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Abstract Over the past decade, a number of methods

have been developed to determine the approximate struc-

ture of proteins using minimal NMR experimental infor-

mation such as chemical shifts alone, sparse NOEs alone or

a combination of comparative modeling data and chemical

shifts. However, there have been relatively few methods

that allow these approximate models to be substantively

refined or improved using the available NMR chemical

shift data. Here, we present a novel method, called

Chemical Shift driven Genetic Algorithm for biased

Molecular Dynamics (CS-GAMDy), for the robust opti-

mization of protein structures using experimental NMR

chemical shifts. The method incorporates knowledge-based

scoring functions and structural information derived from

NMR chemical shifts via a unique combination of multi-

objective MD biasing, a genetic algorithm, and the widely

used XPLOR molecular modelling language. Using this

approach, we demonstrate that CS-GAMDy is able to

refine and/or fold models that are as much as 10 Å

(RMSD) away from the correct structure using only NMR

chemical shift data. CS-GAMDy is also able to refine of a

wide range of approximate or mildly erroneous protein

structures to more closely match the known/correct struc-

ture and the known/correct chemical shifts. We believe CS-

GAMDy will allow protein models generated by sparse

restraint or chemical-shift-only methods to achieve suffi-

ciently high quality to be considered fully refined and

‘‘PDB worthy’’. The CS-GAMDy algorithm is explained in

detail and its performance is compared over a range of

refinement scenarios with several commonly used protein

structure refinement protocols. The program has been

designed to be easily installed and easily used and is

available at http://www.gamdy.ca.
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Introduction

Using NMR to solve the structures of larger proteins

([15kD), weakly soluble proteins or disordered proteins is

often complicated by the poor quality of their NMR spectra

and, consequently, the small number of experimental

restraints. As a result, protein structure determination from

sparse NMR data has been a very active area of research

for more than two decades. While most sparse-data meth-

ods have focused on finding intelligent ways to use limited

numbers of distance restraints from Nuclear Overhauser

Effects (NOE), there has been increased interest in using

chemical shifts to help solve the sparse restraint problem.

Initially, chemical shifts were only used for secondary

structure restraints (Wishart and Sykes 1994; Wishart et al.

1992) or torsion angle constraints (Berjanskii et al. 2006;

Cheung et al. 2010; Shen et al. 2009) to help supplement

NOE data. More recently, chemical shifts, either alone or

in combination with other non-NOE data (such as RDCs),

Electronic supplementary material The online version of this
article (doi:10.1007/s10858-015-9982-z) contains supplementary
material, which is available to authorized users.

& David S. Wishart

david.wishart@ualberta.ca

1 Department of Computing Science, University of Alberta,

Edmonton, AB T6G 2E8, Canada

2 Department of Biological Sciences, University of Alberta,

Edmonton, AB T6G 2E9, Canada

3 National Research Council, National Institute for

Nanotechnology (NINT), Edmonton, AB T6G 2M9, Canada

123

DOI 10.1007/s10858-015-9982-z

J Biomol NMR (2015) 63:255–264

Received: 1 June 2015 / Accepted: 27 August 2015 / Published online: 7 September 2015

http://www.gamdy.ca
http://dx.doi.org/10.1007/s10858-015-9982-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s10858-015-9982-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10858-015-9982-z&amp;domain=pdf


have been used to determine or refine 3D protein structures.

Indeed, impressive results have been reported with pro-

grams such as Cheshire (Cavalli et al. 2007), CS-Rosetta

(Shen et al. 2008), CS23D (Wishart et al. 2008), CS-MD

(Robustelli et al. 2010), and CS-Torus (Boomsma et al.

2014). Typically, these methods rely on supplementing

chemical shift data with pre-existing information, such as

knowledge-based scoring functions, structures of homolo-

gous proteins or protein fragments.

While encouraging progress continues to be made in the

field (Rosato et al. 2015), many protein structures gener-

ated by these sparse-restraint modeling techniques still are

only approximately correct or have obvious structural

errors. Consequently, most structures generated via sparse-

restraint methods or chemical-shift-only methods are

looked upon by the NMR community as working structural

‘‘hypotheses’’. Indeed, less than 20 of the 11,000 NMR

structures deposited in the PDB have been solved using

sparse restraint methods. Efforts to use traditional structure

determination and refinement programs, such as XPLOR-

NIH (Schwieters et al. 2003), CNS (Brunger et al. 1998), or

CYANA (Guntert 2004) to improve these structure have

rarely succeeded. Improvements are only seen if large

numbers of additional NMR restraints (usually NOE) are

added. Also, it is still very computationally challenging to

refine, optimize or otherwise improve the initial models

using sparse NMR data (Robustelli et al. 2010). As a result,

the potential time savings or experimental simplification

offered by chemical-shift only or other sparse restraint

NMR methods for protein structure determination have

largely remained unrealized.

Ideally, what is needed is a robust, easy-to-use program

that can take approximate protein structures, such as those

generated via comparative modeling, CS23D, CS-Rosetta

or even sparse NOE data, and use the existing experimental

NMR data (primarily chemical shifts) to further optimize

and improve the structure. Here, we present just such a

program, called CS-Chemical Shift driven Genetic Algo-

rithm for biased Molecular Dynamics (GAMDy). CS-

GAMDy is a hybrid molecular dynamics (MD) program

that combines knowledge-based potentials with conven-

tional MD-based NMR modelling to perform robust

chemical shift refinement and structural optimization.

Because derivatives cannot be calculated from many

experimental parameters and knowledge-based potentials,

CS-GAMDy employs a novel combination of multi-ob-

jective MD biasing and a genetic algorithm (GA) to per-

form its model optimization (Fig. 1).

The molecular dynamics in CS-GAMDy is performed

using the XPLOR-NIH molecular modelling package

(Schwieters et al. 2003), which is one of the most com-

monly used structure determination programs in the protein

NMR community. Thus, CS-GAMDy can be easily

adopted to use a wide range of restraints commonly

employed in XPLOR refinement methodologies. CS-

GAMDy also allows users to take advantage of the latest

knowledge-based scoring functions, such as GOAP (Zhou

and Skolnick 2011), RW (Zhang and Zhang 2010),

GeNMR (Berjanskii et al. 2009), and various MD force-

fields [e.g. CHARMM (MacKerell et al. 1998), Amber

(Cornell et al. 1995), and OPLS (Jorgensen and Tirado-

Rives 1988)]. CS-GAMDy is also the first program to

incorporate the Random Coil Index (RCI) and a novel RCI-

ASA score to improve the agreement between model’s

accessible surface area (ASA) and the ASA derived from

chemical shifts by RCI (Berjanskii and Wishart 2013).

Here, we describe the CS-GAMDy algorithm in detail

and discuss its performance for optimizing approximate or

moderately incorrect protein structures (such as those

generated via comparative modelling, 3D-threading, NOE-

only methods or chemical shift-only methods like CS23D

or CS-Rosetta) using NMR chemical shifts as the only

source of experimental information. We demonstrate that

Fig. 1 CS-GAMDy protocol. a The main components of CS-

GAMDy, b MD biasing and genetic algorithms in CS-GAMDy. See

text for details
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CS-GAMDy is able to refine and/or fold protein models

that are, in some cases, as much as 10 Å (RMSD) away

from the reference structure using only NMR chemical

shift data. Based on its performance over a wide range of

refinement scenarios, we believe CS-GAMDy will allow

protein models initially generated by sparse restraint or

chemical-shift-only methods to achieve sufficiently high

quality to be considered fully refined and worthy of PDB

deposition.

Materials and methods

A brief summary of the CS-GAMDy protocol

CS-GAMDy consists of three major components: (1)

quenched, restrained molecular dynamics, (2) multi-ob-

jective MD biasing by experimental data and knowledge-

based scores, and (3) a multi-objective genetic algorithm,

as shown on Fig. 1a. Briefly, multiple MD runs are per-

formed at each MD biasing step. The final models of the

MD runs are evaluated and ranked by computationally fast

scoring functions. The model with the best score is used as

the starting model for the next set of MD runs (Fig. S1;

Fig. 1b). A population of several independent MD biasing

trajectories is generated and the final model of each tra-

jectory is assessed with the use of computationally more

demanding fitness functions. The least-fit models in the

population are replaced by the best-scoring (i.e. most fit)

models (Fig. 1b). This process is repeated until certain CS-

GAMDy stop criteria are met (vide infra). We describe the

details of these three components and testing the CS-

GAMDy protocol below.

CS-GAMDy has four operational modes: (A) the

default, full mode, with both the MD biasing and genetic

algorithm active; (B) a mode with only the genetic algo-

rithm for unbiased MD; (C) a mode with only MD biasing;

(D) a mode with only molecular dynamics (Fig. S2).

Instructions for how to switch between different opera-

tional modes is given below. All tests in this paper were

done with the default CS-GAMDy mode. The other modes

can be used to optimize or test individual parts of the CS-

GAMDy framework by developers or advanced users.

Molecular dynamics

The molecular dynamics protocols in CS-GAMDy were

programmed with the XPLOR-NIH molecular modelling

language (Schwieters et al. 2003) and Python. We chose

XPLOR-NIH because it is one of the most popular, well-

tested programs for NMR-based protein structure mod-

elling and refinement. Also, because of its ability to accept

the majority of modern types of NMR experimental

restraints, the XPLOR-NIH molecular modelling package

can be used for almost any kind of model optimization with

NMR data. The most important MD parameters are listed

in Table S2 and described below.

CS-GAMDy allows users to select a variety of MD

force-fields that come with XPLOR-NIH including the

CHARMM force-fields (versions 11, 19, and 22),

Amber94, OPLS, as well as the PARALLHDG force-field

of XPLOR (Schwieters et al. 2003) that is commonly used

in NMR-based structure determination. In our preliminary

tests, we found that selecting the PARALLHDG force-field

in CS-GAMDy leads to the best model accuracy (data not

shown). This is likely because we used MD conditions (a

high virtual temperature) that are similar to those of a

typical NMR structure determination protocol. Therefore,

we used the PARALLHDG force-field as the default in CS-

GAMDy. We have made the other force-fields available to

developers and advanced users. CS-GAMDy also provides

support for employing XPLOR’s knowledge-based data-

base potentials (Kuszewski et al. 1996, 1997), a self-

guiding hydrogen bond potential (Grishaev and Bax 2004),

and a radius of gyration energy term (Kuszewski et al.

1999). All of these potentials are enabled by default and

were used to generate the results described in this paper.

Cartesian coordinate molecular dynamics is the default

MD method of choice in CS-GAMDy. XPLOR’s torsion

angle dynamics (Stein et al. 1997) is also supported but it

was found to produce less accurate results (data not shown)

for most types of models that we tested in this work.

CS-GAMDy permits XPLOR MD simulations to be

conducted in a vacuum or with a Generalized Born implicit

solvent (Wagner and Simonson 1999). Interestingly, using

implicit solvent in combination with experimental

restraints, did not result in improved accuracy with CS-

GAMDy (data not shown). This may be due to the fact that

the solvent slows down the model refinement process and

reduces the positive effects of MD biasing and genetic

algorithm optimization on model quality. Therefore, MD

simulations in CS-GAMDy are conducted in vacuo by

default.

In order to generate conformational changes of various

amplitudes and directions, many starting parameters for

XPLOR’s molecular dynamics can be randomized. In fact,

this is the preferred way to run CS-GAMDy because the

magnitude of optimal conformational changes to refine a

protein model is not known a priori. By default, random-

ization is automatically applied to several MD parameters,

such as velocities, the length of the MD run, the MD time-

step, the temperature, the contributions of the torsion angle

restraints, the radius of gyration, and the electrostatic

contribution to the XPLOR force-field.

Molecular dynamics runs are quenched using Powell’s

minimization (Powell 1977) to remove temperature-
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induced distortions of the model’s local structure. The

minimization is critical to properly evaluate and rank the

models by CS-GAMDy’s scoring functions since the scores

were optimized on protein models with proper local

geometry. Molecular dynamics is the part of the CS-

GAMDy protocol where NMR- and template-based

restraints in an XPLOR-compatible format can be applied.

In this work, we utilized torsion angles derived from

chemical shifts (Shen and Bax 2015) to restrain XPLOR’s

molecular dynamics. Standard deviations of torsion angles

were used to define the torsion angle restraint errors. CS-

GAMDy can run only XPLOR molecular dynamics with-

out MD biasing and without the genetic algorithm if the

number of biased MD runs and the genetic algorithm

population are both equal to 1 (Fig. S2). This mode can be

used to conduct traditional NMR structure refinement.

MD biasing

MD biasing in CS-GAMDy is conducted using the CON-

TRA MD biasing method (CONformational TRAnsitions

by Molecular Dynamics with minimum biasing) (Harvey

and Gabb 1993). We chose this technique because it allows

a user to bias a MD program ‘‘as is’’, without changing its

code or force-field. CS-GAMDy is the first example of a

successful application of the CONTRA MD method with

collective variables derived from chemical shifts or

knowledge-based normality scores. In short, this approach

involves generating multiple MD trajectories starting from

the same initial model but with different initial velocities.

Once the trajectories are generated, their final models are

assessed and ranked by a scoring function and the model

with the best score is used as the initial model for the next

iteration of the CONTRA MD protocol (Fig. S1; Fig. 1b).

The simulations are terminated after a certain number of

biasing iterations (default is 10), which is typically a

compromise between biasing efficiency and available

computational time. The most significant settings for MD

biasing in CS-GAMDy are documented in Table S3 and

discussed below.

In CS-GAMDy, we use a multi-objective version of the

CONTRA MD protocol. This simply means that we use

more than one scoring function to assess the MD models.

For each biasing iteration, we randomly select one of the

two scoring functions: a GeNMR scoring function (Ber-

janskii et al. 2009) and a RCI-derived accessible surface

area score (RCI-ASA) as seen in Table S1. We selected

these two scoring schemes because they are quick to cal-

culate and permit the use of both experimental information

(raw NMR chemical shifts, secondary structure derived

from NMR chemical shifts, and RCI-based ASA) and pre-

existing knowledge (e.g. threading scores, normality of the

Ramachandran plot, omega angle normality, etc.).

Technically, protein models in the MD biasing step can be

ranked by the scoring functions that are used in the genetic

algorithm of the CS-GAMDy protocol (vide infra). How-

ever, these scoring functions are computationally

demanding and not recommended for MD biasing.

The number of individual MD runs per biasing iteration

can be specified by the user. One MD run per biasing

iteration means no biasing is done by CS-GAMDy and only

the genetic algorithm is enabled (if the genetic algorithm

population[ 1, Fig. S2) or only pure MD is performed (if

the genetic algorithm population = 1, Fig. S2). In practice,

the number of MD runs should depend on the speed of the

biasing scoring programs, available computational time,

and the model difficulty. If simulations do not improve the

value of the scoring function significantly, a user may want

to consider increasing the number of MD runs per biased

MD iteration to capture less abundant conformations that

can help to lead the model to better refinement paths. The

current default number of MD runs per iteration is set to

50, which appears to be a reasonable compromise between

performance and computing time for the examples descri-

bed in this paper.

Genetic algorithm

A multi-objective genetic algorithm was implemented to

manage biased MD runs that get stuck in local energy

minima. We observed that some biased MD simulations

fail to optimize the same starting protein models that other

biased MD runs with identical MD conditions (except MD

velocities) can refine. The ‘‘unlucky’’ runs fail to achieve a

satisfactory level of optimization no matter how long the

simulations are continued. We found that we could achieve

a better overall performance if we run multiple MD biasing

runs and periodically replace ‘‘unlucky’’ runs with suc-

cessful ones. The most important parameters for CS-

GAMDy’s genetic algorithm with their default values are

listed in Table S4 and explained below.

In CS-GAMDy, each iteration of the genetic algorithm

evolves a population of several biased MD models

(Fig. 1b). All trajectories are periodically scored and

ranked with a scoring function. A portion of the population

(20 %) with the worst scores gets is replaced by the model

with the best score. Due to the randomization of MD

parameters (e.g. temperature, velocities, time steps, etc.),

the best-scoring model and its ‘‘clones’’ follow different

optimization paths during the next iteration of the genetic

algorithm. This helps to maintain diversity in the popula-

tion of protein models. Mutations in the CS-GAMDy

genetic algorithm correspond to changes in atom coordi-

nates during XPLOR molecular dynamics. The magnitude

of these mutations depends on local defects in protein

models (as sensed by the chosen MD force-field) and on
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global MD parameters, such as temperature, time step,

length of MD runs, etc. We do not perform coordinate

cross-overs in CS-GAMDy because they can result in

severe atom overlaps and high energies that, in turn, can

cause significant model distortions and simulation crashes.

Since model evaluation in the genetic algorithm happens

less frequently than in MD biasing, we can afford to use

scoring functions that are more computationally expensive

than those in MD biasing. At each step, all models in the

population are assessed and ranked by a scoring function

that is randomly selected from the computationally

demanding scoring functions, such as GOAP (Zhou and

Skolnick 2011) and RW (Zhang and Zhang 2010), and the

less computationally demanding GeNMR and RCI-ASA

functions. The use of multiple knowledge-based scoring

methods from different research groups can help to mini-

mize structural distortions due to imperfections or inaccu-

racies in a particular scoring function. The size of the

genetic algorithm population can also be changed,

depending on available computational resources and model

difficulty. The current default size of a population is 10. It

was sufficient for optimizing most models in this work. A

larger population size may help if simulations struggle to

meet success criteria. To disable the genetic algorithm and

use only MD biasing in CS-GAMDy, the population size

should be set to 1 (Fig. S2).

Termination conditions and simulation time

In order to decide when CS-GAMDy runs can be stopped,

we normally monitor the GeNMR scoring function as an

indicator of structural changes. We terminate simulations

when the GeNMR target function levels off and does not

significantly change for a long period of time (i.e. five

times longer than the initial function decay, see Fig. S3).

The time that is required for a model optimization in

CS-GAMDy can vary (e.g. from several hours to[100 h),

depending on the quality of the starting structure and

experimental data, protein size, computational resources,

and selected parameters of MD, biased MD and genetic

algorithm. In this work, a single CS-GAMDy run took on

average 72 CPU hours on a single 2.6 GHz CPU computer

with 3 GB RAM. This level of time and CPU requirements

is typical for sparse-data modelling methods where the lack

of complete experimental data often leads to a shallow

energy landscape, which requires a more time-consuming

sampling of conformational space (i.e. the ‘‘no free lunch’’

principle). Because CS-GAMDy’s genetic algorithm is

easily parallelized and readily adapted to larger multi-core

installations, the time needed to perform these refinements

will be substantially shortened in future program

distributions.

Success criteria

To assess whether a refinement has been successful or not,

we use well-established criteria for experimentally

restrained protein modelling that are commonly used for

CS-Rosetta simulations: the RMSD criterion and the score-

drop criterion (Raman et al. 2010; Shen et al. 2008;

Thompson et al. 2012). First, we rank all output models by

the GeNMR score and take a cluster of ten models with the

best (i.e. lowest) GeNMR score. During the next step, we

identify the best-score model in this cluster and measure

backbone RMSD of rigid secondary structure elements [a-
helices and b-sheets as identified by CSI (Wishart and

Sykes 1994; Wishart et al. 1992)] of the remaining models

with respect to this best-scoring model. If the average

backbone RMSD of the nine models is within 1.5 Å from

the best-scoring model, we consider the RMSD criterion

satisfied (Fig. S4, black lines). In order to perform the

score-drop test, we conduct simulations with the same

parameters and inputs but exclude the experimental data. If

we observe that the average GeNMR score of the simula-

tions with the experimental data is better than the average

GeNMR score of the simulations without experimental

data, we consider the score-drop criterion satisfied. Both

the RMSD and score-drop criteria need to be met for a

simulation to be considered successful. (Fig. S4, green

lines).

For some starting models with poor GeNMR score

values (above 0), indications of success or failure can be

obtained from the Pearson correlation coefficient between

the GeNMR score and the backbone RMSD to the best-

scoring model (Fig. S4, red lines). Successful simulations

often have correlation coefficients above 0.5, whereas

failed simulations have correlation coefficients near 0.

While this criterion can be useful to evaluate CS-GAMDy

success for models with significant 3D distortions (non-coil

backbone RMSD to the reference model [3Å), it fre-

quently fails for refinement of near-native models (non-coil

backbone RMSD to the reference model\2 Å). To assess

the uncertainty of the CS-GAMDy results, we run ten or

more independent CS-GAMDy simulations. If an ensemble

of the best-scoring models from five successful runs (see

the success criteria above) has a backbone RMSD to the

ensemble mean within 2 Å, we consider the uncertainty of

the CS-GAMDy results to be acceptable.

Testing CS-GAMDy

A total of four tests of the CS-GAMDy protocol were

performed (vide infra). The experimental data provided to

CS-GAMDy consisted of chemical shift derived torsion

angles and secondary structures (Shen and Bax 2015), ASA
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(Berjanskii and Wishart 2013), and chemical shift scores

from the GeNMR scoring function (Berjanskii et al. 2009).

Hence, success or failure of chemical shift refinement was

estimated by monitoring violations of dihedral angle

restraints, secondary structure score, RCI-ASA score, and

Pearson correlation between predicted and experimental

chemical shifts (Tables S7–13, S15–18). Model coordinate

errors were estimated by the backbone RMSD of non-coil

regions with respect to the native protein structure

(Tables 1, 2, 3; Fig. 2). To compare the performance of

CS-GAMDy with a common model refinement in XPLOR

(Schwieters et al. 2003), XPLOR simulations was done

using torsion angle restraints predicted from chemical

shifts by TALOS-N (Shen and Bax 2015) and an XPLOR

script for gentle refinement (refine_gentle.inp) that comes

with XPLOR-NIH distributions.

Limitations

As with any data-driven method, the accuracy of CS-

GAMDy’s results will be limited by the quality or accuracy

of the input data (i.e. ‘‘garbage in equals garbage out’’).

Poorly estimated torsion angles will have a greater impact

on CS-GAMDy’s performance than errors in ASA or sec-

ondary structure. This is because torsion angle restraints

are used during every MD step while ASA and secondary

structure restraints are used for model assessment less

frequently. More specifically, ASA and secondary structure

are used only in the MD biasing and the genetic algorithm,

so any inaccuracies will have a somewhat smaller effect on

the quality of CS-GAMDy’s results.

CS-GAMDy is currently limited to refining monomeric

proteins without any ligands. Efforts are underway in our

lab to extend CS-GAMDy to multimeric proteins and

complexes of proteins with small ligands or/and with other

proteins. While CS-GAMDy can technically take distance

restraints in XPLOR format (i.e. with a flag ‘‘–noe’’), its

conformational sampling and scoring functions have not

yet been optimized for handling distance restraints.

Therefore, this option should be used with some caution.

Currently CS-GAMDy does not accept any XPLOR

restraints other than torsion angle restraints, radius of

gyration, and distance restraints.

CS-GAMDy installation

CS-GAMDy can be installed on any modern Linux com-

puter with 3 GB RAM, at least 1 GB of hard-drive space,

Python 2, and a GCC compiler. Users will also need to

obtain and install several third-party programs, most

importantly XPLOR-NIH, GOAP, and RW. An installation

script is included with the program. Installation instructions

can be found in the README file that comes with a CS-

GAMDy distribution (located at www.gamdy.ca).

Results and discussion

For the first test, CS-GAMDy and the XPLOR refinement

were evaluated on their ability to refine protein models that

were deliberately distorted by unrestrained dynamics. We

started from models of ubiquitin that were misfolded with

Table 1 Model accuracy of the distorted protein models under different refinement scenarios

Protein name PDB ID Model accuracy (backbone RMSD to the reference model, Å)

Initial

model

Refined by

CS-MD

Refined by XPLOR

with NMR data

Refined by CS-GAMDy

without NMR data

Refined by CS-GAMDy

with NMR data

PyJ 1FAF 6.35 2.02 8.97 3.74 1.81

Ubiquitin 1UBQ 3.57 1.92 2.33 0.64 0.49

GB3 1P7E 3.47 0.84 2.82 0.88 0.89

Q5E7H1 2JVW 6.40 1.11 14.19 2.3 1.11

RPA3401 2JTV 3.20 1.30 2.87 1.13 0.74

RHOS4 26430 2JVM 4.60 1.51 4.38 2.15 1.0

Protein LX 2JXT 3.33 1.59 6.24 3.01 0.75

PefI 2JT1 6.75 1.67 14.89 1.06 1.71

tRNA hydrolase domain 2JVA 5.27 1.88 5.23 3.35 1.85

CSPA 1MJC 7.07 2.08 8.04 2.3 1.56

Calbindin D9 K 3ICB 4.81 2.15 4.68 3.26 1.17

NE1242 2JV8 3.63 2.48 6.37 2.38 1.18

Average 4.9 1.7 6.8 2.2 1.2

CS-MD performance data was taken from the work of Robustelli et al. (2010)
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RMSD coordinate errors ranging from 1 to 16 Å. As shown

in Fig. 2, CS-GAMDy could consistently refine ubiquitin

models with starting RMSD’s ranging from 1 to 10 Å to a

near-correct structure (i.e. RMSD\ 1 Å). In contrast,

XPLOR’s refinement could only refine near-native mis-

folded models (i.e. RMSD\ 4 Å).

For the second test, we ran CS-GAMDy and the XPLOR

refinement on a protein evaluation set used by the afore-

mentioned CS-MD (Robustelli et al. 2010), a program for

protein 3D refinement with chemical shifts. This was done

to compare the performance of the three programs on

similar data sets of moderately damaged structures

Table 2 Model accuracy of comparative models of ubiquitin under different refinement scenarios

Template

PDB ID

ID % Model accuracy (backbone RMSD to the reference model, Å)

Initial model Refined by XPLOR

with NMR data

Refined by CS-GAMDy

without NMR data

Refined by CS-GAMDy

with NMR data

1OTR 96 0.91 1.14 1.37 0.66

2GBK 92 3.99 7.03 3.23 0.87

1UD7 91 0.83 0.92 0.86 0.65

2GBJ 90 4.18 3.24 3.33 0.83

2GBM 90 1.0 1.15 0.86 0.83

1WY8 39 3.85 19.27 3.21 0.65

2DZI 39 0.88 4.88 0.94 0.53

2FAZ 37 4.51 25.60 4.44 0.63

1OQY 36 2.42 3.72 1.81 0.63

1WH3 36 0.84 15.84 1.11 0.64

1WX9 34 1.06 1.08 0.82 0.83

1Z2M 33 0.92 0.95 0.87 0.64

1MG8 32 1.41 1.48 0.94 0.64

1UEL 32 0.76 11.83 0.91 0.66

1IYF 30 1.91 10.59 1.38 0.68

1WE7 28 3.98 6.84 3.46 0.5

1TTN 26 1.17 15.23 1.73 0.88

Average 2.03 7.69 1.8 0.69

Table 3 Accuracy of comparative models with different sizes and types of protein architecture under different refinement scenarios

Protein name PDB ID Model accuracy (backbone RMSD to the reference model, Å)

Initial

model

Refined by XPLOR

with NMR data

Refined by GAMDy

without NMR data

Refined by GAMDy

with NMR data

PyJ 1FAF 1.89 2.11 2.6 1.65

Elongation Factor 1 1B64 1.13 1.47 1.89 1.08

GB3 1P7E 2.17 2.45 1.99 1.65

Foxo4 1E17 3.12 25.46 3.01 2.07

Hamster PrP 1B10 1.63 3.99 2.26 1.52

Vts1 2D3D 1.15 1.21 1.66 0.96

NifU-like protein 2LTL 4.62 7.46 4.16 1.49

cg2496 2KPT 3.58 6.39 3.25 2.47

Cadherin 1SUH 1.93 1.51 1.85 1.68

Adenylate kinase 2CDN 1.37 40.41 1.71 1.24

NFU1 homolog 2M5O 3.82 9.67 4.18 1.43

Average 2.4 9.2 2.6 1.5
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(RMSD\ 7 Å). We distorted the 3D structure of each

protein to the RMSD value and by the misfolding method

described in the CS-MD publication (Robustelli et al.

2010). In order to assess the influence of experimental data

on the refinement process, we tested CS-GAMDy with and

without chemical shift scores and restraints. As seen in

Table 1 and Tables S6-9, CS-GAMDy was able to con-

sistently refine the starting models towards the correct

native structure and improve the chemical shift based

scores for all proteins. Table S7 illustrates the striking

improvement in backbone chemical shift correlations

achieved by CS-GAMDy, with the starting structures

having average correlation coefficients of just 0.35, as

calculated by ShiftX (Neal et al. 2003), and the final

structures having correlation coefficients of 0.72 (matching

that of the native proteins). Examples of the improvements

in structural quality for several distorted protein models are

shown on Figs. 3a–c. The average level of RMSD

improvement, with and without experimental data, was 3.6

and 2.7 Å, respectively. This result indicates that CS-

GAMDy has a capacity to efficiently refine protein struc-

tures even without chemical shift data. However, using

chemical shifts improves the refinement outcome by an

additional *1 Å. The average improvement in backbone

RMSD by the CS-MD method (using chemical shift data)

was 3.2 Å (Robustelli et al. 2010). The standard XPLOR

refinement actually made model accuracy worse by 1.9 Å.

This test demonstrates that CS-GAMDy’s performance for

refining distorted protein models is better than the perfor-

mance of CS-MD (Table 1) and XPLOR (Table 1;

Tables S6–9). We also tested CS-GAMDy on misfolded

models of these proteins with RMSDs ranging from 1 to

11 Å (Fig. S5). In all but one case (Protein LX), CS-

GAMDy was able to refine the proteins to a near-native

structure with an RMSD below 2 Å, even when the accu-

racy of the initial model was as poor as 6 Å.

Near-native protein models (such as those generated by

comparative modelling, CS23D, CS-Rosetta or NOE-based

methods) are often more challenging to refine than uni-

formly distorted models. Their structural defects can be

very localized and, therefore, not easily detected by global

scoring functions. To simulate this scenario, we tested CS-

GAMDy and the XPLOR refinement on 17 comparative

Fig. 2 Comparison of the performance of CS-GAMDy (blue dia-

monds) and XPLOR (red squares) for distorted models of ubiquitin.

Model accuracy (backbone RMSD of non-coil regions with respect to

the PDB entry 1UBQ) is plotted on the X axis (before refinement) and

Y axis (after refinement), respectively

Fig. 3 Improvement in model accuracy after CS-GAMDy refine-

ment. Starting models are shown on the left. b-strands are colored

blue, a-helices are colored red and yellow, coil regions are colored

gray. Alignments of refined models (red) with the reference models

(blue) are shown on the right. Numbers represent the backbone

RMSD (in Å) between the models and the reference structure.

a Distorted model of ubiquitin, reference PDB ID: 1UBQ, b Distorted

model of Q5E7H1, reference PDB ID: 2JVW, c Distorted model of

CSPA, reference PDB ID: 1MJC, d Comparative model of cg2496,

reference PDB ID: 2KPT, template PDB ID: 2KW7, sequence ID:

24 %, e Comparative model of ubiquitin, reference PDB ID: 1UBQ,

template PDB ID: 1IYF, sequence ID: 30 %, f Comparative model of

NFU1 homolog, reference PDB ID: 2M5O, template PDB ID: 1TH5,

sequence ID: 20 %
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models of ubiquitin that were generated from templates

ranging from 26 to 96 % sequence identity. These models

had RMSDs ranging from 1.37 to 4.86 Å. All comparative

models were prepared using the homology modelling

functionality of the CS23D webserver (Wishart et al.

2008). PDB IDs of templates and reference proteins are

listed in Tables 2 and S14. In all cases, CS-GAMDy was

able to improve model accuracy and chemical shift based

scores (Table 2 and Tables S10–13). The RMSD to the

reference structure was below 1 Å for all refined models.

An example of the level of structural improvement

achieved is shown on Fig. 3e. When chemical shifts were

used, the average improvement in model accuracy was

1.34 Å with the maximum improvement being 3.9 Å.

Removal of experimental data led to much more modest

enhancements of model accuracy (i.e. average improve-

ment of 0.2 Å). A standard XPLOR refinement protocol

made average model accuracy worse by 5.7 Å.

In the final test, we evaluated how well CS-GAMDy and

the standard XPLOR refinement could optimize homology

models of 11 different proteins with different architectures

(all a, a/b, and all b), created from templates with sequence

identity levels ranging from 19 to 95 % (Table S14). The

RMSD of these models relative to the corresponding refer-

ence structures ranged from 1.1 to 4.6 Å (Table 3). In all

cases, CS-GAMDy succeeded in improving chemical shift

based scores and decreasing coordinate errors, with RMSD

reductions ranging from 0.05 to 3.13 Å (Table 3 and

Tables S15–18). The average changes in model accuracy

(with and without experimental data) were 0.8 and -0.2 Å,

respectively, indicating that the experimental data was

essential for the refinement. In contrast, the XPLOR refine-

ment actually decreasedmodel accuracy by 7 Å, on average.

Examples of improvements of comparative models by CS-

GAMDy are shown on Fig. 2d–f.

The aforementioned results demonstrate that the CS-

GAMDy protocol can tolerate modest errors in the input

data. Indeed, the chemical shift input data did not have

complete agreement with the reference structures

(Tables S6–9 and S15–18). Yet, the CS-GAMDy refine-

ment achieved good accuracy for many of proteins tested

(Figs. 2, S5; Tables 1, 2, 3). Not surprisingly, CS-GAMDy

showed the best performance for experimental input with

the smallest errors, especially with errors in torsion angle

restraints. This can be seen with the data sets for ubiquitin

and GB3 (Figs. 2, S5).

Conclusion

Protein structure determination from sparse NMR data is

critical for expanding NMR’s reach to higher molecular

weight proteins, disordered proteins, and poorly soluble

proteins. Current approaches generally combine compara-

tive modelling or fragment-based assembly with sparse

NMR data such as chemical shifts or small number of

NOEs. However, these limited-data methods often generate

unrefined, approximate models with clear structural errors.

The inability to easily refine and optimize these structures

using sparse NMR data (i.e. chemical shifts) has limited

their deposition frequency to the PDB and prevented their

widespread uptake and use within the NMR community.

To address these problems, we have developed a new

algorithm, called CS-GAMDy, for performing chemical

shift optimization with the widely used XPLOR-NIH

molecular modelling package. Extensive assessments using

four different test sets showed that CS-GAMDy was able to

consistently drive all starting (approximate) structures

towards the correct structure while at the same time

improving the level of agreement with the observed

chemical shifts. CS-GAMDy employs a unique combina-

tion of multi-objective MD biasing and a genetic algorithm

to incorporate pre-existing and experimental NMR infor-

mation, including the novel RCI-ASA score, into its pro-

tein model optimization. CS-GAMDy represents the first

successful implementation of the CONTRA MD biasing

method with collective variables derived from chemical

shifts and knowledge-based scores.

Based on its performance over a wide range of refine-

ment scenarios we believe CS-GAMDy will now allow

protein models initially generated by sparse restraint or

chemical-shift-only methods to achieve sufficiently high

quality to be considered fully refined and worthy of PDB

submission. Furthermore, CS-GAMDy should also allow

the time and labour savings originally projected for sparse-

restraint NMR structure determination to be fully realized.

Efforts to improve the program’s speed (through paral-

lelization) and accuracy, through the use of ShiftX? (Han

et al. 2011) and improved ASA calculations, are actively

underway. Extending CS-GAMDy to work with other types

of sparse NMR data (NOEs, RDCs, PREs, cross-linking

data) and to perform ab initio folding is also under devel-

opment and will be described in future publications. CS-

GAMDy is available from www.gamdy.ca.
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