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Abstract We report advances in the calculation of pro-

tein structures from chemical shift nuclear magnetic reso-

nance data alone. Our previously developed method, CS-

Rosetta, assembles structures from a library of short protein

fragments picked from a large library of protein structures

using chemical shifts and sequence information. Here we

demonstrate that combination of a new and improved

fragment picker and the iterative sampling algorithm

RASREC yield significant improvements in convergence

and accuracy. Moreover, we introduce improved criteria

for assessing the accuracy of the models produced by the

method. The method was tested on 39 proteins in the

50–100 residue size range and yields reliable structures in

70 % of the cases. All structures that passed the reliability

filter were accurate (\2 Å RMSD from the reference).

Keywords Nuclear magnetic resonance � Protein

structure calculation � CS-ROSETTA � Sparse data

Introduction

Knowledge of the three-dimensional (3D) structure of

proteins at atomic accuracy is important to understand

protein function, protein–ligand interactions and for
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rational drug design. Over the last two decades nuclear

magnetic resonance spectroscopy (NMR) has become an

established complement to X-ray crystallography for the

determination of 3D structures. The most challenging

bottleneck in determining NMR structures, the assignment

of side-chain chemical shifts and of NOE cross-peaks, can

be avoided with methods for computing structures from

backbone-only NMR experiments. Backbone chemical

shift values reflect a wide array of structural information

including backbone and side-chain conformations, sec-

ondary structure, hydrogen bond strength, and the position

of aromatic rings. This information can be exploited to

predict the 3D structure of proteins using software pack-

ages such as CS-ROSETTA, CHESHIRE and CS23D

(Cavalli et al. 2007; Shen et al. 2008; Wishart et al.

2008).

The convergence and reliability of CS-ROSETTA cal-

culations have been shown to improve by utilizing addi-

tional NMR data, such as residual dipolar couplings (RDC)

(Raman et al. 2010a), NOE-derived distance restraints

(Lange et al. 2012) and pseudo-contact shifts (PCS) (Sch-

mitz et al. 2012). In the context of available RDC and NOE

data an iterative sampling scheme, RASREC (Raman et al.

2010a; Lange and Baker 2011; Lange et al. 2012), was

shown to greatly extend the applicability towards larger

protein structures. Here we introduce a number of algo-

rithmic advances whose cumulative effect significantly

improves reliability, convergence and accuracy of final

structures for chemical shift-only calculations. Moreover,

we describe the WeNMR (Wassenaar et al. 2012) web-

server that accesses the European Grid Initiative (EGI,

www.egi.eu) computational resources, allowing efficient

CS-ROSETTA computations via the simplicity of a web

interface to academic users.

The CS-ROSETTA methodology consists of three

stages: (1) fragment picking, (2) sampling, and (3) model

selection. Originally, backbone chemical shift information

was only used in stages (1) and (3). Fragment picking for

CS-ROSETTA was originally carried out using the MFR

method of the NMRPipe software package (Delaglio et al.

1995; Lange et al. 2012) which combined chemical shift

information with peptide sequence matching to score

fragment candidates. However, for regions where no

experimental data was present the ROSETTA2 method

(Rohl et al. 2004; Schmitz et al. 2012) outperformed MFR

(Shen et al. 2009b; Lange and Baker 2011). In the present

work the chemical shift based fragment picking is incor-

porated directly into a new ROSETTA3 fragment picker.

This new fragment picker (denoted R3FP in the following)

combines salient features of both original algorithms

(MFR and ROSETTA2) (RV, YS, DB and OFL; J Biomol

NMR submitted). The performance of the new method is

benchmarked on a set of target proteins that have not been

used for development or optimization of the R3FP

protocol.

RASREC is an iterative sampling algorithm that has

been shown to significantly increase sampling efficiency

for larger proteins (10–40 kDa), if additional restraint data

such as RDCs and NOEs are used (Lange and Baker 2011;

Lange et al. 2012). Instead of running 10,000 or more

independent structure calculations with increased cycle

number as in CS-ABRELAX [the standard CS-ROSETTA

algorithm (Shen et al. 2008)], RASREC performs iterative

batches of short simulations. Similar to a genetic algorithm,

a pool of best performing structures is maintained

throughout the iterative procedure and sampling is focused

around previously identified conformations. It is crucial for

the performance of RASREC that pseudo-energies (e.g.,

from RDC and NOE restraint data) be available to assist

ROSETTA in predominantly selecting structures with

native features for this pool. In this study we extend the

RASREC algorithm to allow chemical shift rescoring of

intermediate structures (CS-RASREC) and test the per-

formance of this extended method.

Chemical shifts are dominated by local backbone con-

formations, and thus CS-ROSETTA structures based solely

on chemical shifts tend to be locally correct but globally

unconverged. Here we introduce a post-analysis procedure

that identifies locally converged regions of the structure,

which have been shown to be generally accurate (Rohl

et al. 2004; Shen et al. 2008; Raman et al. 2010a). How-

ever, with decreasing convergence there is an increasing

probability that also the conformation of the converged part

is inaccurate. We address this issue here by testing a

number of criteria, including the quality of chemical shift

data, the number of converged residues and the significance

of the ROSETTA energy gap, to detect inaccurate predic-

tions. These criteria are aggregated to annotate each CS-

ROSETTA prediction as weak or strong, thereby providing

users with a reliability metric to assess the results.

Materials and methods

We benchmarked the performance of the new fragment

picker (R3FP) and CS-RASREC on a set of 39 proteins in the

size range of 50–100 residues that have neither been used for

training of the R3FP, nor in CS-ROSETTA, SPARTA? or

TALOS? development (Suppl. Table 1 ? 3). All input files

(fragments, reference coordinate and chemical shift files) are

available for download at www.csrosetta.org/benchmarks.

Target selection and fragment picking

The benchmark set was selected from a larger set of 206

proteins for which recently released chemical shift
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information from the BMRB was linked to coordinate

information from the PDB in the CCPN framework

(Vranken and Rieping 2009) and re-referenced using the

VASCO protocol (Rieping and Vranken 2010). For NMR

resolved structures, only proteins of sequence length

50–100 with at least 40 % secondary structure were

retained from this set. Homologous proteins using an

e-value cutoff of 0.05 (sequence identity [20 %) were

excluded from MFR and R3FP fragment picking. The

resulting set of 39 proteins covers a wide range of sec-

ondary structure content, as determined by DSSP from the

PDB deposited structures. Since TALOS? is used to pre-

filter CS-ROSETTA submissions, and because the TA-

LOS? predicted secondary structure content is similar to

what DSSP determines from the coordinates (Suppl.

Fig. 6), this set of 39 is expected to be representative of

typical CS-ROSETTA input.

Structure generation with CS-ABRELAX (server)

The latest version of the CS-ROSETTA webserver runs

ROSETTA 3.3 including the new fragment selection

method R3FP. For each target in the benchmark, 50,000

models were automatically generated by the CS-

ROSETTA web server, using the standard CS-ABRELAX

protocol with the ABRELAX cycle factor (command-line

flag -increase_cycles) set to 10 as in Ref (Shen et al. 2008).

The jobs are automatically distributed to available com-

putational resources part of the worldwide WeNMR grid

under the European Grid Initiative (EGI). As input, only a

backbone NMR chemical shift list is required, which can

be supplied in any of the common NMRPipe (TALOS),

NMR-Star 2.1, or NMR-Star 3.1 (BMRB) formats.

The webserver uses SPARTA? (Shen and Bax 2010)

for final model selection in analogy to the original proce-

dure based on SPARTA (Shen et al. 2008). Additionally,

the server can combine the chemical shifts score with the

DP score (Huang et al. 2005) based on unassigned NOE

data for model selection, which has been shown to improve

model selection from CS-ROSETTA calculations (Raman

et al. 2010b, 2012).

An overview of the CS-ROSETTA web portal workflow

can be found in Suppl. Fig. 1.

Structure generation with RASREC-ROSETTA

RASREC structure calculations (Lange and Baker 2011)

with a pool-size of 500 conformers (command-line flag -

iterative:pool_size 500) were started from the same frag-

ment libraries as CS-ABRELAX calculations. As in the

standard protocol (Lange and Baker 2011), Recombination-

stages were terminated when the acceptance ratio into the

pool dropped below 10 % (-iterative:accept_ratio 0.1) and

the cycle factor was set to 2.0 (-increase_cycles 2). The

protocol was modified to add chemical shift pseudo-ener-

gies with a weight of 5.0 to the ROSETTA energy to bias

the RASREC pool of low-energy structures towards con-

formations in agreement with the experimental chemical

shifts. Chemical shifts were computed from conformations

using SPARTA? (Shen and Bax 2010) and compared to

the experimental chemical shifts to yield a pseudo-energy

as described previously (Shen et al. 2008). To improve the

prediction of chemical shifts from intermediate low-reso-

lution structures a shortened refinement procedure was

applied that uses only 1 of the usual 5 relax cycles (Raman

et al. 2010a). SPARTA? was implemented as a module of

ROSETTA to allow computation of chemical shift pseudo-

energies during RASREC iterations.

Calculation of converged regions

To determine the converged region of a protein structure

predicted with CS-ROSETTA an adaption of the Gaussian-

weighted RMSD method (Damm and Carlson 2006) was

implemented in ROSETTA. The 30 lowest energy struc-

tures were superimposed using a scaling factor of 2 Å2

(Damm and Carlson 2006). This procedure iteratively

determines a set of rigid residues on which the structures

can be superimposed; residues with a root-mean square

fluctuation (RMSF) below 2 Å are considered to be con-

verged. Gaps of\3 residues between regions of low RMSF

(\2 Å) are ignored.

RMSD calculations

All reported RMSDs are Ca-RMSD to the PDB deposited

reference structure or its first model. If the reference

structure stems from an NMR solution ensemble only

residues that superimpose within 1 Å in the deposited

ensemble were used. Where indicated, Ca-RMSD compu-

tations are further restricted to regions converged in the

ROSETTA calculations (see ‘‘Materials and methods’’).

Criteria used for annotations

The criteria of strong/weak prediction annotation are slightly

different between CS-RASREC and CS-ABRELAX. cs-

consensus, convergence and energy gap are used to annotate

the prediction from CS-RASREC, and for CS-ABRELAX

the criteria are cs-class, convergence and energy gap. cs-

consensus is the fraction of residues for which TALOS?

finds more than 7 consensus matches in the database. cs-class

is the fraction of residues annotated by TALOS? with

‘GOOD’. convergence is the fraction of residues which are
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converged with an RMSF cutoff of 2 Å (see ‘‘Materials and

methods’’). The energy gap is the difference in ROSETTA

all-atom energy between the lowest energy decoys and the

lowest energies obtained for decoys far away ([4 Å) from

the lowest energy decoys. Specifically, it is calculated as

follows: the median energy of the 10 lowest energy structures

is subtracted from the median energy of the 10 lowest energy

structures within the subset of structures that are more than

[4 Å (converged region; see ‘‘Materials and methods’’)

from the lowest energy structure. In CS-RASREC annota-

tions, the raw energy gap is divided by the number of residues

and mapped to an interval 0.0.1 using a sigmoidal function

with its inflection point at 0.05 Rosetta energy units (REU)

per residue (see Suppl. Methods). Differently, the raw energy

gap is directly mapped to [0,1] using sigmoidal function in

CS-ABRELAX annotations.

Results

Performance of new fragment picker (R3FP)

Figure 1a shows the mean Ca-RMSD of the best 10 gen-

erated models with respect to the reference structure for

MFR and R3FP. As can be seen, more targets appear above

the diagonal, i.e., ABRELAX samples closer to the native

structure, if R3FP fragments are used. Necessary for the

success of a CS-ROSETTA structure calculation is that

sufficient conformations below a Ca-RMSD of 2.0 Å to the

reference structure are generated (Shen et al. 2008). This is

the case for significantly more targets, if R3FP fragments

are used (Fig. 1a; Table 1).

We also compared the performance in sampling near-

native conformations of ABRELAX between software

versions Rosetta 2.6 [used here (Shen et al. 2008; Was-

senaar et al. 2012)] and Rosetta 3.x [used here (Raman

et al. 2010b; Schmitz et al. 2012)]. As shown in Table 1, a

performance gain is observed for Rosetta 3.x.

RASREC with chemical shift rescoring

As shown previously (Rohl et al. 2004; Shen et al. 2008),

chemical shift rescoring improves precision and accuracy of

final target selection for the CS-ABRELAX method. We

have now implemented SPARTA? rescoring directly into

ROSETTA which allows us to apply the chemical shift score

as a filter between iterations of the RASREC method (Shen

et al. 2009b; Lange and Baker 2011). However, chemical

shift rescoring is usually applied to fully refined structures,

whereas intermediate structures in RASREC are without

atomic detail (i.e., they use only a single centroid to represent

the side-chain). To allow chemical shift rescoring

nevertheless, a short refinement to atomic detail models that

requires only ca. 20 % of the usual computer time is applied

(see ‘‘Materials and methods’’).
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Fig. 1 Performance comparison. a Comparison of MFR and R3FP

fragment picking methods using the ABRELAX sampling protocol.

Shown are the mean Ca-RMSD of the lowest 10-RMSD structures

(Table 1). Dashed lines indicate the 2 Å RMSD threshold, which is

often predictive whether CS-Rosetta yields converged ensembles after

energy-based selection. b Comparison of CS-RASREC (x-axis) and

RASREC (y-axis). Shown are the median RMSDs of the ten lowest

energy models selected by Rosetta energy and chemical shift score.

c Comparison of CS-RASREC (x-axis) with CS-ABRELAX (y-axis).

Shown are RMSDs of 10 lowest energy models selected by Rosetta

energy and chemical shift score as in b
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We investigated whether chemical shift rescoring of inter-

mediate structures improves the performance of the new CS-

RASREC protocol on the benchmark set of 39 proteins.

Indeed, a significant improvement in the RMSDs of the final

energy selected models (Fig. 1b) is seen for CS-RASREC

(points left of diagonal). Thus, CS-RASREC (but not RAS-

REC) can further improve the accuracy of final models in

comparison to CS-ABRELAX with R3FP fragments (Fig. 1c).

Restriction to converged regions

Figure 2a shows the Ca-RMSD to the reference structure of

the lowest 10 scoring models from CS-ABRELAX calcula-

tions. As can be seen, only a small fraction of targets

(*25 %) yields accurate (\2 Å) solutions. The reason for

this apparent bad accuracy of CS-ROSETTA predictions is

that RMSDs were computed on regions that are not converged

in the CS-ROSETTA ensemble. To address this issue we

added an auxiliary application called ensemble_analysis to

the CS-ROSETTA toolbox (www.csrosetta.org), which

detects residues whose RMSD fluctuations are \2 Å (see

‘‘Materials and methods’’). Restriction of the structural pre-

diction to these converged residues drastically changes the

appearance of the results and shows that the converged

regions are actually quite accurate for the majority of targets,

with only five targets where the accuracy is worse than 2.5 Å

(Fig. 2b). However, Fig. 2b also reveals that for many targets

significant portions of the structures remain unconverged in

the CS-ABRELAX calculations. As can be seen in Fig. 2c,

the convergence is significantly improved in CS-RASREC

calculations.

Reliability measure: annotation of weak/strong

predictions

Originally, CS-Rosetta calculations were discarded if they

did not converge on all residues (Shen et al. 2008; Schmitz

et al. 2012). However, as shown above, some of the cal-

culations that contain converged segments yield quite

acceptable models. Thus, we looked for additional criteria

to detect accurate predictions. We speculated that, in

addition to (a) the overall convergence of the calculation,

also the significance of (b) the chemical shift consensus or

class (Shen et al. 2009a) and (c) the ROSETTA energy gap

(Raman et al. 2010a; Fleishman and Baker 2012) should be

informative on the likelihood of obtaining accurate

structures.

To this purpose we define a predictor model that yields

the signal strong if the weighted sum of the criteria ci

Psum ¼
X3

i¼1

wici

exceeds a threshold of 0.82 or 0.69 for CS-RASREC and

CS-ABRELAX calculations, respectively (see Suppl.

Methods). Optimizing the predictor model against manual

classifications of the benchmark results, we obtained for

CS-RASREC the weights 0.58, 0.29 and 0.13 for the cri-

teria cs-consensus, convergence, and energy-gap, respec-

tively. For CS-ABRELAX the weights 0.08, 0.54 and 0.38

for criteria cs-class, convergence, and energy-gap. The

criteria are defined in ‘‘Materials and methods’’ section. In

100 rounds of cross-validated training using a different

random selection of 25 % of the data as test-set for each

Table 1 Success of structure generation for MFR and R3FP fragment picker

Versiona Fragmentsb Native sampling ratec (%) RMSD (Å)d

Rosetta2-ABRELAXe MFR 62 1.12 ± 0.42

Rosetta3-ABRELAXe MFR 72 1.23 ± 0.48

Rosetta3-ABRELAXe R3FP 77 1.18 ± 0.39

Rosetta3-RASREC R3FP 64f 1.31 ± 0.41f

Rosetta3-CS-RASREC R3FP 74f 1.27 ± 0.43f

a Major version number of Rosetta
b Fragment picking protocols
c Success rate of the structural sampling step defined as the percentage of targets for which the mean Ca-RMSD of the 10 lowest RMSD

structures is lower than 2.0 Å; this reflects if the method samples the native structure, not how well it predicts it. Ca-RMSDs are calculated over

all residues that are converged within 1 Å in the reference NMR structural ensemble (Suppl. Table 1)
d Average and standard deviation of the distribution of mean Ca-RMSDs, when restricted to those targets where the mean Ca-RMSD of 10

lowest RMSD structures is lower than 2.0 Å
e In CS-ABRELAX the chemical shifts are only used for final model selection. The native sampling rate is independent of final model selection,

and thus CS-ABRELAX and ABRELAX are equivalent in this analysis. Note, however, that chemical shifts are used for fragment picking for all

protocols analysed in this table
f For RASREC protocols, the native sampling rate is systematically lower than for ABRELAX, since instead of 50,000 full-atom models in

ABRELAX, only ca. 1,500 full-atom models are generated in RASREC
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round, for CS-RASREC the cutoff was selected by fixing

the false positive rate (FPR) to 3 % and 6 % for CS-

RASREC and CS-ABRELAX, respectively. The resulting

thresholds of 0.82 ± 0.06 and 0.69 ± 0.05 yielded true

positive rates (TPR) of (89 ± 20) %and (80 ± 33) %,

respectively. The standard deviation of the weights trained

on the 100 different selections of training data during

cross-validation were 0.08, 0.10 and 0.08, for CS-RASREC

and 0.25, 0.13, 0.14 for CS-ABRELAX. The higher vari-

ation of weights for CS-ABRELAX reflects the less pro-

nounced energy gap and the lower rate of convergence

observed in CS-ABRELAX simulations (Suppl. Fig. 4).

Alternative predictor models were discarded based on

inferior receiver operating characteristic (ROC) in the

cross-validation and the compound predictor model out-

performs the individual criteria (Suppl. Fig. 2). The final

set of weights was obtained by optimizing the most suc-

cessful predictor model against all data points.

Indeed, the classification scheme successfully annotates

those predictions as weak that yield bad accuracy (red in

Fig. 2b, c). 20 of 39 targets (51 %) listed in Suppl. Table 2

computed with CS-ABRELAX are considered as strong

structure calculations. For 18 of these the accuracies range

from 0.9 to 2.0 Å, and for the remaining two, accuracies are

3.1 and 2.1 Å for targets #21 (2jvf) and #31 (2k3d),

respectively. From the targets computed with CS-RASREC,

29 of 39 (74 %) results are considered strong. For 26 of the

strong targets, accuracies range from 0.7 to 2.0 Å and for the

remaining three, targets #4 (2dm2), #12 (2jov) and #34

(2k5c), accuracies are 2.1, 2.9 and 2.4 Å, respectively

(Suppl. Table 4).

For these three targets (#4, #12, and #34), CS-RASREC

predicted structures have the same fold as the reference

structure, but show better packing with less and smaller

solvent inaccessible cavities in the protein core (Suppl.

Fig. 3) (Sheffler and Baker 2008). Given the clear packing

deficiencies in the deposited NMR ensembles, we believe

that the 2.1–2.9 Å RMSDs do not actually reflect the

accuracy of the CS-RASREC structures, and that these

targets can be ignored for the overall assessment of CS-

RASREC accuracy of strong predictions. Representative

examples of the remaining strong predictions are shown in

Fig. 3.

The WeNMR CS-ROSETTA web server

The most time consuming part of a typical CS-ROSETTA run

consists of a large number (500–2,500) of independent Monte

Carlo calculations to calculate in the order of 10,000–50,000

structures. The WeNMR (www.wenmr.eu) CS-Rosetta web

server (Wassenaar et al. 2012) conveniently distributes those

calculations over the grid resources made available through

the European Grid Infrastructure (EGI, www.egi.eu). The

original server has now been extended to allow DP scoring

and include the reliability measure described above. Table 2

shows the results of the DP rescoring option (using the CS-

ABRELAX setup), using a different benchmark of 6 CASD-

NMR targets (Rosato et al. 2009, 2012). Consistent with

previous observations (Raman et al. 2010b; Rosato et al.

2012) the combination of DP rescoring (Huang et al. 2005;

Raman et al. 2010b) and CS rescoring outperforms the other

rescoring option, including CS rescoring, both in successful

predictions and reliability (100 %).

Discussion

We have considerably improved the scope, convergence

and reliability of CS-ROSETTA calculations from chemi-

cal shifts only. On a representative benchmark of 39 small

proteins in the size range of 50–100 residue size range, we
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Fig. 2 Overview of accuracy of 10 lowest scoring structures from the

39 protein benchmark. Ca-RMSD to the reference structure (circles)

are calculated over a subset of residues (bars). Predictions annotated

as weak are shown in red (convergence is more than 50 %) or pink

(convergence is \50 %) (Suppl. Table 2 and 4). a The RMSDs are

calculated over all residues that are converged within 1 Å in the

reference NMR structural ensemble (Suppl. Table 1). The number of

residues used for RMSD calculation are shown as fraction of total

length freference (gray). b The RMSD calculation is restricted to

residues converged within 2 Å in the CS-ROSETTA structural

ensemble (and within 1 Å in the references) (Suppl. Table 1). The

additional restriction in RMSD calculation is given as ratio frosetta/

freference (green). c RMSD restriction as in b but using the CS-

RASREC method
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demonstrated that CS-ROSETTA calculations yield suc-

cessful and accurate 3D structure predictions in 74 % of

the cases when using the new CS-RASREC method.

CS-ABRELAX is still successful in 51 % of the cases but

generally yields less converged residues per target. Most

importantly, we introduced a classification scheme that can

be used to detect whether a successful prediction has been

made, which increases the reliability to[89 and[80 % for

CS-RASREC and CS-ABRELAX calculations, respec-

tively. Reliable predictions have accuracies of 2 Å and

better on the converged residues. This renders the pre-

sented CS-ROSETTA structure calculation protocols a

reliable tool for rapid and accurate structure determination

at atomic resolution.

CS-ROSETTA calculations entail a considerably com-

putational effort; a reliable structure prediction requires

10,000 or more models to be generated with an overall cost of

several thousand CPU-hours. We implemented a webserver

that utilizes the WeNMR grid infrastructure to farm out the

time-consuming model generation part of CS-ROSETTA

calculations. The service is available for the whole scientific

community and is free of charge to academic users. It only

(c) 2qmt(#39)(a) 2jsx(#17) (b) 2jt1(#18)

Three best predicted targets

Three worst predicted targets

(f) 2k14(#27)(e) 2jvr(#22)2jrm(#15)(d)

Fig. 3 Overview of structures obtained with RASREC structure

calculations that passed the filter (i.e., annotated as strong prediction).

Shown are the three best, 2jsx (0.8 Å), 2jt1 (0.7 Å) and 2qmt (0.9 Å),

respectively, and the three worst, 2jrm (1.6 Å), 2jvr (2.0 Å) and 2k14

(2.0 Å), respectively. For each target, the reference structure is in blue

and the predicted structures are in red with unconverged regions (see

‘‘Materials and methods’’) shown in gray

Table 2 Reliability of different structure selection methods

Selectiona Convergedb Not convergedc Reliabilityd (%)

TP FP

Raw 2 2 2 50

cs 3 1 2 75

dp 5 1 0 83

dpcs 5 0 1 100

a Final structure selection methods, raw: rosetta score; cs: cs-re-

scoring; dp: dp-rescoring; dpcs: cs-rescoring ? dp-rescoring
b Number of targets for which the average RMSD of selected models

is below the threshold of 2.0 Å and are counted as true/false positive
c N umber of targets for which the average RMSD of selected models

is above the threshold of 2.0 Å
d Reliability of different structure selection methods
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requires a backbone chemical shift list as input and offers

several options to re-evaluate the generated models,

including NOE based rescoring with the DP-score (Huang

et al. 2005; Raman et al. 2010b).

Currently, the WeNMR grid cannot support CS-RASREC

calculations due to the requirement of communication

between RASREC processes that is not supported by the

grid-infrastructure. However, RASREC calculations are

considerably more time-efficient than CS-ABRELAX; for

targets in the size range addressed here, they require on the

order of 200–1,000 CPU hours, which is available on med-

ium sized in-house clusters or at adjunct computer centers of

universities. We made considerable advances to simplify

running these calculations by providing a Python-based

toolbox for pre- and post-processing of CS-ROSETTA

related data files and fragment picking. This allows easy

setup of CS-ABRELAX and RASREC CS-ROSETTA

structure generation runs including integrated support for

queuing systems such as SLURM and MOAB. The compu-

tational infrastructure has to support jobs that utilize the

common Message Passing Interface (MPI) protocol (e.g.,

openMPI, LAM, MPICH, MPICH2) for inter-process com-

munication. Additionally, a website providing documenta-

tion and tutorials (www.csrosetta.org) has been launched in

support of the growing user community.

The main advantage of CS-RASREC calculations over

the CS-ABRELAX is that a larger fraction of residues con-

verges and that the energy gap becomes more pronounced.

This in turn generates a higher chance of a strong prediction.

On the 39 benchmark cases, the average fraction of con-

verged residues (as shown in Fig. 2b, c (green bars) is 72 %

for CS-ABRELAX and 80 % for CS-RASREC. From the 9

targets that are classified strong in CS-RASREC but weak in

CS-ABRELAX, 4 have improved classification due to a

drastic increase in convergence (from *30 to [70 %),

whereas the remaining 5 have similar convergence but

improved energy-gaps (Suppl. Table 2 ? 4). Finally, the

mean accuracy (RMSD) for strong predictions is 1.76 Å for

CS-ABRELAX and 1.44 Å for CS-RASREC. Thus, if local

computer resources can be obtained it is advisable to run CS-

RASREC rather than CS-ABRELAX, if such resources

cannot be secured, running just the webservice-based CS-

ABRELAX remains a reasonable and valuable alternative.

Adaption of the RASREC protocol to a grid or cloud com-

puting platform is in principle possible as only very low-

bandwidth communication is required, but technically

involved as the entire communication layer of the protocol

has to be adapted.

A program to apply the reported classification scheme into

strong and weak 3D structure predictions is provided with the

CS-ROSETTA toolbox versions 2.x and higher at www.

csrosetta.org and is implemented in the CS-ROSETTA web

server.
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