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Abstract Metal ions serve important roles in structural

biology applications from long-range perturbations seen in

magnetic resonance experiments to electron-dense signa-

tures in X-ray crystallography data; however, the metal ion

must be secured in a molecular framework to achieve the

maximum benefit. Polypeptide-based lanthanide-binding

tags (LBTs) represent one option that can be directly

encoded within a recombinant protein expression construct.

However, LBTs often exhibit significant mobility relative

to the target molecule. Here we report the characterization

of improved LBTs sequences for insertion into a protein

loop. These LBTs were inserted to connect two parallel

alpha helices of an immunoglobulin G (IgG)-binding Z

domain platform. Variants A and B bound Tb3? with high

affinity (0.70 and 0.13 lM, respectively) and displayed

restricted LBT motion. Compared to the parent construct,

the metal-bound A experienced a 2.5-fold reduction in tag

motion as measured by magnetic field-induced residual

dipolar couplings and was further studied in a 72.2 kDa

complex with the human IgG1 fragment crystallizable

(IgG1 Fc) glycoprotein. The appearance of both pseudo-

contact shifts (-0.221 to 0.081 ppm) and residual dipolar

couplings (-7.6 to 14.3 Hz) of IgG1 Fc resonances in the

IgG1 Fc:(variant A:Tb3?)2 complex indicated structural

restriction of the LBT with respect to the Fc. These studies

highlight the applicability of improved LBT sequences

with reduced mobility to probe the structure of macro-

molecular systems.

Keywords Immunoglobulin G � Glycoprotein �
Terbium luminescence � PCS � RDC

Introduction

Metal ions exhibit important properties that assist charac-

terization of macromolecular structure and motion. The

high electron density of many metals provides unambigu-

ous signals in X-ray diffraction data that can be used to

determine phases (Silvaggi et al. 2007). Paramagnetic

metals can be observed directly, as contrast reagent, or

reveal a wealth of information regarding the structural and

dynamic features of macromolecules using electron para-

magnetic resonance, magnetic resonance imaging or

nuclear magnetic resonance (NMR) spectroscopy (Hiruma

et al. 2013; Iwahara and Clore 2006; Pilla et al. 2015;

Shulman et al. 1969; Skinner et al. 2015; Tolman et al.

1995). Long distance restraints (5–50 Å) from measure-

ments of paramagnetic effects are invaluable to refining

molecular models built from short-range nuclear Over-

hauser effects (NOEs,\6 Å) and complementary solution

NMR spectroscopy data (Bertini et al. 2002).

Paramagnetic metals can occur naturally in a macro-

molecule (Butler 1998; Sjodt et al. 2015) or be introduced

by replacing an existing metal (Keniry et al. 2006), cova-

lently or non-covalently added as a chelate (Huang et al.

2013; Lee et al. 2015; Loh et al. 2015; Wei et al. 2013;

Yang et al. 2015), bound by an unnatural amino acid (Loh

et al. 2013; Park et al. 2015), or lanthanide-binding peptide

sequence tag (LBT) engineered into the protein sequence

(Barthelmes et al. 2011; Feeney et al. 2001; Gaponenko

et al. 2000; Martin and Imperiali 2015; Nitz et al. 2003; Su

et al. 2008), to reference a few key examples. One common

limitation to artificial tags is the presence of metal ion
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motion. Modeling motion as an additional variable in

structure calculations has proven effective with paramag-

netic probes including the non-metallic nitroxide spin label

and EDTA-Mn(II) complexes (Iwahara et al. 2004a, b). For

incorporating metals, polypeptide-based tags have the

advantage of ease-of-use by simple encoding into a protein

expression vector but predicting tag motion for structure

calculations is challenging due to an increase in tag size

(*1800 Da) and number of rotatable bonds when com-

pared to the nitroxide labels (*170 Da). Engineering

proteins to attach LBTs within the protein rather than at the

N or C termini has proven successful, either through

incorporation into a loop connecting two defined secondary

structural elements or through secondary attachment to a

cysteine residue (Barb et al. 2012; Barthelmes et al. 2011;

Saio et al. 2009). Such alterations likely will reduce, but

not eliminate, peptide-based tag motion. We sought to

improve existing LBT sequences by eliminating unneces-

sary amino acids that contribute to neither conformational

stability nor lanthanide binding.

Paramagnetism from unpaired electrons introduces a

strong local magnetic field that increases relaxation rates of

nearby nuclei with an r-6 distance dependence (paramag-

netic relaxation enhancement, or PRE) or perturbs reso-

nance frequencies with an orientation and r-3 distance

dependence (pseudocontact shifts, or PCSs) in NMR

spectra (reviewed in Koehler and Meiler 2011; Otting

2008). One advantage of these phenomena is that they are

measurable using only 1d or 2d NMR experiments.

Paramagnetic lanthanide ions are becoming increasingly

utilized as structural probes because of their limited

chemical reactivity, bioorthogonal nature, similar coordi-

nation chemistry across the group, and strong magnetic

properties. The magnetic susceptibility (v)-tensor for most

paramagnetic lanthanide ions is characterized by signifi-

cant anisotropy that leads to partial alignment of lanthanide

chelates in a magnetic field and, as an independent phe-

nomenon, PCSs of resonances (Otting 2008). Anisotropy is

greatest for the Tb3?, Dy3? and Tm3? ions. Though

paramagnetic, Gd3? has an isotropic v-tensor and does not

cause alignment or PCSs. The diamagnetic lanthanide ions

La3? and Lu3? are useful in control experiments because

they neither align nor cause PCSs and PREs.

Partial alignment of a paramagnetic molecule reintro-

duces residual dipolar couplings (RDCs) that can be used

as a powerful mechanism to measure molecule alignment.

RDCs are not normally observed in solution NMR exper-

iments due to rapid isotropic tumbling that causes dipolar

couplings to average to zero. The coupling strength is

related to the distance between two nuclei and their aver-

age orientation with respect to the static magnetic field,

thus it is possible to measure the angles between different

internuclear vectors in a molecule (Prestegard et al. 2004).

The strength of molecular alignment is reflected in the

strength of residual dipolar couplings (RDCs) (Koehler and

Meiler 2011; Otting 2008 and references therein). Larger

RDC values and a larger principle alignment tensor (Da) of

the alignment indicate a greater degree of alignment. Fur-

thermore, RDCs contribute high-resolution information

relating relative domain orientations of multi-domain

macromolecules.

Paramagnetic probes are particularly applicable to

structural investigations of large systems by solution NMR

spectroscopy where molecular mass combined with limited

labeling options or conformational exchange favors sparse

amino acid labeling and prohibits many modern 3d and

4d experiments to measure long-range through-space and

through-bond nuclear interactions (Otting 2008; Yagi et al.

2013). One such system of interest is the Fragment crys-

tallizable (Fc) region of immunoglobulin G1 (IgG1). IgG1

Fc is a homodimer with a single N-glycan at Asn297 that is

critical to Fc c receptor mediated immune cell activation

(Hanson and Barb 2015) and glycan composition is

strongly correlated with rheumatoid arthritis disease (Par-

ekh et al. 1985). As a result of the post-translational

modification, active IgG1 Fc can only be produced in

mammalian cells that do not permit deuterium labeling

during expression. To probe the IgG1 Fc structure in

solution, a chimeric Fc and lanthanide-binding protein was

designed based upon three helices of the Fc-binding

Z-domain (Nilsson et al. 1987; Tashiro et al. 1997) and a

lanthanide-binding tag (LBT) (Nitz et al. 2003; Su et al.

2006), termed Z-l2LBT (Barb et al. 2012). Despite

replacing loop 2, connecting helices 2 and 3 of the Z-do-

main, with the LBT, considerable tag motion was observed

(Fig. 1).

Here we present the improvement of one polypeptide-

based LBT to reduce motion and preserve affinity towards

lanthanide ions. Though LBT sequences are applicable to

numerous types of techniques, we utilized solution NMR

spectroscopy to provide a high-resolution and quantifiable

characterization of protein structure and motion. Two

variants with reduced loops linking the Z domain to the

LBT were prepared and characterized. We also investi-

gated the utility of one design to probe the structure of a

large 72.2 kDa complex with IgG1 Fc.

Experimental conditions

Materials

All materials, unless otherwise noted, were from Sigma-

Aldrich. Stable isotope-enriched compounds were pur-

chased from Cambridge Isotopes.
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Protein expression and characterization

Z-l2LBT expression using E. coli BL21* cells was

described previously (Barb et al. 2012). Open reading

frames for variants A and B were synthesized (Genscript)

and cloned into pET29 as described for the Z-l2LBT

construct (Barb et al. 2012). Expression, stable isotope

labeling, purification, and Tb3? binding measurements of

variants A and B were performed as previously described

(Barb et al. 2012). A modified construct of variant A was

prepared that permitted tobacco etch virus protease (TEV)-

catalyzed cleavage of the His tag (liberating

G13V14D15…K83) for studies of the Fc:A complex. The

TEV reaction was performed at 25 �C for 16 h in the dark

in a buffer containing 50 mM trisaminomethane, 100 mM

sodium chloride, 0.5 mM ethylenediaminotetraacetic acid

and 2 mM beta-mercaptoethanol, pH 8.2. The cleaved

variant A product was isolated by passing the reaction

mixture over a Ni–NTA column (Qiagen) and collecting

the flow-through fraction. Cleaved variant A (1 mL) was

then subject to dialysis for 4 h against 1 l of 25 mM 3-(N-

morpholino)propanesulfonic acid (MOPS), 100 mM

potassium chloride at 25 �C using a 3000 molecular

weight-cutoff dialysis tubing (Spectrum Labs). The dialysis

was repeated against a fresh 1 l of the same MOPS buffer.

Expression and purification of the human IgG1 Fc was

conducted using HEK293F cells as described (Subedi et al.

2015).

NMR spectroscopy

NMR spectrometers operating at 21.1 T, 14.1 T (both

Varian VNMRS) or 18.8 T, 16.4 T (Bruker Avance 3,

Avance 2, respectively) were equipped with cryogenically-

cooled 5 mm probes. 1H resonance frequencies were

internally referenced to DSS; 13C and 15N frequencies were

indirectly referenced using the spectrometer’s 1H fre-

quency at 0 ppm (Markley et al. 1998). NMR data were

analyzed using Topspin (Bruker; v.2.1), NMRPipe (De-

laglio et al. 1995), NMRViewJ (Johnson and Blevins 1994)

and Sparky (version 3.115; Goddard and Kneller, Univer-

sity of California, San Francisco).

Assignment of 1H–15N correlation peaks collected using

the variant A:Lu3? chelate was completed as previously

described (Barb et al. 2012) using triple resonance HNCO,

HNCA, HNCACB and CBCACONH experiments col-

lected at 14.1T and 10 �C (Cavanagh 2007). Assignments

for variant A were deposited in the BioMagResBank

(BMRB) as accession number 19769. Assignment of

residues from the paramagnetic complexes (?Dy3?

Z domain
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Z domain

Z 2LBT

Z 2LBT
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Var. B

Helix 1

Loop 1

Helix 2
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Helix 3
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Z Domain
N-term
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Fc
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Z 2LBT
binding site(2)
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MGSSHHHHHHSSG VDNKF <NKEQQNAFYEILH> LPNL  
MGSSHHHHHHSSG VDNKF <NKEQQNAFYEILH> LPNL  
MGSSHHHHHHSSG VDNKF <NKEQQNAFYEILH> LPNL
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<NEEQRNAFIQSLKDD>
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P-------------------S 
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Fig. 1 Features of chimeric

IgG and lanthanide-binding

Z domain designs. a A green

ribbon diagram depicts the Z

domain with a lanthanide

binding tag in loop 2 (Z-

l2LBT) (Barb et al. 2012). b
Z-l2LBT binds to the same

surface of IgG1 Fc as the

parent Z-domain. c Variant

A and B differ from the parent

Z-l2LBT protein by removal of

5 and 2 residues from the LBT/

Z linker, respectively. Arrows

indicate LBT residues that

directly interact with Ln3?

ions. Underlining of the variant

A sequence denotes assigned

amide resonances
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or ? Tb3?) were made by comparison to a spectrum of the

corresponding diamagnetic complex (?Lu3?) and using

available backbone resonance assignment data of diamag-

netic proteins where applicable [Z-l2LBT (BMRB 18126);

variant A (19769); IgG1 Fc (25224)].

NMR spectra to probe the binding of variant A to IgG1

Fc were collected at 16.4 T and 50 �C. 1H–15N heteronu-

clear single quantum coherence (HSQC) spectra of iso-

topically enriched IgG1-Fc (150 lM: dimer) with selective

[15N]-Tyr amino acid residues were collected with and

without variant A (330 lM) plus Lu3? (330 lM). NMR

samples were prepared in 25 mM MOPS, 100 mM sodium

chloride, 0.5 mM DSS and 5 % D2O, pH 7.2.

Measurements of A and B alignments were made with

samples containing 150 lM protein with one molar

equivalent of either Lu3? or Dy 3? at 25 �C and 21.1 T.

NMR spectra to record pseudo-contact shifts (PCS) and

residual dipolar coupling measurements (RDCs) on the

IgG1 Fc:(variant A:Ln3?)2 complex were collected at 18.8

T and 50 �C using 125 lM IgG1 Fc (dimer), 275 lM TEV-

cleaved variant A, 290 lM Tb3?(or Lu3?) in a buffer

containing 10 mM MOPS, 100 mM KCl, 0.5 mM DSS and

5 % D2O, pH 7.2. RDCs were measured with a J-modu-

lation based strategy as described (Barb et al. 2012; Liu

and Prestegard 2009) by subtracting 1H–15N couplings

measured with diamagnetic samples (containing the dia-

magnetic Lu3? ion) from couplings measured with para-

magnetic samples (containing the Tb3?) and analyzed as

described using PALES (Zweckstetter and Bax 2000). PCS

were analyzed using NUMBAT (Schmitz et al. 2008).

Structure figures were prepared using PyMol (The

PyMOL Molecular Graphics System, Version 1.5.0.4

Schrödinger, LLC).

Results and discussion

Lanthanide-binding properties of truncated

Z-l2LBT variants

Z-l2LBT was targeted for optimization to reduce LBT

motion relative to the three Z-domain helices. We designed

two variants by eliminating amino acid residues in the two

segments connecting the LBT and Z moieties that were

believed to facilitate LBT mobility (Barb et al. 2012).

Variant A (5 residues removed) and variant B (2 residues

removed) expressed as soluble proteins at high yields using

E. coli ([100 mg protein/L culture) and were purified

(Fig. 1).

Variants A and B bound Tb3? with high affinity in a

spectrofluorophotometric assay that excites only polypep-

tide-bound ions at 280 nm through a Tyr residue in the

LBT moiety. Titrating variant A or B with Tb3? led to

saturation of luminescence at 490 and 540 nm and is

shown in Fig. 2. Variants A (700 ± 50 nM) and

B (130 ± 50 nM) bound with dissociation constants (Kd)

that are comparable to that of the original Z-l2LBT protein

[130 ± 30 nM (Barb et al. 2012)]. As a result of the lan-

thanide ion binding affinity, either variant will be saturated

at a ratio of 1:1 in NMR experiments that typically use

[50 lM protein.

Domain motion of the lanthanide-binding Z-l2LBT

variants

We estimated field-induced alignments of the Z domain

moiety for the A:Dy3? and B:Dy3? complexes by mea-

suring RDCs. If the Dy3?:LBT moieties of each variant are

assumed to align in an identical manner, a reasonable

assumption due to complete conservation of the lanthanide-

binding residues, principle alignment tensors (Da) fitted by

analyzing RDCs of the underlying Z domains may be

compared between variants as a relative measurement of Z

domain alignment and thus interdomain LBT/Z mobility.

This approach does not require the underlying Z-domains

to align in the same orientation and was utilized here

because the LBT residues were broadened beyond detec-

tion due to the paramagnetic ion, eliminating the possibility

of measuring the amplitude of interdomain motion directly

using RDCs.

HSQC spectra of 15N-labeled variant A, variant B and

Z-l2LBT with a 1 molar equivalent of Dy3? were com-

pared to spectra of diamagnetic Lu3? complexes as shown

in Fig. 3. The spectrum of variant A was affected sub-

stantially by PREs in the Dy3? complex with only 14

amide peaks visible. A spectrum of variant B ? Dy3?, like

the parent Z-l2LBT ? Dy3? complex, contained more than

twice as many peaks as A. All three spectra showed the

effect of PCSs ([0.5 ppm) (the Z-l2LBT spectrum is

shown in Barb et al. 2012).

A comparison of the one-bond scalar 15N–H coupling

(1JNH) from the unassigned spectra of the designed proteins
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Fig. 2 Tb3?-binding affinity of variants A and B
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in a Dy3? complex provided insight into the different

molecular properties. Variant A displayed the largest range

of values (81–114 Hz) while the range of B (85–109 Hz)

was less than A but greater than Z-l2LBT (88–103 Hz) as

shown in Fig. 3a. The greater range of 1JNH values and

fewer peaks resulting from PREs observed for A is

consistent with an LBT that is closer to the three Z domain

helices and experiences a reduced amplitude of motion.

Measurements of residual 1H–15N dipolar couplings for

variant A, variant B and Z-l2LBT with one molar equiva-

lent of Dy3? provided an estimate of LBT motion for the

three proteins (Fig. 3a). Peaks from A ? Dy3? (11) and
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proteins. a The distribution of

one-bond 1H–15N coupling

values for variants A, B, and
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presence of Dy3? at 21.1 T. b,
c 15N HSQC spectra of variants

A and B, respectively, in

complex with Dy3?. Pseudo-

contact shifts (PCSs) of

assigned resonances are shown

with a grey line with the origin
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the spectrum collected in the

presence of Lu3?. Errors bars
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sum of errors for individual fits
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coupling observations. d, e Plots
showing the observed RDC
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B ? Dy3? (14) were assigned with high confidence and

used for further analysis as shown in Fig. 3b, c. Alignment

tensors (Da) fitted to the RDCs using a model of the

Z-domain [pdb 1q2n (Zheng et al. 2004)] were qualita-

tively consistent with the ranges of 1H–15N coupling values

(Table 1; Fig. 3a, d, e). Though only a limited number of

assigned residues are visible in spectra collected in the

presence of Dy3?, these data do provide a means to esti-

mate the motion of each LBT relative to the Z domain

helices. The LBT of A and B experience a range of motion

that is estimated to be 0.39 and 0.68 times that of Z-l2LBT,

respectively, based on the tensor magnitude. A previous

analysis found Z-l2LBT exhibited 40� of interdomain

motion using a diffusion-in-a-cone model (Barb et al. 2012;

Barbato et al. 1992). By comparison variants A and B ex-

hibited *16� and 27� of motion, respectively. This anal-

ysis, though a simplification that assumes motion is equally

distributed within a cone, is informative as a singular

estimate of relative mobility between the LBT and Z

moieties.

Structural assessment of Z-l2LBT variants

The structural features of these proteins were probed by

solution NMR spectroscopy. Both variants A and B ap-

peared folded and experienced conformational rearrange-

ments upon binding a diamagnetic Lu3? ion based on two-

dimensional 1H–15N HSQC spectra of variants A and B,

before and after titrating Lu3? (Fig. 4). Previous results

indicate a significant change in Z-l2LBT conformation

upon lanthanide binding is likely limited to the LBT

moiety (Barb et al. 2012). Due to the large proportion of

the structured protein formed by the LBT (21–23 %) and

central location it is anticipated that lanthanide binding will

induce noticeable chemical shift changes in a majority of

the protein as observed (Fig. 4). The designed proteins

exchanged between lanthanide bound and unbound states

in the slow regime of the NMR timescale (data not shown).

A complete backbone resonance assignment of variant

A assigned all major peaks observed in an 1H–15N HSQC

spectrum (88 % of HN assigned, 89 % N, 79 % CA, 76 %

CB, and 73 % CO from residues 13–83; Fig. 4c) and was

consistent with a high degree of structural similarity to the

parent Z-l2LBT protein. The high degree of structural

similarity is supported by identical functional roles that are

dependent upon structure, namely effective Tb3? binding

(discussed above) and antibody binding (discussed below).

A few residues from loops connecting LBT to helices 2 & 3

plus a few residues from the middle of helix 3 were not

observed (Fig. 1c).

NMR characterization of the A:Fc complex

We probed binding of variant A to IgG1 Fc in order to

characterize the effects of two paramagnetic ions in the

72.2 kDa IgG1 Fc:(variant A:Tb3?)2 complex (IgG1 Fc is a

homodimer with two Z domain binding sites, see Fig. 1b).

To reduce the rotational correlation time of the five-com-

ponent complex and increase sensitivity as much as pos-

sible, a variant A form was prepared with a TEV-cleavable

6xHis tag. This variant was shown to bind Tb3? with the

same high affinity as the variant A construct containing a

6xHis tag and the TEV-cleaved form was utilized for

subsequent experiments (data not shown).

A comparison of IgG1 Fc spectra before and after the

addition of the variant A:Lu3? chelate revealed the for-

mation of a tightly bound complex as expected based on

affinity of the Z domain for IgG1 Fc (Fig. 5) (Barb et al.

2012; Starovasnik et al. 1997). Two IgG1 Fc Tyr cross-

peaks shifted as a result of complex formation; Tyr436 is

proximal to the Z/Fc interface and experienced a large

displacement (Deisenhofer 1981; DeLano et al. 2000). The

Tyr373 crosspeak shifted slightly. The remaining six

crosspeaks remained in the same spectral position but were

slightly less intense likely due to an increase in the rota-

tional correlation time upon variant A binding.

Paramagnetic effects of variant A in complex

with Fc

Strong paramagnetic effects were observed in the IgG1

Fc:(variant A:Tb3?)2 complex. Though significant PREs

broadened many signals including K248, K288 and K320

as shown in Fig. 6, we focused on PCSs and field-induced

RDCs of the Fc that indicate structural restriction of the

LBT. The presence of PREs is not a good measure of

structural restriction because these can be strong even if the

Table 1 RDC alignment parameters for Z-l2LBT, and variants A and B in complex with Dy3? at 21.1T

Protein # Obs Da Dr Theoretical max coupling (Hz) Q-value (Cornilescu et al. 1998)

Z-l2LBT 20 2.9 9 10-4 9.0 9 10-5 6.2 0.317

Variant B 14 4.2 9 10-4 2.5 9 10-4 9.1 0.261

Variant A 11 7.3 9 10-4 4.2 9 10-4 15.8 0.178
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tag experiences a high degree of mobility relative to the

underlying protein.

Substantial 1H PCSs were observed in an 15N-HSQC-

TROSY spectrum of the IgG1 Fc:(variant A:Tb3?)2 com-

plex when compared to the Lu3?-bound complex (Fig. 6).

Of 21 assignable cross peaks from the Tb3?-bound com-

plex, 20 showed measureable PCSs between -0.221 and

0.081 ppm indicating the LBT tag was stabilized in a

position to influence IgG1 Fc resonances. A small degree

of heterogeneity is observed with some peaks, including

Y436. It is unclear whether the LBT, lanthanide, or Fc

contributes to this heterogeneity. A comparison of all

observed PCSs with PCSs calculated using a structural

model of the Fc monomer [pdb- 1L6X (DeLano et al.

2000)] revealed a high degree of similarity (Fig. 6b, the

coefficient of determination squared (R2) = 0.978).

That the PCSs fit the known structure with a high degree

of similarity is important for three reasons. First, the Tb3?

ion is coordinated near the Fc protein and experiences

limited motion, if any, relative to the Fc. Second, the ion is
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Fig. 4 2d NMR spectroscopy of variants A and B. 15N-HSQC spectra
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reveal large changes in protein conformation. c Backbone amide

crosspeaks of the variant A:Lu3? complex were assigned with

standard triple-resonance experiments collected at 10 �C. Sidechain
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positioned in a manner that preferentially impacts reso-

nances on the nearest monomer, and minimally affects the

more distant Fc monomer in the Fc dimer. Third, these data

confirm that the 1L6X structural model is a good repre-

sentation of the Fc conformation in complex with the Z

domain and supports recent solution measurements of Fc

quaternary structure in solution (Subedi and Barb 2015).

We also pursued RDCs as a measurement of field-in-

duced IgG1 Fc:(variant A:Tb3?)2 alignment. We observed

six RDCs with a range of -7.6 to 14.3 Hz and error

\2.3 Hz (Table 2; Fig. 7). The smaller number of RDCs

with low errors (6) with respect to PCS observations (20)

reflects the effect of PREs on signal intensity in the J-

modulation experiments that led to increased errors with

the Tb3? sample. These presence of RDCs is further strong

evidence for conformational stability of the variant A LBT

tag in the IgG1 Fc complex.
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Fig. 5 15N-HSQC spectra of [15N-Tyr]-IgG1 Fc collected at 16.4 T

before and after addition of two molar equivalents of variant A and

Lu3?. Amino acid assignments are based on a published report

(Matsumiya et al. 2007)
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Fig. 6 Pseudo-contact shifts (PCSs) were detected among the [15N-

Tyr/Lys]-IgG1 Fc amide resonances at 18.8 T. a An overlay of 15N-

HSQC-TROSY spectra collected using the IgG1 Fc(Z-l2LBT:Lu3?)2
and IgG1 Fc(Z-l2LBT:Tb3?)2 complexes are shown in black and

orange contours, respectively. Significant differences in resonance

frequencies are denoted with white and grey arrows. b The observed
1H PCSs correlate strongly to 1H PCSs calculated by the NUMBAT

program (Schmitz et al. 2008), using a model of the Fc protein

determined by X-ray crystallography (DeLano et al. 2000). A line

corresponding to the function y = x is shown in black

Table 2 Field-induced RDCs

from IgG1 Fc residues in the

IgG1 Fc:(variant A:Tb3?)2
complex

Residue Coupling with Lu3? (Hz) Error (Hz) Coupling with Tb3? (Hz) Error (Hz) RDC (Hz)

K290 92.4 1.4 106.7 2.2 14.3

Y349 97.2 1.2 95.3 1.5 -1.9

K360 95.7 2.1 88.1 0.8 -7.6

Y391 96.0 2.0 94.9 1.3 -1.1

K392 97.4 2.3 105.9 2.2 8.5

Y407 95.8 2.3 100.4 0.8 4.6
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Conclusions

Here we detailed the modification of a chimeric lanthanide

and IgG1 binding protein to dramatically reduce the size

and mobility of the metal binding moiety. This redesigned

LBT tag is widely applicable to other structure-based

investigations and has been utilized to study the two-do-

main SpA-N protein (Prof. T. Oas, Duke University), a

two-domain roundabout (ROBO) family construct and a

fragment of the extracellular domains of a leukocyte

common antigen-related receptor protein tyrosine phos-

phatase (Prof. K. Moremen, UGA). We demonstrated the

utility of one new design to investigate the structure of a

large 72.2 kDa complex. These shortened LBTs provide

one approach to reducing the motion of LBTs in many

other protein systems that require limited LBT motion.
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