Magn Reson 153:186–192. doi:10.1006/jmre.2001.2447

Schubert M, Oschkinat H, Schmieder P (2001c) Amino acid type-

selective backbone 1H–15N-correlations for Arg and Lys.

J Biomol NMR 20:379–384

Schubert M, Labudde D, Leitner D, Oschkinat H, Schmieder P (2005)

A modified strategy for sequence specific assignment of protein

NMR spectra based on amino acid type selective experiments.

J Biomol NMR 31:115–128. doi:10.1007/s10858-004-8263-z

Shaka A, Keeler J, Freeman R (1983) Evaluation of a new broadband

decoupling sequence: WALTZ-16. J Magn Reson 53:313–340.

doi:10.1016/0022-2364(83)90035-5

Shaka A, Barker P, Freeman R (1985) Computer-optimized decou-

pling scheme for wideband applications and low-level operation.

J Magn Reson 64:547–552. doi:10.1016/0022-2364(85)90122-2

Tamiola K, Acar B, Mulder FAA (2010) Sequence-specific random

coil chemical shifts of intrinsically disordered proteins. J Am

Chem Soc 132:18000–18003. doi:10.1021/ja105656t

Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank.

Nucleic Acids Res 36:D402–D408. doi:10.1093/nar/gkm957
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