
ARTICLE

Performance of the WeNMR CS-Rosetta3 web server
in CASD-NMR

Gijs van der Schot1,2 • Alexandre M. J. J. Bonvin1

Received: 11 March 2015 / Accepted: 28 April 2015 / Published online: 17 May 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We present here the performance of the

WeNMR CS-Rosetta3 web server in CASD-NMR, the

critical assessment of automated structure determination by

NMR. The CS-Rosetta server uses only chemical shifts for

structure prediction, in combination, when available, with a

post-scoring procedure based on unassigned NOE lists

(Huang et al. in J Am Chem Soc 127:1665–1674, 2005b,

doi:10.1021/ja047109h). We compare the original sub-

missions using a previous version of the server based on

Rosetta version 2.6 with recalculated targets using the new

R3FP fragment picker for fragment selection and imple-

menting a new annotation of prediction reliability (van der

Schot et al. in J Biomol NMR 57:27–35, 2013, doi:10.

1007/s10858-013-9762-6), both implemented in the CS-

Rosetta3 WeNMR server. In this second round of CASD-

NMR, the WeNMR CS-Rosetta server has demonstrated a

much better performance than in the first round since only

converged targets were submitted. Further, recalculation of

all CASD-NMR targets using the new version of the server

demonstrates that our new annotation of prediction quality

is giving reliable results. Predictions annotated as weak are

often found to provide useful models, but only for a frac-

tion of the sequence, and should therefore only be used

with caution.

Keywords Automated structure determination �
Chemical shifts � NOE-based scoring � Grid computing

Introduction

An understanding of the three-dimensional (3D) structure

of proteins at atomic resolution and their conformational

variability and dynamics, is essential for a proper under-

standing of their function and their interactions with other

proteins and ligands, and for rational drug design (van den

Bedem and Fraser 2015). Currently there are several

techniques that can produce protein structures at atomic

resolution: X-ray crystallography, and nuclear magnetic

resonance spectroscopy (NMR), with cryo-electron mi-

croscopy (cryo-EM) now reaching atomic resolution with

recent advances in detector technology and improved

software and algorithms (Bai et al. 2015). NMR is limited

in the size of molecules it can study, but has the advantage

with respect to other methods that it can study protein

dynamics from picosecond up to millisecond time scales

and beyond.

The most time-consuming and difficult part of NMR

structure elucidation is the assignment of side chain che-

mical shifts and the NOE cross peaks and several methods

have been developed over the years to automate as much as

possible this process, often in combination with structure

calculations (Guerry and Herrmann 2011). Methods such

as CS-ROSETTA (Shen et al. 2008), CHESSHIRE (Cavalli

et al. 2007) and CS23D (Wishart et al. 2008) avoid this step

by exploiting the structural knowledge present in the

readily available backbone chemical shifts. The backbone

chemical shifts themselves reflect an appreciable amount of

structural information, such as backbone and side-chain

conformations, secondary structure, aromatic ring position
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and the presence of hydrogen bonds. These methods use

the backbone chemical shift, together with a database of

known protein structures and of their backbone chemical

shifts to predict the 3D structure of proteins.

The standard CS-ROSETTA protocol consists of three

steps: (1) the selection of fragments; (2) the assembly of

models from these fragments; (3) the selection of models.

In a recent paper we introduced a number of algorithmic

advances for CS-ROSETTA including the rosetta3 frag-

ment picker (R3FP), and a post-analysis procedure that

annotates the reliability of predicted structure, and identi-

fies the locally converged regions of the models (van der

Schot et al. 2013). These improvements together are shown

to improve the reliability, convergence of the final struc-

ture. The annotation prediction is based on: (1) the total

number of converged residues, (2) the significance of the

ROSETTA energy gap, and (3) the quality of the chemical

shift data. The label strong indicates that the converged

regions are likely to be correct, whereas the annotation

weak indicates that the conserved regions have to be han-

dled with care.

In this work we assess the impact of those recent de-

velopments by (re) predicting the structure of 19 CASD-

NMR (critical assessment of automated structure determi-

nation by NMR) (Rosato et al. 2009, 2012) targets. We

used the WeNMR (Wassenaar et al. 2012) webservice CS-

ROSETTA3 (https://www.wenmr.eu/wenmr/structure-cal

culation-software) (van der Schot et al. 2013), connected to

the computational resources of the European Grid Initiative

(EGI, www.egi.eu), for efficient CS-ROSETTA3 calcula-

tions. This service uses the new R3FP fragment picker for

fragment selection, distributes the assembly step over the

available nodes (using ROSETTA3.3), and implements the

new post-analysis procedure (van der Schot et al. 2013).

The results are compared to the results from our original

structure predictions submitted to CASD-NMR.

Materials and methods

We evaluated our new structure prediction methodology by

predicting the structure of 19 CASD-NMR targets. The

targets are named by their respective CASD-NMR and

PDB-IDs. They were all provided by the Northeast Struc-

tural Genomic Consortium (Huang et al. 2005a), repre-

senting a consistent set of data made available via the

WeNMR site (https://www.wenmr.eu/wenmr/casd-nmr).

We omitted target 2LOJ, due to the large number of

unusual and ‘flexible’ amino acids, as we did for the CASD

submission. The sequence length of the targets varies be-

tween 50 and 149 amino acids, and any flexible termini

were excluded from the predictions.

Fragment selection

The web service CS-ROSETTA3 used R3FP fragment

picker for fragment selection. As input only the backbone

NMR chemical shift lists were used. Lists can be supplied

in any of the NMRPipe(TALOS) (Delaglio et al. 1995),

NMR-Star 2.1, or NMR-Star 3.1 (BMRB) formats

(Doreleijers et al. 2003).

Assembly

The web service CS-ROSETTA3 used the selected frag-

ments in the ROSETTA3.3 assembly step. For each target,

50.000 models were generated automatically, using the

standard CS-ABRELAX protocol. The model generation

step was distributed over the available nodes in the world-

wide WeNMR grid under the European Grid Initiative (EGI).

Conserved regions

The conserved regions of a protein structure prediction

were determined using an adaptation of the Gaussian-

weighted RMSD method (Damm and Carlson 2006). The

30 lowest ROSETTA energy structures were superimposed

using a scaling factor of 2 Å2 (Damm and Carlson 2006).

This procedure iteratively determines the set of residues on

which the structures can be superimposed; residues with a

root mean square fluctuation (RMSF) of \2 Å are con-

sidered to be converged. Gaps smaller than 3 residues be-

tween two low RMSF regions are ignored.

Annotation

The cs-class, convergence and energy-gap criteria were

used for determining the annotation (van der Schot et al.

2013). The cs-class criterion is the fraction of residues

classified ‘‘GOOD’’ by TALOS? (Shen et al. 2009).

Convergence is the fraction of residues, which are con-

sidered to be part of a conserved region. The energy gap is

the difference between the median energy score of the 10

lowest energy score, and the median energy score of the 10

lowest energy models [4 Å away from the best energy

model. The gap is directly mapped to [0, 1] using a sig-

moidal function. If the predictor model Psum ¼
0:08ccs�class þ 0:54cconvergence þ 0:38cenergy�gap exceeded

0.68, predictions were considered strong, and weak other-

wise (van der Schot et al. 2013).

Selection of models

The web service uses SPARTA? (Shen and Bax 2010) to

select the final models. For several targets the chemical
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shift score was combined with the DP score (Huang et al.

2005b). The DP score uses unassigned NOE lists for model

selection, which has been shown to improve model selec-

tion. Finally the top 5 models after rescoring were used for

the comparison step, similarly to the procedure followed

for the CASD submissions.

Evaluation

All Root Mean Square Deviations (RMSDs) are the average

RMSD calculated over the Ca, C, and N atoms, relative to

the 20 PDB deposited reference structures, i.e. the average

of all pairwise comparisons between the selected models

and each of the 20 reference structures in the PDB entry.

Results

We have compared our original CASD-NMR submissions,

both from the first CASD-NMR round, which has been

previously evaluated (Rosato et al. 2012) and from the last

round, with predictions obtained using the CS-Rosetta3

server (van der Schot et al. 2013), implementing the new

R3FP fragment picker for fragment selection. All targets

were thus re-run in consistent manner and automatically

annotated to evaluate the reliability of the predictions.

Original CASD-NMR round 2 submissions

Compared to the previous round of CASD-NMR where we

submitted prediction irrespective of the convergence of the

top 5 models, in this second round we followed a more

conservative approach, submitting predictions only for

those targets that showed convergence (with as guideline

an average RMSD of top 5 models from the best model

*\2 Å). Models were submitted for 7 of the 10 CASD-

NMR targets (with HP2876B, StT322 and YR313A

unconverged). Convergence and accuracies of these sub-

missions are summarized in Table 1.

Prediction and annotation using the CS-Rosetta3

server

Table 2 summarizes the results from the structure pre-

dictions for all CASD-NMR targets to date. Six out of

nineteen targets were annotated as strong (meaning reli-

able prediction), and thirteen were annotated weak. Out of

the strong targets, on average 86 % of the sequence was

regarded as conserved. All strong targets had an average

pairwise RMSD within 2 Å from the reference structure,

calculated over the conserved regions. One target, 2KPT,

converged with the new method (RMSD = 1.39 Å),

whereas the original submission did not find the correct

fold. For the other strong targets, the results from our new

protocol are similar to the performance of the old

protocol.

For the weak targets, shorter parts of the sequence were

regarded as conserved, on average 33 %, with, for 12 out of

13 targets, an average pairwise RMSD from the reference

structure 2 Å. The main reason for the weak annotation for

those targets is the small fraction of the sequence showing

convergence. Our protocol finds the wrong folds for the

converged region of target 2KJ6 and 2LTL.

Figure 1 shows an overview of the six strong targets.

For each target the reference structures are in blue, and the

predicted structures are in red, with unconverged regions in

gray.

Performance of the CS-ROSETTA3 server

Figure 2 shows the average time for each step of the CS-

rosetta protocol. On average a complete CS-Rosetta run,

including fragment selection, model generation and post-

analysis, takes 991 min (16.5 h) on the CS-Rosetta3

Table 1 Performance of the CS-Rosetta WeNMR web server in round 2 of CASD-NMR

Target

NESG IDa
PDB

ID

Predicted

segment

Server version

and scoringb
\Pairwise RMSD[
of top 5 modelsc

\Pairwise RMSD[
from targetc

\Pairwise RMSD[
of targetc

HR6470A 2L9R 12–58 2.6/CS 0.58 ± 0.18 0.77 ± 0.13 0.47 ± 0.09

HR6430A 2LA6 15–97 2.6/CS–DP 2.28 ± 0.41 2.00 ± 0.30 0.52 ± 0.08

HR5460A 2LAH 13–159 2.6/CS 3.00 ± 0.59 3.38 ± 0.63 0.78 ± 0.12

OR36 2LCI 1–114 2.6/CS–DP 1.13 ± 0.23 1.66 ± 0.27 0.94 ± 0.14

OR135 2LN3 3–76 2.6/CS 0.76 ± 0.27 1.25 ± 0.12 0.74 ± 0.12

HR8254A 2M2E 553–613 2.6/CS 1.46 ± 0.54 1.86 ± 0.34 0.87 ± 0.19

HR2876C 2M5O 16–93 2.6/CS 0.99 ± 0.21 1.33 ± 0.19 0.62 ± 0.09

a All targets contributed by the Northeast Structural Genomics Consortium (Huang et al. 2005a) (see Table 2 for references and doi’s)
b CS Chemical shift scoring; DP DP score (Huang et al. 2005b)
c RMSD calculated on backbone CA, C, N atoms
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WeNMR server. Nearly 45 % of the total time is used to

assemble the 50,000 models on the WeNMR EGI grid.

Discussion

Using the CASD-NMR target, we have shown that, as

predicted earlier (van der Schot et al. 2013), our annotation

method is able to discriminate successful structure

predictions. Six out of 19 targets were annotated as strong.

For these targets, the distance from the reference structure

was below 2 Å with on average 86 % of the sequence

converged. This rather low percentage of strong annota-

tions (31.6 %) leaves space of improvements. For example

the RASREC method we have previously published (van

der Schot et al. 2013) has been shown to increase the

number of strong predictions. This method, however, does

require a large number of CPU cores with MPI (Message

Passing Interface) communication, which cannot currently

be implemented on grid resources.

In the case of weak annotations, the determined ‘‘rigid’’

or converged regions of the predicted model can still be

useful: Indeed, in 85 % of those ‘weak’ cases the con-

served regions are accurately predicted. However, target

2KJ6 and 2LTL do show that the results of weak predic-

tions have to be used with care. Since 2LTL has only 10 %

of its sequence converged, the complete structure should be

disregarded, which is an easy case. In contrast, 2KJ6 has

48 % of its sequence converged (a reasonably large frac-

tion), but in fold that is different from the reference

structure. Except for the annotation, nothing is really

indicative of a wrong fold. We therefore recommend to

only use weak annotations with care and search for ex-

perimental evidence (e.g. in NOE peaks) of their

correctness.

Overall, if we would restrict our earlier submitted

models to the conserved regions, we see (Table 2) that we

have successfully (RMSD from target\2 Å) predicted the

Fig. 1 Overview of six

representative CASD-NMR

targets from the CS-Rosetta3

WeNMR server. The top three

structures are annotated as

strong (reliable), and the bottom

three as weak. For each, the

NMR reference structure bundle

is in shown in red, and the CS-

Rosetta3 models in blue for the

converged regions and grey for

the unconverged regions

32

695

149

109

R3FP

Assembly

Annotation

Rescoring

Fig. 2 Pie chart showing the CPU time used for an averege CS-

Rosetta calculation on the WeNMR grid-enabled server. Blue time

spent for fragment selection using R3FP (32 min.); red assembly time

using the WeNMR grid (695 min.); green annotation time (149 min.)

and purple rescoring time (109). An average job takes *16 h (real

time) from submission to completion
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structure for these regions in 88 % of the submitted cases

(15 out of 17). Six out of these (40 %) correspond to strong

annotations with sequence coverage between 64 and

100 %.

Considering the performance of the grid-enabled web

server, we can see that distributing the jobs on the grid

speeds-up the calculations *900 times, compared to run-

ning on a single CPU (which would not be a realistic

scenario for Rosetta calculations—compared to a 100 CPU

cluster the speed up would only be *9 times). Note that

the server is using grid resources in an opportunistic

manner, farming out 2500 jobs (for 50,000 models, each

jobs calculating 20 models) to grid sites (currently 41 sites

are supporting WeNMR (see http://gstat.egi.eu/gstat/geo/

openlayers#/VO/enmr.eu) and that grid computations come

with some overheads in jobs handling and response.

In conclusion, in this second round of CASD-NMR, the

WeNMR CS-Rosetta server has demonstrated a much

better performance than in the first round, mainly due to the

fact that this time only converged targets were submitted

while in the first round all targets were submitted irre-

spective of their convergence. We have also demonstrated

on the recalculated targets that our new annotation of

prediction quality is giving reliable results. Our annotations

might seem rather conservative considering that more tar-

gets annotated as weak show a good similarity to the

manual reference structure. These might still provide useful

information for further NMR work, but should be used with

care.
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