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Abstract The key to obtaining the model-free description

of the dynamics of a macromolecule is the optimisation of

the model-free and Brownian rotational diffusion parameters

using the collected R1, R2 and steady-state NOE relaxation

data. The problem of optimising the chi-squared value is

often assumed to be trivial, however, the long chain of

dependencies required for its calculation complicates the

model-free chi-squared space. Convolutions are induced by

the Lorentzian form of the spectral density functions, the

linear recombinations of certain spectral density values to

obtain the relaxation rates, the calculation of the NOE using

the ratio of two of these rates, and finally the quadratic form

of the chi-squared equation itself. Two major topological

features of the model-free space complicate optimisation.

The first is a long, shallow valley which commences at

infinite correlation times and gradually approaches the

minimum. The most severe convolution occurs for motions

on two timescales in which the minimum is often located at

the end of a long, deep, curved tunnel or multidimensional

valley through the space. A large number of optimisation

algorithms will be investigated and their performance

compared to determine which techniques are suitable for use

in model-free analysis. Local optimisation algorithms will be

shown to be sufficient for minimisation not only within the

model-free space but also for the minimisation of the

Brownian rotational diffusion tensor. In addition the per-

formance of the programs Modelfree and Dasha are

investigated. A number of model-free optimisation failures

were identified: the inability to slide along the limits, the

singular matrix failure of the Levenberg–Marquardt mini-

misation algorithm, the low precision of both programs, and

a bug in Modelfree. Significantly, the singular matrix failure

of the Levenberg–Marquardt algorithm occurs when internal

correlation times are undefined and is greatly amplified in

model-free analysis by both the grid search and constraint

algorithms. The program relax (http://www.nmr-relax.com)

is also presented as a new software package designed for the

analysis of macromolecular dynamics through the use of

NMR relaxation data and which alleviates all of the problems

inherent within model-free analysis.
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Abbreviations

AIC Akaike’s Information Criteria

BFGS Broyden, Fletcher, Goldfarb, and Shanno

quasi-Newton optimisation

CD Coordinate descent optimisation

CG Conjugate gradient

CSA Chemical Shift Anisotropy

D set of diffusion tensor parameters

DMG Double Motion Grid

G set of geometric diffusion parameters

Electronic supplementary material The online version of this
article (doi:10.1007/s10858-007-9214-2) contains supplementary
material, which is available to authorized users.

E. J. d’Auvergne (&)

Department of NMR-based Structural Biology, Max Planck

Institute for Biophysical Chemistry, Am Fassberg 11, D-37077

Goettingen, Germany

e-mail: edward@nmr-relax.com

P. R. Gooley

Department of Biochemistry and Molecular Biology, Bio21

Institute of Biotechnology and Molecular Science, University of

Melbourne, Parkville, VIC 3010, Australia

e-mail: prg@unimelb.edu.au

123

J Biomol NMR (2008) 40:107–119

DOI 10.1007/s10858-007-9214-2

http://www.nmr-relax.com
http://dx.doi.org/10.1007/s10858-007-9214-2


GMW Gill, Murray, and Wright

LM Levenberg–Marquardt optimisation

MT Moré and Thuente step-length selection

algorithm

NR the combined Newton–Raphson/conjugate

gradient minimisation of Dasha

O set of orientational diffusion parameters

RG Rex Grid

S the global model, space, or universe

XH bond heteronucleus-proton bond

Introduction

Detailed, atomic resolution information describing the

dynamics of proteins or other macromolecules can be

obtained experimentally through NMR by the measure-

ment of the R1 and R2 heteronuclear relaxation rates and

the steady-state heteronuclear NOE. These numbers by

themselves are, however, difficult to interpret meaningfully

and are therefore usually decomposed using the model-free

analysis of Lipari and Szabo, Lipari and Szabo (1982a, b)

which separates the global rotational diffusion of the

macromolecule from the internal motions of the molecule’s

bond vectors. The relaxation values are translated into the

parameters of Brownian rotational diffusion as well as

those of the internal motions which consist of the gener-

alised order parameter S2 and the effective correlation time

se. The order parameter S2 is related to the amplitude of the

internal motion. An S2 value of zero indicates large

amplitude motions whereas a value of one means that the

bond vector is completely rigid. The effective correlation

time se is correlated with the timescale of the internal

motion of the bond vector albeit being dependent on the

amplitude of that motion. The original Lipari and Szabo

model-free analysis was extended by Clore et al. (1990) to

include internal motions on two timescales. The order

parameter S2
f and effective correlation time sf describe the

faster of the two motions whereas S2
s and ss are associated

with the slower motion. The two order parameters are

related by the equation S2
f � S2

s ¼ S2:

By assuming certain order parameters or correlation

times to be statistically negligible, either being one or zero

respectively, a number of model-free models can be con-

structed. An order parameter of one means that the motion

is statistically insignificant whereas the correlation time of

zero means that the motion is too fast for that parameter to

be reliably extracted. In combining parametric restrictions,

in which statistically insignificant parameters are dropped,

together with the addition of a parameter accounting for

chemical exchange relaxation a number of increasingly

complex models of model-free motions can be constructed

(Fushman et al. 1997; Orekhov et al. 1999; Korzhnev et al.

2001; Zhuravleva et al. 2004). Extending this list the

model-free models will be labelled as

m0 ¼ fg; ð1:0Þ

m1 ¼ fS2g; ð1:1Þ

m2 ¼ fS2; seg; ð1:2Þ

m3 ¼ fS2;Rexg; ð1:3Þ

m4 ¼ fS2; se;Rexg; ð1:4Þ

m5 ¼ fS2; S2
f ; ssg; ð1:5Þ

m6 ¼ fS2; sf ; S
2
f ; ssg; ð1:6Þ

m7 ¼ fS2; S2
f ; ss;Rexg; ð1:7Þ

m8 ¼ fS2; sf ; S
2
f ; ss;Rexg; ð1:8Þ

m9 ¼ fRexg; ð1:9Þ

where Rex is the parameter accounting for chemical

exchange relaxation which solely affects the R2 relaxation

rate. The chemical exchange is assumed to be fast and is

scaled quadratically with field strength. Model m0 corre-

sponds to the special situation whereby no internal motions

are statistically significant.

The simplest model of Brownian rotational diffusion is

the tumbling of a sphere and is parameterised either by global

correlation time sm or the isotropic diffusion rate Diso: For

spherical diffusion all three eigenvalues of the diffusion

tensor are equal, Dx ¼ Dy ¼ Dz: When only two of the

eigenvalues are equal the molecule diffuses as a spheroid.

This model, which is synonymous with axially symmetric

anisotropic diffusion, is parameterised by D ¼
fD?;Dk; h;/g where the geometric parameters G are

defined as D? � Dx ¼ Dy and Dk � Dz (d’Auvergne and

Gooley 2007). The orientational parameters O ¼ fh;/g are

the azimuthal angle and the polar angle respectively. Alter-

natively spheroidal diffusion can be parameterised by

D ¼ fDiso;Da; h;/g where Da is the anisotropic diffusion

parameter which when positive denotes a prolate spheroid

and when negative denotes an oblate spheroid (d’Auvergne

2006). The most complex model of rotational diffusion is

when all three eigenvalues are different and is the diffusion

of an ellipsoid (Einstein 1905; Perrin 1934, 1936; Favro

1960; Woessner 1962). The ellipsoid can be parameterised

by D ¼ fDx;Dy;Dz; a; b; cg where the geometric parame-

ters G are the eigenvalues of the tensor and the orientational

parameters O are the Euler angles defined using the z-y-z

notation. Alternatively the ellipsoid can be characterised by

the parameters D ¼ fDiso;Da;Dr; a; b; cg where Dr is a

measure of the rhombicity (d’Auvergne 2006).

Not only can the diffusion tensor be optimised as a

global model affecting all residues of the protein but a set
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of model-free models can be constructed in which each

residue is assumed to diffuse independently. In these

models a single local sm parameter approximates the true,

multiexponential description of the Brownian rotational

diffusion of the molecule. Each residue of the macromol-

ecule is treated independently. Another set of model-free

models which add the local sm parameter to Models m0 to

m9 can be created and will be labelled tm0 to tm9. These

models are an extension of the ideas introduced in Barbato

et al. (1992) and Schurr et al. (1994) whereby the model

m2, the original Lipari and Szabo model-free equation, is

extended with the local sm parameter to avoid the issues

associated with inaccurate diffusion tensor approximations.

A number of computer programs have been written to

minimise the v2 value in search of optimal parameter val-

ues of the model-free models. The majority of these

programs implement solely local minimisers as it is

assumed that only a single minimum exists. In certain sit-

uations two minima within a single model-free space have

been identified (Orekhov et al. 1995b). Nevertheless, glo-

bal minimisers such as simulated annealing or genetic

algorithms are generally considered superfluous for model-

free analysis. The most commonly used program in the

literature is the Modelfree program (Palmer et al. 1991;

Mandel et al. 1995), the current version of which will be

labelled as Modelfree4. Another widely used model-free

optimisation program is Dasha (Orekhov et al. 1995a) in

which two local optimisation algorithms are available. Less

widely used are the programs DYNAMICS (Fushman et al.

1997) and Tensor 2 (Blackledge et al. 1998; Cordier et al.

1998; Dosset et al. 2000; Tsan et al. 2000).

This article also presents a new software package named

‘relax’ which is designed for the analysis of NMR relax-

ation data. The program is open source and can be freely

downloaded from http://www.nmr-relax.com. All aspects

of data analysis starting from the initial peak intensities and

ending with the visualisation of the final results are

implemented within the program. The software is highly

flexible as relax has been written as a modular collection of

data analysis tools. The advantages of relax include a high

precision of optimisation; an advanced and efficient con-

straint algorithm; the ability to avoid the Levenberg–

Marquardt minimisation algorithm which tends to be

problematic for model-free analysis; built-in support for

both model elimination (d’Auvergne and Gooley 2006) and

numerous model selection techniques (d’Auvergne and

Gooley 2003); support for all types of rotational diffusion

tensor; the use of the numerically stabilised model-free

spectral density functions; simplified diffusion equations

(d’Auvergne 2006); and a documented collapse of the

diffusion tensor symmetries (d’Auvergne 2006). The pro-

gram can also create the input files for both Modelfree

(Palmer et al. 1991; Mandel et al. 1995) and Dasha

(Orekhov et al. 1995a), execute both programs in-line, and

then read their output. This means that both programs can

be used as optimisation engines replacing the minimisation

algorithms built into relax. A number of other data analysis

techniques involving NMR relaxation data are also sup-

ported by relax including the calculation of the steady-state

NOE and its error, exponential curve-fitting to determine

the R1 and R2 relaxation rates through optimisation and

error propagation through Monte Carlo (MC) simulation,

and reduced spectral density mapping (Lefevre et al. 1996)

using MC simulation to translate the uncertainties.

Theory and methods

Model-free theory

The original model-free spectral density functions pre-

sented in Lipari and Szabo (1982a) and Clore et al. (1990)

are not the most numerically stable form of these equa-

tions. An important problem encountered in optimisation is

round-off error in which machine precision influences the

result of mathematical operations. The double reciprocal

s�1 ¼ s�1
m þ s�1

e used in the equations are operations which

are particularly susceptible to round-off error, especially

when se � sm: By incorporating these reciprocals into the

model-free spectral density functions and then simplifying

the equations this source of round-off error can be elimi-

nated. The new, numerically stabilised form of the model-

free equations can be expressed as

JðxÞ ¼ 2

5
sm

S2

1þ ðxsmÞ2
þ ð1� S2Þðse þ smÞse

ðse þ smÞ2 þ ðxsesmÞ2

 !
;

ð2Þ

JðxÞ ¼ 2

5
sm

S2

1þ ðxsmÞ2
þ
ð1� S2

f Þðsf þ smÞsf

ðsf þ smÞ2 þ ðxsf smÞ2

 

þ
ðS2

f � S2Þðss þ smÞss

ðss þ smÞ2 þ ðxsssmÞ2

!
:

ð3Þ

The perfect, noise-free grids

To thoroughly test the optimisation algorithms across a

large range of model-free motions, two grids covering the

entire model-free space of models m4 (1.4) and m5 (1.5)

were constructed. The parameter values at each grid point

were used to create a synthetic data set consisting of the R1,

R2 and NOE at both 600 and 500 MHz. Each grid point

was treated as a separate, independent residue of a large

protein. These two grids are the same as presented in

d’Auvergne and Gooley (2003, 2006) and will be labelled
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the Rex Grid (RG) for the data of model m4 and the Double

Motion Grid (DMG) for the data of model m5.

Optimisation

The model-free parameters

Prior to optimisation using relax a coarse grid search of 11

increments per dimension was carried out to find the initial

parameter vector, with 0 B S2 B 1, 0 B si B 10 ns and

0�Rex� 20 s-1. This grid search, which is a ubiquitous

optimisation technique, is in no way related to the RG and

DMG described above which were simply used to sample

different model-free motions. A grid search over the same

range was carried out for Modelfree4 but with 20 incre-

ments per dimension, the granularity of which reflects the

values presented in the examples section of the Modelfree4

manual and hence would be similar to that used by much of

the model-free literature. Although the steps of 526.316 ps

in the correlation time dimension are coarse compared to

the values extracted in an analysis, this is finer than the

1,000 ps steps used with relax for the comparison. If

optimisation is unsuccessful, then the granularity of the

grid search will have a large effect on the final results. The

numerous optimisation algorithms tested, the precision of

optimisation and issue of parameter deconvolution are all

addressed in the supplementary material.

The diffusion tensor parameters

All optimisations of the diffusion parameters presented within

this paper employed Newton minimisation in conjunction with

the backtracking line search algorithm (Nocedal and Wright

1999) and the Gill, Murray and Wright modified Cholesky

Hessian modification algorithm (Gill et al. 1981). For the ini-

tial grid search of the diffusion tensor parameters all searches

were carried out between the values 1 ns � sm� 12 ns,

0�Dr � 1; and 0� h;/; a; b; c� p: For the prolate spheroid

and the ellipsoid the parameterDa ranged from 0 to 1e7. For the

oblate spheroid the parameter ranged from -1e7 to 0.

Mapping of the model-free space

A third type of grid was used for the mapping of the model-

free and diffusion tensor v2 spaces. By laying out a grid

over select parameter values the chi-squared value was

calculated at each position. These values were then fed into

the OpenDX program (Open Visualization Data Explorer

4.3.2, http://www.opendx.org) to create images of the

model-free spaces. The spaces were mapped to a resolution

of 100 points per dimension.

Analysis of the relaxation data of cytochrome c2

The R1 and R2 relaxation rates for the 44 helical residues of

cytochrome c2 from Rhodobacter capsulatus were obtained

from the supplementary material of Blackledge et al. (1998).

For consistency and to enable a direct comparison with the

original publication a PDB file was created from the amide

NH coordinates from the same supplementary material. For

optimisation model-free model m1 (1.1) was selected for all

residues. Rather than using a grid search for finding the

optimal parameter values to use as an initial position for

minimisation, this position was chosen to be where the S2

values of all residues are 0.8. The diffusion tensor parameters

were set approximately to the values in the supplementary

material of Blackledge et al. (1998). For the constants used

in minimisation the values from Cordier et al. (1998) were

used. The NH bond length was set to 1.01 Å, the CSA value

set to -170 ppm, and the field strength of the relaxation data

was assumed to be exactly 600 MHz.

Results and discussion

The Rex and DMG

All grid points of both the Rex Grid and DMG were opti-

mised using three different programs: Modelfree4, Dasha

and relax. The program relax (http://www.nmr-relax.com)

implements all of the optimisation algorithms utilised in

this paper. The exact versions of the programs used are

version 4.15 of Modelfree, version 3.48c of Dasha, and

various versions of relax (from 1.0 to 1.2). To visualise the

results the difference between each optimised parameter

and the true value was calculated. For each parameter the

difference for every grid point was joined to create a sur-

face using OpenDX. If the minimum has been successfully

located the parameter difference should be zero for each

point and hence the surface should be perfectly flat with a

height of zero. The figures for Modelfree4, Dasha and relax

of the S2, se and Rex difference surfaces of the RG and S2,

S2
f and ss of the DMG are presented in the supplementary

material (Figs. S1–S18). A select few of these surfaces are

presented in Fig. 1.

Comparison of optimisation algorithms

The curvature of the single motion model-free space

For a large majority of the single timescale motions of

models m1 (1.1) to m4 (1.4) represented by the Rex Grid,
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optimisation is relatively simple requiring only a small

number of iterations for most algorithms to find the mini-

mum. Nevertheless, minimisation can be complicated by

being drawn towards and then being forced to navigate

along shallow, long, curved valleys which originate at

infinite correlation times but slowly head to the minimum

(for example see Fig. 2). This is the same topological

feature which can induce model failure due to distortion by

experimental noise—the true local minimum is lost while a

new minimum appears at infinite se values (d’Auvergne

and Gooley 2006). Despite this topology, in which most

algorithms can navigate without problem, the curvature in

the vicinity of the minimum is relatively quadratic.

The tunnels of the double motion model-free space

For the models representing motions on two timescales,

models m5 to m8 (1.5–1.8), the curvature of the space can

be much more convoluted. In certain situations to reach the

single local minimum within the model-free space the

optimisation algorithms must pass through a long, curved

and deep tunnel or multidimensional valley in which

minimisation can be quite complex. The closer the time-

scales of the two motions, sf and ss, the more drawn out,

crescent-shaped and finer the tunnel becomes and therefore

the more difficult it is to reach the local minimum.

Examples of this type of curvature are shown in Fig. 3 (as

well as Figs. S19, S21 and S22 of the supplementary

material).

The best optimisation techniques

As discussed in the supplementary material, of the

numerous optimisation algorithms tested the Newton line

search algorithm combined with the backtracking line

search (Nocedal and Wright 1999) and GMW Hessian

modification (Gill et al. 1981) was found to be the best

combination for model-free analysis. The use of parameter

Fig. 1 The results of the optimisation of both the Rex Grid (RG) and

the DMG using Modelfree4, Dasha and relax presented as difference

surfaces. For each grid point the programs were used to optimise

either model m4 or m5 for the RG and DMG, respectively. If the

minimum has been found for each point the difference between the

optimised and true parameter values should be zero. Positive and

negative differences correspond to over and underestimation respec-

tively. As a surface has been draped over the discrete differences,

perfect optimisation should result in a flat surface of zero height. The

top three plots correspond to the RG se difference surfaces for the

subset of the grid whereby S2 = 0.952. The bottom three plots

correspond to the DMG S2
f difference surfaces for the subset of the

grid whereby S2
f ¼ 0:698: The optimisation methods used are:

Modelfree4, the Levenberg–Marquardt algorithm; Dasha, the com-

bined Newton–Raphson/conjugate gradient algorithm; relax, Newton

optimisation together with the backtracking line search, GMW

Hessian modification, and the Method of Multipliers constraint

algorithm
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deconvolution in the double motion models, by optimising

the parameters fS2; S2
f ; ssg rather than fS2

f ; S2
s ; ssg; is also

important for simplifying the model-free optimisation

problem.

Failure of optimisation

By investigating the results of minimisation of Modelfree4,

Dasha and relax across the grids spanning the model-free

space a number of points of failure have been identified.

These are described in detail below and include: the failure

of the limits algorithm within Modelfree4; the singular

matrix failure of the Levenberg–Marquardt optimisation

algorithm in all programs; the low precision of both

Modelfree4 and Dasha causing incomplete optimisation;

and a bug within the Levenberg–Marquardt algorithm of

Modelfree4 causing early termination of minimisation.

Failure of the limits algorithm

The type of curvature which complicates model-free opti-

misation with boundaries is illustrated in Fig. 2 by the grid

point S2 = 0.970, se = 2048 ps and Rex = 0.149 s-1

where the shallow valley parallel to the correlation time

dimension is clearly visible. The results of optimisation

using Modelfree4, Dasha and relax are presented in

Table S6 in the supplementary material, the corresponding

positions in the model-free space being indicated by

spheres in the figure. This example was chosen because not

only does it illustrate the failure of the constraints

Fig. 2 The failure of the constraints algorithm in Modelfree4

demonstrated by minimisation terminating at the upper limit of the

se parameter of 10 ns. The figure is a map of the chi-squared space of

model m4 which is composed of the parameters {S2, se, Rex}.

Different v2 values are demonstrated by the four isosurfaces which,

from outermost to innermost, possess the values of 1, 0.5, 0.3 and

0.05. The relaxation data was generated by back calculation from the

model-free parameter values of S2 = 0.970, se = 2048 ps and

Rex = 0.149 s-1. As no noise was added the minimum for this model

is located at this position. The four spheres in the plot correspond to

the results as found by Modelfree4 using the Levenberg–Marquardt

algorithm (black sphere), Dasha using either Levenberg–Marquardt or

Newton–Raphson–CG minimisation (grey spheres), and relax using

Newton minimisation together with the backtracking line search and

the GMW Hessian modification (white sphere). The exact coordinates

of the spheres are listed in Table S6 of the supplementary material
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algorithm in Modelfree4 but it also demonstrates a failure

of the Levenberg–Marquardt algorithm in Dasha which is

due either to the singular matrix failure of the algorithm or

to Dasha’s constraint algorithm. The results of Dasha using

the combined Newton–Raphson/conjugate gradient opti-

misation are close to the truth yet low precision prevents

the exact values from being found. relax is able to find the

exact values to within machine precision.

Within Modelfree4 when a trajectory step of the

Levenberg–Marquardt algorithm exceeds a constraint, that

step terminates flush at the boundary. If the negative of the

gradient at that position points back into the box then

optimisation will continue, otherwise optimisation termi-

nates. In Fig. 2 the downhill gradient at the point where

Modelfree4 terminates points outside of the box, hence the

minimum is not found. In Dasha constraints are imple-

mented by imposing a penalty on steps outside the limit.

The penalty is added to the chi-squared value as the dis-

tance outside the constraint to the sixth power (Orekhov

et al. 1995a). The program relax implements the Method of

Multipliers algorithm (Nocedal and Wright 1999), also

known as the Augmented Lagrangian, which allows opti-

misation to be successful in this case. As a penalty is added

to the chi-squared value when a constraint is violated the

optimisation trajectory can exit the box in which minimi-

sation is constrained. During the progression of the Method

of Multipliers algorithm the penalty is increased. The end

result is that optimisation will slide along the constraint

face, albeit just outside the box, allowing the local mini-

mum to be found.

Incomplete minimisation due to low precision

A number of internal program settings influence the pre-

cision of optimisation. These include the maximum number

of iterations of the minimisation algorithm, the function

tolerance, the gradient tolerance and a step length toler-

ance. For a simple space low optimisation precision will

have a negligible effect, however the model-free space is

highly convoluted. Both the curved, shallow valley parallel

to the correlation time dimensions as well as the curved,

deep tunnels through the double motion spaces are partic-

ularly sensitive to optimisation precision.

The grid point S2
f ¼ 0:952; S2

s ¼ 0:582; and ss = 32 ps

perfectly illustrates the results of the different optimisation

Fig. 3 The effect of

optimisation precision on the

final model-free parameter

values. The deep and curved

tunnel of the model-free space is

illustrated by the four

isosurfaces which correspond,

from outermost to innermost, to

chi-squared values of 50, 20, 5

and 0.5, respectively. The v2

space belongs to the grid point

S2
f ¼ 0:952; S2

s ¼ 0:582; and

ss = 32 ps. The white sphere

corresponds to the true

parameter values as well as the

results of the program relax, the

black sphere corresponds to the

results of Modelfree4, and the

two grey spheres are the results

from Dasha using the two

available optimisation

algorithms. The parameter and

chi-squared values of these

positions are given in Table S7

of the supplementary material

J Biomol NMR (2008) 40:107–119 113

123



precisions of Modelfree4, Dasha and relax. It was chosen

due to its optimisation complexity and hence its ability to

thoroughly test the precision of optimisation. The space

close to the minimum demonstrates the classic curved and

deep tunnel of model-free double motion spaces (Fig. 3).

Despite both the chi-squared difference between iterations

and the length of each individual step being quite small the

addition of numerous small steps results in a large change

in parameter values and a large overall decrease in the chi-

squared value.

The optimisation precisions of Modelfree4, Dasha and

relax are compared in Table 1. From the low number of

iterations as well as the relatively high cutoff tolerances, of

all programs, Modelfree4 by far exhibits the lowest pre-

cision. This is reflected in the optimisation results where

Modelfree4 terminates optimisation at the very start of the

tunnel, the result being that the S2
f and S2

s parameters appear

to be swapped and the correlation time is overestimated by

an order of magnitude. The chi-squared difference between

the results and the true minimum is 3.47, a statistically

significant value which strongly biases model selection

away from model m5. The relax cutoffs allow the true

parameter values to be found regardless of the curvature of

the model-free space thereby facilitating unbiased model

selection. The precision of both Modelfree4 and Dasha can

be increased to the high default values of relax by modi-

fication and recompilation of the source code. The high

precision model-free results of both programs are presented

in Table S8 of the supplementary material.

Singular matrix failure of Levenberg–Marquardt

minimisation

The Levenberg–Marquardt optimisation algorithm is a

widely used technique which, for most problems, performs

extremely well. However this method is known to, at times,

experience outright failure. Its Achilles heel is when the

Levenberg–Marquardt matrix is singular which, when

encountered, causes the algorithm necessarily terminate at

the current position. The failure is linked to the curvature

of the space. The model-free space is particularly prone to

the zero pivot or singular matrix failure of the Levenberg–

Marquardt technique. This is due to the Lorentzian form of

the model-free spectral density functions and occurs

whenever one of the internal correlation times is undefined

due to the corresponding order parameter being equal to

one. When both order parameters S2
f and S2 of the extended

model-free spectral density function are equal to zero the ss

parameter is additionally undefined.

Two features of model-free optimisation tend to amplify

the problem, the initial grid search prior to optimisation

and the constraints used during optimisation. When

searching through the order parameter dimensions the grid

searches have upper and lower limits of one and zero

respectively. This results in a large number of initial

starting positions whereby the first iteration of the Leven-

berg–Marquardt algorithm is preconditioned to fail. If

constraints are used during optimisation the order param-

eters are limited to being between zero and one, again

accentuating the problem. The number of failures

encountered by Modelfree4 are given in Table 2. The

percentages from both relax and Dasha should be lower

due to the constraint algorithm. The result of these failures

is that the model-free parameter values are meaningless.

The convolution of the space ensures that proximity to the

minimum cannot be guaranteed and the chi-squared value

is significantly overestimated.

The Modelfree4 bug

One final issue affecting the results of model-free analysis

was identified in the Modelfree program and has been

traced back to a bug. The result is that optimisation is

terminated prematurely. In many cases optimisation stops

on the very first step—the final model-free parameters are

those found by the initial grid search. To demonstrate the

failure the grid point S2 = 0.388, se = 128 ps and Rex =

0.223 s-1 was chosen, the simple curvature of which isTable 1 The optimisation precision of various model-free minimi-

sation programs

Program Max itera f tolb g tolb s tolb

Modelfree4 50 1e-4

Dasha (LM)c 80n 1e-14 Off 1e-14

Dasha (NR)d Off 1e-5 1e-5 1e-4

relax 1e7 1e-25 Off

a The maximum number of iterations
b The function, gradient and step length tolerances
c Levenberg–Marquardt minimisation. n is the number of parameters

being optimised
d Combined Newton–Raphson/conjugate gradient minimisation

Table 2 The number of grid points of the RG and DMG whereby

optimisation has failed due to the singular matrix failure of the

Levenberg–Marquardt algorithm in Modelfree4

Model RG (2,640 points) DMG (1,940 points)

No. % No. %

m1 0 0.00 0 0.00

m2 772 29.24 0 0.00

m3 0 0.00 0 0.00

m4 112 4.24 0 0.00

m5 834 31.59 232 11.96
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demonstrated in Fig. 4. The gradient at the black sphere,

which is the position of the Modelfree4 results, is per-

pendicular to the isosurface passing through it hence failure

is clearly not due to optimisation complexity. The results of

optimisation using Modelfree4, Dasha and relax are pre-

sented in Table S9 of the supplementary material. The

number of failures for both grids are presented in Table 3.

This bug has been fixed in Modelfree versions 4.20 and

above.

The double minima of the model-free space

Local versus global optimisation

In the model-free optimisation of models m0 to m9

(1.0–1.9), models tm0 to tm9, the Brownian rotational

diffusion tensor parameters, or the totality of all model-free

and diffusion parameters one fundamental assumption

about the chi-squared space is made. The programs Mod-

elfree4, Dasha, DYNAMICS and relax all use local rather

than global optimisation algorithms. Their success is reliant

upon the presence of only one minimum within the space

being searched. If this is indeed true, finding the local

minimum is synonymous with finding the global minimum.

However it has been noted that there are cases where this

basic premise collapses.

The two minima

In Orekhov et al. (1995b), and subsequently discussed in

Korzhnev et al. (1997), it was demonstrated that there are

Fig. 4 An example of

optimisation failure in

Modelfree4 caused by the bug

in the Levenberg–Marquardt

algorithm. The chi-squared

space belongs to the grid point

where the true parameter values

are S2 = 0.388, se = 128 ps

and Rex = 0.223 s-1. From

outermost to innermost, the five

isosurfaces illustrating the

curvature of the space

correspond to chi-squared

values of 1371.79, 500, 100, 20

and 7. The true parameter

values which were found by

both relax and Dasha are

indicated by the white sphere

whereas the black sphere

corresponds to the final

parameter values found by

Modelfree4 (S2 = 0.263,

se = 526.316 ps and

Rex = 1.053 s-1). The failure

occurred in the first iteration

hence the final parameter values

are those of the grid point with

the lowest chi-squared value

(1371.79)

Table 3 The number of grid points of the RG and DMG whereby

optimisation has failed due to the Levenberg–Marquardt bug in

Modelfree4

Model RG (2,640 points) DMG (1,940 points)

No. % No. %

m1 545 20.64 461 23.76

m2 1,093 41.40 529 27.27

m3 345 13.07 597 30.77

m4 715 27.08 735 37.89

m5 1,176 44.55 696 35.88
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situations in which two minima exist within a single space.

This occurred when motions were occurring on two time-

scales but the fitted model only represented a single

internal motion. The example presented was composed of

synthetic data representing m5 (Model 5) where the

parameter values were S2
f ¼ 0:9; S2

s ¼ 0:8; and ss = 0.8 ns

(ibid.). The global correlation time was set to 7 ns and, as

there is only a single residue, this model is identical to tm5.

To approximately replicate the example the CSA and bond

length were set to -170 ppm and 1.02 Å, respectively. In

Fig. 5a the two minima of the space are clearly distin-

guishable. When using noise-free synthetic data, as in

Orekhov et al. (1995b), the first and broadest of the minima

is located at the position S2 = 0.749, se = 0.89 ns and

sm = 7.1 ns, its chi-squared value being 8.27. The second

minimum, which is narrower but is the global minimum, is

at S2 = 0.790, se = 0.10 ns and sm = 6.5 ns. Its chi-

squared value is 1e-29 and, if found by the local minimiser

instead of the broad minimum, AIC model selection (Ak-

aike 1973; d’Auvergne and Gooley 2003) will pick tm2

over the true tm5 model.

Avoidance of the problem

The selection of the simplistic and incorrect double minima

model can be avoided in a number of indirect ways. The

first is implicit within experimental data as the addition of

noise to the synthetic test case of Orekhov et al. (1995b)

differentially shifts the chi-squared values of all the models

and, in most cases, tilts the balance towards model tm5

(Fig. 5b). For the first and second minima of the tm2 space

the average chi-squared values shifted to 28.0 ± 10.5 and

8.5 ± 5.2, respectively. The chi-squared value of model

tm5 shifted from zero to an average of 2.0 ± 2.0 and, in

using AIC model selection, this model is selected 84% of

the time over the global minimum of model tm2 (assuming

that this minimum is found 100% of the time). Therefore

for most experimental data AIC model selection will dis-

card the double minima model.

Second, the double minima phenomenon is only a tiny

subset of a much bigger problem—the hiding of nanosec-

ond motions when the whole protein exhibits motions on

these timescales. This larger problem will be discussed in

detail in the next paper of this series, Paper II, and can be

avoided by using the new model-free optimisation protocol

which is also presented in that paper. Finally, if all else

fails, collection of data at another field strength will solve

the problem (Orekhov et al. 1995b). The addition of

800 MHz data to the above synthetic, noise-free example

causes model tm5, which now has a minimised chi-squared

value of 3.4e-10, to be chosen by AIC model selection over

model tm2 which has a new global minimum of 6.82. The

chi-squared value of the broader minimum is 16.98.

Cytochrome c2: optimisation of the diffusion tensor

When solving the model-free puzzle in order to obtain the

dynamic description of the system, the optimisation of

models m0 to m9 is only one part of a multifaceted enigma.

A second minimisation problem needs to be resolved and

that is the optimisation of the Brownian rotational diffusion

tensor.

Fig. 5 A rare example of the double minima phenomenon existent in

a space of a simplistic approximation to the true model. In this case

the true model is tm5 where sm = 7 ns, S2
f ¼ 0:9; S2

s ¼ 0:8; and

ss = 0.8 ns whereas the space in (a) is a map of model tm2. The back

calculated relaxation data used to generate this plot consisted of data

at 500 and 600 MHz. The four isosurfaces shown correspond, from

outermost to innermost, to v2 values of 30, 22, 17 and 5 respectively.

The resolution of the plot is 100 data points per dimension. The three

chi-squared distributions shown in (b), corresponding to the two

minima of model tm2 and the single minimum of model tm5, were

generated by 500 randomisations of the original noise-free data

assuming Gaussian noise. The chi-squared values were binned to

increments of 2. These distributions demonstrate that experimental

noise will cause most instances of model tm2 in which two minima

are present to be eliminated by AIC model selection as model tm5 is

selected instead
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Two different approaches: global verses local optimisation

An ideal, real protein test case for the optimisation of the

rotational diffusion tensor is that of the ferrocytochrome c2

molecule from the photosynthetic alpha-proteobacterium

Rhodobacter capsulatus (Blackledge et al. 1998; Cordier

et al. 1998). This system, a proven ellipsoid, is perfect for

testing the local optimisation of the diffusion tensor

parameters using the new model-free optimisation protocol

(Paper II). In the analysis of Blackledge et al. (1998) the

optimisation algorithm utilised was not a local but a global

minimiser—simulated annealing combined with a fuzzy

logic algorithm utilising the Levenberg–Marquardt local

minimiser as a sub-algorithm. The R1 and R2 relaxation

rates collected at 600 MHz were used to characterise the

diffusion tensor of cytochrome c2 using the program Ten-

sor. This approach employed the original ideas of Kay

et al. (1989) whereby the R2/R1 ratio is used to find the

diffusion tensor by chi-squared optimisation. To replicate

as closely as possible the results of Blackledge et al. (1998)

and Cordier et al. (1998) and to allow for comparison of

the global and local optimisation techniques model-free

model m1 (Model 1) was chosen for all residues. The use

of this model is important as the chi-squared equation used

in Tensor and that used in relax are defined differently.

Although the global and local optimisation algorithms

are operating in v2 spaces with different dimensions and

dimensionalities the final diffusion tensors should never-

theless be the same. This is demonstrated in Table S10 of

the supplementary material where the original results from

the program Tensor (Blackledge et al. 1998; Cordier et al.

1998; Dosset et al. 2000; Tsan et al. 2000) are contrasted

with the results from the program relax. Comparing the

eigenvalues of the various diffusion tensors both method-

ologies can be seen to return the same geometric picture.

The glide reflection and translational symmetries

Figure 6 shows a subset of the chi-squared space which is

searched in the optimisation of both the prolate and oblate

spheroid diffusion tensors. Four distinct minima are clearly

visible—two correspond to the prolate spheroid, two to the

oblate spheroid. The duplication of minima within each of

the spheroid types is due to the glide reflection symmetry

of the orientational parameter space O (d’Auvergne 2006).

The paired minima are identical and are related by

{h,/} = {p - h, / - p}. This figure is very similar to

Fig. 1 of Blackledge et al. (1998) except Dratio has been

swapped for Da and the glide reflection has been shown.

The map of the subspace of ellipsoid orientational

parameters O 2 S (d’Auvergne and Gooley 2007) shown

in Fig. S24 of the supplementary material was constructed

similarly to that of the spheroid subspace. The geometric

diffusion parameters G and all S2 values were fixed to

those of the minimised diffusion tensor while the Euler

angles of O were varied. The figure clearly demonstrates

the four identical minima caused by the glide reflection and

translational symmetries of the space O:

The adequacy of local minimisers

For each of the diffusion models the diffusion parameter

space D contains only a single local minimum because of

three restrictions: the eigenvalue permutation restriction of

the geometric parameter subspace G by Dx�Dy�Dz; the

collapse of the glide reflection and translational symmetries

of the subspace O by a = a - p, {a, b, c} = {p - a, p -

b, c - p}, {a, b} = {p - a, b - p} and {h, /} = {p - h,

/ - p}; and the isolation of the prolate and oblate subspaces

by the restrictions Da� 0 and Da� 0 respectively

(d’Auvergne 2006). The smoothness of the space and the

presence of only a single local and, therefore, global mini-

mum in either the spheroid subspaces or full ellipsoid space

is demonstrated in both Figs. 6 and S24. Because of these

two factors Tensor’s global minimiser, which is based on

simulated annealing combined with a fuzzy logic algorithm,

is not essential for optimising the diffusion tensor.

Conclusion

Two topological features convolute the model-free space

causing optimisation to be a non-trivial problem. The best

local optimisation algorithm within the model-free space

was found to be Newton minimisation in conjunction with

the backtracking line search and the Gill, Murray and

Wright (GMW) Hessian modification. In using the cyto-

chrome c2 relaxation data (Blackledge et al. 1998; Cordier

et al. 1998), local optimisation algorithms were shown to

be sufficient for optimising the diffusion tensor parameters.

Four problems have been identified in the currently used

model-free optimisation software. The singular matrix

failure of the Levenberg–Marquardt minimisation algo-

rithm is a problem which occurs when correlation times are

undefined, a phenomenon associated with order parameters

of one. Model-free analysis is highly prone to this failure as

both the initial coarse grid search and constraint algorithms

can place the order parameter at one. This common algo-

rithm should be avoided for model-free analysis. The

second problem is low precision causing the final values to

be distant from the local minimum, affecting both Mod-

elfree and Dasha. To find the minimum in the twisted

model-free space high precision optimisation with fine

cutoffs and a large number of iterations is essential. The
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third failure is due to Modelfree4’s constraint algorithm in

which sliding along the limits is never allowed. Finally,

Modelfree4 is heavily affected by a bug which causes early

termination of the Levenberg–Marquardt algorithm. The

result of these four failures of optimisation is that mini-

misation is terminated early, often far from the true model-

free parameter values.

All the steps of model-free analysis from the initial

spectral peak intensities to the final model-free description

of the dynamics of the system are implemented by the

program relax. The model selection methodologies

described in d’Auvergne and Gooley (2003), relaxation

curve-fitting, NOE calculation, reduced spectral density

mapping and model-free analysis are all available within

relax. This software solves all of the optimisation issues

described herein.
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