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Abstract
When teaching fractions, teachers make instructional decisions about if, when, and how to 
use the many different types of fraction models and manipulatives. In this study, we sought 
insights into their pedagogical reasoning with fraction representations via their preferences, 
both for solving tasks themselves and for teaching (in general and for specific fraction con‑
cepts and operations). Nearly 200 practising Australian primary teachers participated in an 
online survey and we drew on a Fraction Schemes theorisation to analyse quantitative and 
qualitative data. A majority of teachers indicated a personal preference for the set model 
for four out of five schemes; for one scheme most teachers preferred the circle model. 
Their reasons suggested that the nature of each task in a scheme and the specific fractions 
involved, played a role in influencing their preferences. With respect to teaching fractions, 
the teachers also indicated a high level of preference for teaching with the set model in 
general, and secondly for the rectangle model. Their preferences, except for number lines, 
were not found to be associated with the teachers’ nominated year level. We found that a 
high personal preference for a set model was associated with a preference for teaching with 
the same model in general, but not for teaching with the matching manipulative (counters 
or chips). The teachers indicated a high level of preference for teaching with the fraction 
bars manipulative for several fraction concepts, but this was not associated with a personal 
preference for linear models. Implications for further research are discussed.

Keywords  Fractions · Models · Manipulatives · Fraction Schemes · Teacher reasoning · 
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A deep conceptual understanding of rational number is arguably one of the most founda‑
tional mathematics learning goals for students at all levels of schooling and beyond (Elias 
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et al., 2020). Importantly, an early competence with fractions has been shown to uniquely 
predict later mathematics achievement (Bailey, et al., 2012; Siegler, et al., 2012).

There are many studies in the research literature on student difficulties and misconcep‑
tions with fractions (e.g. Aksoy & Yazlik, 2017; Hansen et al., 2017; Lewis & Perry, 2017; 
van den Heuvel-Panhuizen, 2010). Many difficulties, particularly with fraction computa‑
tion, have been related to students’ lack of development of key conceptions or ‘Schemes’ 
(e.g. Norton & Wilkins, 2012; Steffe, 2002, 2010). Students’ progression through these 
schemes is often determined by the way in which they interpret and construct fractions 
through the use of various models. Despite differing views on which meanings and models 
to introduce to students, and at what developmental stage (e.g. Cramer & Wyberg, 2009), 
there is widespread agreement that students need opportunities to make connections across 
different constructs and visual representations of rational number.

An inability to model or represent fractions can be an indicator of a lack of concep‑
tual understanding (Lamon, 2001). Students’ understanding of fractions can be advanced 
through learning with continuous and discrete representations to model fractions (e.g. Behr 
et al., 1988; Martin, et al., 2012; Soni & Okamoto, 2020). Furthermore, students need to 
be exposed to multiple models and to develop understandings that enable them to tran‑
sition between different forms of representations involving fractions (Behr, et  al., 1988; 
Lesh et al., 1987; Tsai, 2017; Zhang et al., 2015). However, students are often exposed to 
only a limited number of models (Clarke et al., 2011). Martin et al. (2012) in their study 
of primary students found that the use of manipulatives sped up the learning compared to 
static models (pictures) because the children could experiment with arranging the materi‑
als. Nevertheless, manipulatives did not inherently convey fraction concepts but needed 
facilitated interpretation.

Numerous curriculum documents advocate the learning and teaching of fractions with 
multiple representations. For example, the NCTM Principles and Standards states ‘repre‑
sentations should be treated as essential elements’ (National Council of Teachers of Math‑
ematics, 2000, p. 67). The Australian Curriculum: Mathematics (Australian Curriculum, 
Assessment and Reporting Authority [ACARA], 2017) refers to a range of models and 
manipulatives for teaching fractions, such as materials, objects, sets, shapes, areas, lengths, 
number lines, paper sheets, and paper strips. The Rational Number Project curriculum 
(Behr et  al., 1992; Cramer et  al., 2002) advocates students solving the same task using 
two different fraction models and critiquing their strengths and weaknesses for that task. 
Student selection and justification of their own models are also a feature of the curriculum.

Given the importance of a robust fraction understanding for students, studies have 
also highlighted the need to consider teachers’ understanding of fractions concepts and 
representations. For example, there is evidence of considerable reliance on procedural 
knowledge among prospective teachers (Lovin et al., 2018). A study of 109 US prospec‑
tive teachers found fewer than half evidencing the higher-level Fraction Schemes (Lovin 
et al., 2018). Recent research has validated a theorisation of five developmental Fraction 
Schemes with both student and prospective teacher cohorts and in different curriculum 
contexts (e.g. Lovin et  al., 2018; Norton et  al., 2018; Stevens et  al., 2020). Yet little is 
known about practising teachers’ knowledge, particularly if and why they select visual rep‑
resentations in their teaching practice or if they rely on procedural approaches.

Given the importance of both using and connecting different visual representations for 
progressing beyond the lower-level Fraction Schemes, research exploring the pedagogical 
reasoning of practising teachers is warranted. This article discusses the findings from an 
online anonymous survey of nearly 200 practising primary teachers on teachers’ prefer‑
ences and critiques of different representations of fractions—both for solving fraction tasks 
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themselves and for teaching fractions concepts and operations. The following section pre‑
sents details on the theoretical background and contextual information on the survey that 
informed its design and data analysis.

Background and context

There are different theoretical conceptualisations of rational number, each of which pro‑
vide insight into the complexity of learning and teaching fractions. In the following three 
subsections, we overview in turn: different conceptualisations of rational number, critiques 
in the literature of different representations for learning fractions, and prior research on 
teachers’ use of fraction models.

Theorisations of fractions

A well-known and highly regarded framework for rational numbers is Kieren’s (1976) 
seven interpretations or subconstructs: fractions which can be compared, added, subtracted, 
etc.; decimal fractions; equivalence classes of fractions; ratios in the form p

q
q ≠ 0 ; multipli‑

cative operators; elements of an infinite ordered quotient field where x = p

q
  and qx = p ; 

and measures or points on a number line. Kieren (1976) argued that ‘rational numbers, 
from the point of view of instruction, must be considered in all of the interpretations’ (p. 
127). Each interpretation involves several related teaching strategies, which in turn employ 
numerous physical and symbolic models, discrete or continuous. Kieren cautioned that 
teachers need to select models carefully so that they do not conflict cognitively with a par‑
ticular rational number concept. For example, a continuous model supports repeated and 
infinitely varied subdivision of a referent unit, whereas a discrete model supports counting 
but with less obvious emphasis on the referent unit. He gave the example of a number line 
model supporting the interpretation of rationals as a measure but not the concept of multi‑
plication of rationals. He also suggested that the number line model might conflict cogni‑
tively with an area model for generating multiplicative ideas. Kieren (1988) argued that an 
overemphasis on a part-whole interpretation with static part-whole models—typically seen 
in primary school—could result in children not developing a powerful measure model of 
comparison to a unit (but relying instead on a double count of parts).

Another theorisation for fractions considers them a cognitive ‘synthesis’ of schemes 
of conceptual operations—that ‘fractional reasoning develops by interrelating several 
conceptual schemes often not associated with fractions’, such as multiplication, division, 
and measurement (Thompson & Saldanha, 2003, p. 12). Thompson and Saldanha defined 
such schemes as ‘stable ways of thinking that entail imagining, connecting, inferring, and 
understanding situations in particular ways’ (p. 13). They argued that fraction reasoning is 
a type of multiplicative reasoning grounded in a deep understanding of proportionality. As 
with Kieren (1988), they highlighted the importance of children coming to see fractions in 
terms of the image of relative size, for example of ‘A is m

n
 of B’ as ‘A is m times as large as 1

n
 

of B’—i.e. multiplicatively—rather than only the part-whole meaning, ‘A is some fraction 
or subset of B’. Otherwise, improper fractions won’t make sense because A is thought of 
as a subset of B. These theorisations suggest that using only static models (drawings) of 
proper fractions and an overemphasis on part-whole meanings can cause cognitive difficul‑
ties with understanding other interpretations of rational number.



706	 K. J. Wilkie, A. Roche 

1 3

A framework that similarly theorises the development of fraction knowledge in terms of 
conceptual schemes, termed ‘Fraction Schemes’ (Steffe & Olive, 2010) attends to mental 
actions such as partitioning, disembedding, and iterating (Norton & Hackenburg, 2010). 
Partitioning involves the mental action of breaking a continuous whole into equal pieces. 
Disembedding is the mental action of taking a part from a whole without destroying the 
whole. Iterating involves making connected copies of a part (Lovin et  al., 2018). Steffe 
(2010) described research into young children’s development of different levels of frag‑
menting that correspond to their construction of whole number counting. It was found that 
children who can establish ‘figurative quantity’ of discrete objects are also able initially to 
share continuous linear objects into two or three parts (p. 4). Steffe expressed surprise that 
linear (physical strings) rather than area models (‘cakes’) appeared to be more compat‑
ible initially with children’s counting operations. Sensitivity to the equality of parts was 
found to develop after the ‘sense of twoness’ (p. 4). The researcher’s earlier reorganisa‑
tion hypothesis was evidenced by children’s quantitative operations emerging in both con‑
tinuous and discrete cases in the same time frame and in quite similar ways. Steffe (2010) 
argued for not reserving fractional language notational systems for continuous models and 
whole number counting language for discrete quantities. As also emphasised by others’ 
perspectives (e.g. Kieran, 1988; Thompson & Saldanha, 2003), children need to not only 
see four sevenths as ‘four parts out of seven equal parts’ but also as ‘four of one seventh’—
an iteration of a unit fraction.

In this study, we drew on the recently validated Fraction Schemes theorisation (Stevens 
et  al., 2020). In focusing on numerical operations, it highlights the need for learners to 
transcend part-whole reasoning, by developing partitive conceptions and with both proper 
and improper fractions (Norton & Hackenberg, 2010). The Fraction Schemes learning tra‑
jectory has been validated in American and Chinese education contexts (see Norton et al., 
2018). They have also been used for assessing US pre-service teachers (see Lovin et al., 
2018) by seeking evidence of using a particular conceptual scheme with more than one 
type of model (e.g. linear and area tasks). The Fraction Schemes are presented and defined 
in Table 1 (Sect. 2.1) along with illustrative questions from this study’s survey.

Perspectives on representations of fractions for learning and teaching

The mathematics education literature highlights the importance of students learning with 
visual representations across all mathematics domains and making connections among 
them (e.g. Arcavi, 2003; Presmeg, 2006; Zazkis et  al., 1996). Fischbein (1987, p. 104) 
argued that ‘a visual image not only organises the data at hand in meaningful structures, 
but it is also an important factor guiding the analytical development of a solution; visual 
representations are an essential anticipatory device’. Zoltan P. Dienes is famous for cham‑
pioning the use of concrete materials for learning mathematics visually. He was the inven‑
tor of a range of manipulatives and arguably ‘sowed the seeds of contemporary uses of 
manipulative materials in instruction’ (Sriraman & Lesh, 2007, p. 59), including fractions.

Models for fractions have been categorised as continuous or discrete (Kieran, 1976). 
Continuous models include linear, area, and volume models, where lengths, two-dimen‑
sional regions, or three-dimensional objects define the referent whole and parts, e.g. long 
thin rectangles, number lines, circles, rectangles, shapes drawn on grid or dot paper, 
spheres, and prisms. Discrete models include representations of sets or collections. Con‑
crete manipulatives for teaching and researching fractions include fraction kits of pre-par‑
titioned circles and squares, fraction bars, geoboards, paper sheets and strips, Cuisenaire 
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rods, pattern blocks, and discrete counters (chips) (e.g. Cramer et  al., 2008). Behr et  al. 
(1992) drew on the previously mentioned work of Dienes with concrete materials and 
rational number concepts to research and develop fraction learning sequences. They incor‑
porated a range of visual experiences including: hands-on tasks with circular and rectan‑
gular manipulative pieces (colour-coded); model comparisons; paper folding; use of Cui‑
senaire rods; tasks with sets of chips or counters (discrete model); critique of different 
models for solving a particular task; and tasks with a number line.

Kamii and Clark (1995) highlighted the difficulties upper primary students experienced 
when reasoning about equivalent fractions with paper rectangles folded in different ways. 
They attributed these difficulties to students’ lack of experience with physical manipula‑
tives, as opposed to pictures of already partitioned area models, and their lack of expe‑
rience with improper fractions. Cramer et  al. (2008) researched upper primary students’ 

Table 1   Fraction Schemes ( adapted from Stevens et  al., 2020) and illustrative task versions used in the 
study’s survey for teachers’ personal preferences for solving tasks

Fraction scheme Task versions used in survey

1. Part-Whole Scheme (PWS)
Producing m

n
 by partitioning a continuous whole into n equal pieces and 

removing m of those pieces (while still being aware of the size of the 
whole)

 
2. Partitive Unit Fraction Scheme (PUFS)
Determining the size of a unit fraction relative to a given unpartitioned 

whole, by iterating the unit fraction (making connected copies of it) to 
produce a continuous partitioned whole

 
3. Partitive Fraction Scheme (PFS)
Determining the size of a proper fraction relative to a given unparti‑

tioned whole, by partitioning the whole to produce a unit fraction 
and iterating the unit fraction to reproduce the proper fraction and the 
whole

 
4. Reversible Partitive Fraction Scheme (RPFS)
Reproducing the whole from a proper fraction of it by partitioning the 

fraction to produce a unit fraction and iterating that unit fraction the 
appropriate number of times

 
5. Iterative Fraction Scheme (IFS)
Reproducing the whole from an improper fraction of it by partitioning 

the fraction to produce a unit fraction and iterating that unit fraction 
the appropriate number of times
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thinking when adding and subtracting fractions. They found that concrete representations 
of the operations, with estimation and visualisation experiences, supported students in 
moving to symbolic representations.

Circles have traditionally been used for early fractions teaching (Moss, 2005) but there 
are differing opinions evident in the literature on their efficacy for learning. These dif‑
ferences seem related to how circular representations are used in instruction. For exam‑
ple, Moss (2005) argued that children’s additive thinking is reinforced—that they treat 
the ‘pieces of pie’ as discrete objects. ‘The four pieces into which a pie is cut is just four 
pieces’ (p. 321). Yet Cramer et al. (2008) emphasised that such concerns about the poten‑
tial for such thinking with circle representations applied to most models for fractions. They 
researched several types of representations and found that the fraction circle model, as 
physical pre-partitioned pieces of varying sizes, was actually the most effective for build‑
ing students’ mental images for fractions. They argued that changing the referent whole in 
the learning tasks (e.g. a semicircle or quarter circle could be the referent whole) medi‑
ated the likelihood of whole number thinking. Rectangular areas drawn on dot paper and 
discrete sets of counters were found to reinforce incorrect fraction addition strategies, such 
as adding numerators and denominators together. They argued that nothing is obvious in 
either dot paper or sets of counters that demonstrates visually the need for finding com‑
mon denominators when adding fractions. Pattern blocks were also found to be problem‑
atic because of the varying types of shapes; the students struggled to find equivalent shapes 
for adding fractions. Cramer and Wyberg (2009) contrasted the differing shapes of pattern 
blocks with segments of a circle, which remain the same general shape. Circular (pre-cut) 
segments were found to support students in finding equivalent fractions for adding and 
subtracting fractions. They also suggested deferring the use of discrete sets for addition/
subtraction until students have developed a rationale for why common denominators are 
needed.

Researchers have advocated the use of number lines for helping students recognise frac‑
tions as numbers in their own right and that there is an infinite number of fractions between 
any two distinct numbers (e.g. Clarke et al., 2008). English (1997) conceptualised number 
lines as a metaphorical representation of our number system: a complex representation that 
requires the integration of visual and symbolic information. She argued that ideas, such 
as the density of rational numbers, are difficult for students to abstract from number lines. 
Students tend to see number lines as having stepping stones with space in between them 
(English, 1997). Cramer and Wyberg (2009) also highlighted the difficulty students have in 
identifying the referent unit on a number line. Students may see the whole line segment as 
the unit when trying to locate a fraction on it. Izsák et al. (2008) argued that it is a teacher’s 
purpose for using a particular model that influences their students’ opportunities to learn 
particular concepts. They illustrated this with student difficulties in trying to make sense of 
equivalent fractions and referent units with number lines. They suggested that teachers can 
tend to see and use linear models, like fraction strips and number lines, as ‘temporary aides 
for visualising “amounts”’ (p. 52) and not for developing students’ understanding of the 
mental operations underlying those representations. English (1997) emphasised the need 
for representations to be the source or vehicle for students’ learning rather than the target. 
Otherwise, students’ reasoning with fractions is disconnected from meaningful experience.

Fraction walls—a vertical arrangement of several ‘wholes’ partitioned differently in 
each row (often from larger to smaller size pieces)—are another representation used for 
teaching fractions. Cramer and Wyberg (2009) found that static drawn walls (rather than 
manipulative linear bars) supported students’ construction of the inverse relationship 
between the denominator and size of fraction parts, but not the coordination of the iterative 
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role of the numerator. They advocated for teachers learning to critique the efficacy of dif‑
ferent models for showing a fraction concept clearly, and also learning to draw on multiple 
models with students, rather than preference one.

Prior research on teachers’ practice with fraction models and manipulatives

In the past few decades, researchers have investigated prospective and practising elemen‑
tary teachers’ use of representations for solving fraction problems, but very few studies 
were found on teachers’ use of representations in their own practice. Various studies have 
sought insights into prospective teachers’ (PSTs) conceptual understanding of different rep‑
resentations for fractions. One study focused on fraction division and if or how 71 PSTs 
transferred from one type of representation to another (Biber, 2014). It was found that a 
verbal or symbolic representation (written operation) was needed alongside other repre‑
sentations for expressing fraction division. There was a tendency for PSTs to show the 
results of fraction division on the representation after calculating the answer with a written 
algorithm, rather than use the representation for reasoning. The PSTs themselves indicated 
a preference for symbolic representation above other types, such as area models or num‑
ber lines. Jansen and Hohensee (2016) researched 17 elementary PSTs’ understanding of 
partitive fraction division. They found difficulties in translating between representations 
when the divisor was a proper fraction (e.g. 24 ÷ 1

4
 or 4 ÷ 2

3
 ) and surmised a lack of experi‑

ence with the conceptions of division required for such tasks, including partitioning and 
iterating.

Boyce and Moss (2017) investigated elementary PSTs’ constructed Fraction Schemes 
with discrete models (dots), linear models (bars), and area models (circles). They looked 
for scheme internalisation and PSTs’ perception of difficulty. A key finding was that the 
PSTs could correctly solve tasks with dots (discrete model) but not structurally identical 
tasks with bars and circles. They surmised that the PSTs were using proportional reasoning 
with the discrete model rather than Fraction Schemes and operations. They also found that 
tasks for the Partitive Fraction Scheme (PFS; Scheme #3 in Table 1) were answered cor‑
rectly more frequently with circles than with bars, suggesting that perception of the refer‑
ent unit was clearer with the circle. At the Iterative Fraction Scheme level—where whole 
circles were not the referent unit—the PSTs perceived a higher level of difficulty with cir‑
cles. Boyce and Moss argued for the need to consider both the structure of tasks and the 
representations used for assessing fraction knowledge.

Lovin et al.’s (2018) study of 109 PSTs’ constructed Fraction Schemes also highlighted 
that representations seemed to be used after obtaining the answer first procedurally—as 
a means of illustrating the answer rather than finding the answer. As with other research‑
ers (e.g. Izsák, 2008; 2012), they found that a relatively low number of PSTs evidenced 
constructing the most advanced schemes (Reversible Partitive (RPFS) and Iterative Frac‑
tion (IFS) Schemes; see Table 1), suggestive of difficulties in moving beyond part-whole 
reasoning and in coordinating multiple levels of units. These difficulties are also impli‑
cated in issues working with improper fractions and fraction multiplication and division. 
Stevens et al. (2020) demonstrated that a shift away from part-whole to iterative language, 
and an emphasis on improper fractions with area, linear, and discrete models, supported 
82 Pre K-8 PSTs in learning to coordinate the three levels of units—the referent whole, the 
unit fraction, and the referent part (see Lovin et al., 2018)—and construct the higher-level 
Fraction Schemes. They emphasised the vital importance of teachers being able to work 
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conceptually with all types of fraction representations, including circular models, to dis‑
courage reliance on algorithmic procedures.

Some studies of practising teachers’ use of models for solving fractions tasks were 
found. Lee et al. (2011) in their research on 12 middle-grade mathematics teachers’ rea‑
soning with area models and number lines found that the teachers struggled more with 
number lines than with area models. Flexibility with the referent unit was found to be the 
key to being able to reason conceptually with the representations rather than knowledge of 
written algorithms. They argued that teachers need to know when and why representations 
should be used as well as how students might use (or misuse) them. Izsák and colleagues’ 
(2012) study explored 14 middle-grade mathematics teachers’ use of drawn representations 
for fraction operations before and after a 42-h professional development course. They also 
highlighted the need for teachers to be able to reason with the previously mentioned three 
levels of units for being able to use drawn representations conceptually in teaching fraction 
operations.

Ma (2020) compared US and Chinese teachers’ knowledge of fraction division as well 
as their ability to generate a model or story to represent the operation. Diverse levels of 
responses were found, and a lack of conceptual knowledge was implicated in difficulties 
with creating a model or story that gives meaning to 1 3

4
 ÷ 1

2
 . More recently, Copur-Gencturk 

and Doleck (2021) researched 350 elementary teachers’ responses to multistep fraction 
problems. They found that those teachers with stronger strategic competence were more 
likely to use pictorial or direct modelling, particularly for dealing with unknown quanti‑
ties. Unlike PSTs in other studies, these practising teachers frequently used partitioning and 
iterating—evidence of having constructed (some of) the Fraction Schemes.

We did find one study on a teacher’s actual practice with fraction representations—at 
upper primary level and with the number line for teaching fraction addition (Izsák et al., 
2008). It was found that only a short time was spent on using the number line before mov‑
ing to the written algorithm. When the students experienced difficulties, the teacher asked 
them to imagine (but not draw) fraction bars. Rather than making connections between the 
number line and the algorithm, the teacher explicitly said that her intent was for students 
‘to be able to use the number line and be able to do the algorithm independently of each 
other’ as this shows that ‘they truly understand both’ (p. 53). Izsák et al. (2008) argued for 
further research on the purposes for which teachers use fraction representations in their 
teaching practice.

The research questions for this study were (1) How do practising teachers reason about 
their fraction representation preferences, for solving tasks and for teaching students? and 
(2) What is the relationship between teachers’ personal representation preferences for solv‑
ing fraction tasks and for teaching fractions? The following section overviews the design of 
the study to gain insights into how teachers critique different (static) models and manipula‑
tives for the purpose of solving tasks themselves or teaching fractions.

Research design

In a mixed methods study, we investigated practising primary teachers’ personal prefer‑
ences when solving fraction tasks with different types of models, and also their purposes 
for using particular models and manipulatives for teaching fraction ideas relevant to their 
curriculum context. We sought insights into their pedagogical reasoning with fraction rep‑
resentations—an aspect of teacher knowledge for teaching mathematics about which we 
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found few studies in the literature. We quantitatively analysed teachers’ responses to a vari‑
ety of Likert scale items and qualitatively analysed numerous open response items. The 
findings are intended to inform the future development of teacher professional learning. In 
the following, three subsections we overview contextual information for the study: survey 
design considerations, the teacher participants, and data collection and analysis.

Design considerations for the survey: the Fraction Schemes and the teachers’ 
curriculum context

In designing the survey used in the research, we drew on the previously mentioned Fraction 
Schemes (Steffe & Olive, 2010; Stevens et al., 2020) and the prescribed curriculum content 
on fractions (ACARA, 2017). Kieran’s (1976) subconstructs provide a comprehensive map 
for understanding rational number from a mathematician’s perspective (Elias et al., 2020) 
but it has been argued that they are less useful for designing learning sequences for stu‑
dents (Thompson & Saldanha, 2003). The Fraction Schemes were developed from multiple 
research studies investigating the actual processes for learning fractions and therefore were 
considered useful for exploring teachers’ personal preferences for representations when 
solving tasks themselves. In our survey, firstly to gain insights into teachers’ preferences 
in solving tasks themselves, we presented teachers with various versions of a task at each 
of the five scheme levels, each of which included a different model. They are presented in 
Table 1. We asked teachers to select their preferred task version for each scheme and to 
give a written explanation for their choice. The original design was a paper-based question‑
naire that also elicited teachers’ written solutions to the various fraction tasks, but the sur‑
vey had to be modified for online completion during Melbourne’s lockdown over several 
months.

We also sought insights into teachers’ model and manipulative preferences for teaching 
fractions. We included survey questions both on assigning a level of preference for each 
of a list of models and manipulatives (in general) and on selecting a preferred model and 
manipulative for each of seven aspects of teaching fractions, drawn from the prescribed 
national curriculum content of the study’s participants (ACARA, 2017). The seven fraction 
ideas and the lists of models and manipulatives are presented in Fig. 1. More detailed con‑
tent descriptions from the teachers’ national curriculum are presented in Appendix.

Study participants and context

The fraction representation preferences survey was completed by 198 primary teachers or 
leaders in mid-2021. They were practising teachers in Catholic schools from the state of 
Victoria, Australia, and constituted a convenience sample. (Nearly 40% of Victorian stu‑
dents attend non-government schools.) The teachers were participants in various profes‑
sional development opportunities organised by Melbourne Archdiocese Catholic Schools 
(MACS). The survey was completed by volunteers prior to or outside the professional 
learning (PL) workshop. No surveys were completed following PL about fractions; hence, 
their PL was not considered an influence on the teachers’ survey responses.

Tables 2 and 3 outline the year levels of the teacher participants and the number of years 
they had been teaching. Overall, the majority were not novice teachers, as 74% had more 
than 5 years teaching experience. Also 75% had taught either Grade 5 or 6 at some stage 
during their teaching career, indicating that for many, the teaching of fractions was likely to 
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be part of their pedagogical content knowledge. There were more female participants than 
male (86 and 12%, respectively), and 2% declined to answer this question.

Data collection and analysis

Quantitative and qualitative data were analysed. The quantitative data included demo‑
graphic data, and Likert scale items. The demographic data related to the participants 
(years of teaching, year level currently teaching, whether they had ever taught Grade 5 or 6, 
and gender) have been reported in an earlier section (i.e., study participants). Likert scale 
items, which were analysed quantitatively, are discussed throughout the Results section. 
The percentages of participants provide an indication of the spread of preferences for each 
item in the survey.

For each open-response item in which the participants provided an explanation for 
their personal choice of model for solving fraction tasks, the data were sorted by the par‑
ticipants’ selection of a model (i.e., circle, rectangle, line, or set) for each scheme. Their 

Fig. 1   Curriculum aspects used in the survey, for each of which teachers indicated their model and their 
manipulative preferences

Table 2   Frequency and percentage of participants teaching F-2, 3–4, 5–6 and other, respectively

Grade level Foundation- 2 3–4 5–6 Other Total

67 (34%) 57 (29%) 48 (24%) 26 (13%) 198 (100%)

Table 3   Frequency and percentage of participants’ years of teaching experience

Years teaching experience 1–5 years 6–10 years 11–20 years  > 20 years Not specified Total

51 (26%) 31 (16%) 43 (22%) 70 (35%) 3 (2%) 198 (100%)
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written explanations for the choice of a particular model were then analysed using qualita‑
tive line-by-line coding as outlined by Braun and Clarke (2012). The first author followed 
the following stages: (1) familiarisation with the data, (2) generating initial codes, (3) 
searching for themes, (4) reviewing themes, (5) defining and naming themes, and (6) pro‑
ducing a report and coding framework. The second author also double-coded the Scheme 
#1 (Part-Whole) data for the discrete model preferences (see Table 3 in the Results sec‑
tion), and subsequent refinements were made before Scheme #2 (Partitive Unit) data were 
also double-coded by both researchers and discussed to reach consensus. The same coding 
framework was used for the open-response items related to the teachers’ preferences for 
a model for each fraction scheme, regardless of the scheme or type of model. The coding 
framework and percentages of teachers for the qualitative analysis are presented in Tables 4 
and 5 in the Results section. Some of the teachers’ written responses were related to more 
than one code and therefore were included in each of them, so the percentages of teachers 
refer to those who referenced a particular idea. For example, the response ‘I can see a 1

5
 

straight away with the visual. I know that by using the array I am going to be accurate’ was 
coded as About seeing part of the whole and About accuracy, exactness.

Results

To address the first research question on teacher representation preferences for solving 
tasks themselves and for teaching students, the first two subsections present results on 
teachers’ preferences for a particular model for each of the five Fraction Schemes (see 
Table 1), and for various models and manipulatives in their teaching (in general and for 
specific fraction ideas from their curriculum). To address the second research question on 
relating teachers’ personal and teaching practice preferences, the third subsection analy‑
ses similarities and differences in the teachers’ preferences and patterns of reasoning about 
particular representations.

Teachers’ personal model preferences for solving tasks for each Fraction Scheme

To gain insights into teachers’ model preferences for solving fraction tasks, the participants 
were asked to both select their preferred task version for each of the Fraction Schemes (see 
Table 1) and to give a reason. Figure 2 presents the percentages of teachers who selected 
a particular model for each of the five schemes. (Note that some participants did not make 
any selection for a particular scheme so the number of responses is also given—the number 
of responses decreased as the scheme type number increased.)

Overall, it can be seen that except for Scheme #2 (Partitive Unit), most of the teachers 
preferred a set (discrete) model. For Scheme #2, a vast majority preferred the circle model. 
Across the five schemes, there were teachers who preferred each model type, providing 
evidence of diverse individualised preferences.

To examine the teachers’ reasons for selecting the discrete model for Scheme #1 (Part-
Whole), we coded the reasons (prompted by an open-response item), which are presented 
in Table 4, along with illustrative examples.

Table 4 highlights that more than half of the teachers evidenced preferring the set 
model for the Part-Whole Scheme (#1) because of its discrete nature—that they were 
exact amounts, or columns or groups, so that there was no need to estimate the size of 
the part of the whole, in this case fifths. In Table 1, the set model diagram was an array 
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of five columns and four rows. Several of the teachers explained that this arrangement 
made seeing parts of the whole easier. Nearly one third of the teachers referenced the 
idea of being able to visualise or see. It is likely that a random arrangement of coun‑
ters, or a different array—rather than an array matching the task’s required partition‑
ing—may have elicited different responses.

Similar explanations for the teachers’ set model preferences across Schemes #3 to 
#5 (Partitive, Reversible Partitive, and Iterative) were also found—about its being eas‑
ier to visualise part of the whole and only needing to count, not measure or estimate.

To examine the teachers’ reasons for preferring a circle model for Scheme #2 (Par-
titive Unit), we coded the responses using the same categories as Scheme #1 (Part-
Whole), and the results are presented in Table 5.

Table 5 shows that more than two thirds of the teachers referred to finding the circle 
model easier to visualise or see for Scheme #2, in this case a quarter of a circle. Many 
teachers referred to the concept of clearness or ease of seeing in general terms, but a 
slightly larger percentage described specifically the ease of seeing a quarter as part of 
a whole circle.

To investigate the participants’ range of preferences across the five schemes, we 
also counted the number of models preferred by each individual teacher, presented in 
Fig. 3.

It can be seen that nearly three quarters of the teachers selected either two or three 
model types, suggesting that the nature of the task, in terms of fraction scheme, and 
the fractions involved, play a role in teachers’ solving preferences, rather than teachers 
having a stable model preference across all contexts. That said, the overall pattern of 
these results highlights the teachers’ noticeable preference for set (discrete) models.

0%

10%

20%

30%

40%

50%

60%

70%

80%

Scheme 1 (PWS)
(n = 198)

Scheme 2 (PUFS)
(n = 195)

Scheme 3 (PFS)
(n = 191)

Scheme 4 (RPFS)
(n = 185)

Scheme 5 (IFS)
(n=174)

Preferred model for each Frac�on Scheme 

Circle (area)
Rectangle (area)
Line (linear)
Set (discrete)

Fig. 2   Preferred model for solving each Fraction Scheme task (percentage of respondents for each survey 
item)
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Teachers’ model and manipulative preferences for their teaching practice

We now turn to the teachers’ responses regarding their preferences for teaching frac‑
tions (rather than solving tasks themselves). Prior to selecting their model preferences 
for teaching fractions, the participants were asked to nominate a year level for which 
they have the most experience teaching fractions and to consider this year level when 
choosing a preferred model or manipulative. Two subsections present data, firstly on 
teachers’ preferences in general, and secondly for teaching particular fraction ideas—for 
a range of models and manipulatives.

Model and manipulative preferences for teaching in general

Figure 4 presents the teachers’ level of preference (on a five-point Likert scale from ‘do 
not prefer’ to ‘prefer a great deal’) for teaching with each model in general.

We also examined these data by nominated year level, presented in Fig. 5.
The data highlight a full range of levels of preference for each model type, with the 

majority of teachers preferring a particular model type ‘a lot’ or ‘a great deal’. The 
highest percentage of preference was for the set (discrete) model (69.4%) and then the 
rectangle (area) model (69.3%). The other model types were around 50% (for prefer a 
lot or a great deal). Overall, the teachers across nominated teaching year levels indicated 
a high preference for all model types except the number line, which was more preferred 
by those teaching Years 4 to 6.

A different main preference emerged from the teachers’ data about teaching with 
hands-on manipulatives, as seen in Fig. 6. Nearly 80% of the teachers highly preferred 
fraction bars—a linear representation—whereas only around 50% highly preferred 
counters (chips; a discrete representation).

For each manipulative type, there was a full range of levels of preferences made by 
the teachers, including those teachers who reported not having taught with a particular 

12%

41%
37%

10%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

4321
Number of different model types selected  

Teachers choosing 1 or more model types across the Frac�on Schemes

Fig. 3   Number of model types selected by teachers across the Fraction Schemes
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0%
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30%
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40%

Circle
(n=171)

Square
(n=166)

Rectangle
(n=169)

Number line
(n=170)

Set
(n = 173)

Model types

Level of preference for teaching with each model in general

Do not prefer

Prefer slightly

Prefer a moderate amount

Prefer a lot

Prefer a great deal

Fig. 4   Level of preference for teaching with each model type in general
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Mean score: Model preferences per nominated year level

Circle

Square

Rectangle

Number line

Sets

Fig. 5   Level of preference for teaching with each model in general across year levels
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Pre-made
circles
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Pre-made
rectangles
(n = 167)
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(n = 173)
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Cuisenaire
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(n = 168)

Geoboards
(n = 165)
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Level of preference for teaching with each manipula�ve in general
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Prefer a lot
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Fig. 6   Level of preference for teaching with each manipulative in general

Fig. 7   Number of model types and manipulatives preferred by teachers (prefer a great deal / a lot)
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1 3

manipulative before. This suggests individualised preferences for teaching fractions 
with manipulatives in general.

Figure  7 presents percentages of teachers who, across their teaching preferences, 
selected a high level of preference (a lot or a great deal) for one or more types of models 
and manipulatives.

The data indicate that the vast majority of the teachers reported teaching with both mod‑
els and manipulatives. Around half of the teachers indicated a high level of preference for 
three or four models and three or four manipulatives. Overall, these differences in levels of 
preference for teaching with models and manipulatives for the different types of represen‑
tations (area, linear, or discrete) suggest that these teachers prefer teaching with area and 
discrete static models and with linear manipulatives (fraction bars).

Model and manipulative preferences for teaching specific fraction ideas

Figure  8 presents the teachers’ most preferred model for teaching each previously men‑
tioned fraction idea (or ‘big idea’; see Fig. 1).

Each fraction concept elicited the full range of model types as well as those teachers 
who reported preferring not to use any model for teaching it. In other words, each model 
type was preferred by at least some teachers for teaching a particular fraction idea. Num‑
ber lines were favoured by the majority of teachers for teaching: the ‘naming of fractions 
between two fractions’, ‘improper fractions’, and ‘equivalent fractions.’ A rectangle model 
was the next most frequently preferred for teaching these concepts. A circle model was the 
most favoured for teaching fraction comparison.

Figure 9 presents data on the teachers’ most preferred manipulative for teaching each 
fraction concept.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Comparing frac�ons (n = 169)

Equivalent frac�ons (n = 169)

Naming a frac�on between two frac�ons (n = 164)

Improper frac�ons (n = 168)

Adding and subtrac�ong frac�ons (n = 166)

Mul�plying and dividing frac�ons (n = 160)

Par��oning a whole into unequal parts (n = 162)

Preferred model for teaching par�cular frac�on idea

Circles squares rectangles number line sets/collec�ons Prefer not to use models for this big idea

Fig. 8   Model types preferred by teachers for teaching a particular fraction idea (percentage of respondents 
for each idea)
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As with model types, the teachers’ preferences can be seen across the full range of 
manipulative types for each concept. Noticeably, fraction bars were the most preferred 
manipulative for teaching all of the fraction concepts except ‘improper fractions’, where 
pre-made rectangles are slightly more preferred. Some illustrative examples of the written 
reasons the teachers gave regarding their preference for fraction bars (including their nomi‑
nated year level in parenthesis) are:

The fraction bars are easy for students to compare fraction amounts and identify 
equivalent fractions. Easy to make and manipulate. (Yr 2)
The fraction bars are a great visual for the students to see how the same length can be 
divided into many different fractions. (Yr 3)
Fraction bars help students’ understanding of equivalence and I feel it also helps with 
linking to a linear model of teaching fractions. (Yr 4)
Students can see which fractions are ‘bigger’ in an immediate look when all are 
together. Can also be used to look for equivalent fractions. (Yr 5)

These teachers identified the importance of the fraction bars for understanding the 
equivalence of fractions, part-whole relationships, the relative size of fractions, and inter‑
estingly also the connection to other linear representations, such as number lines.

It is of note that a considerable percentage of the teachers indicated that for teaching 
‘multiplying and dividing fractions’ they prefer not to use a model (more than 30%) or a 
manipulative at all (more than 40%). From our data, we were not able to ascertain possible 
underlying reasons for this result, as our open-response items prompted teachers to explain 
their reasons for preferring their chosen model/manipulative, rather than for not preferring 
to use them. However, the reason for not using a model to assist students’ understanding of 
fraction division may be a consequence of teachers’ lack of conceptual understanding, as 
identified by Ma (2020).

Overall, these responses indicate that although the teachers reported diverse individual 
preferences regarding model types for teaching each of their fraction concepts, fraction 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Comparing frac�ons (n = 158)

Equivalent frac�ons (n = 157)

Finding a frac�on between two frac�ons (n = 154)

Improper frac�ons (n = 151)

Adding and subtrac�ng frac�ons (n =150)

Mul�plying and dividing frac�ons (n = 147)

Par��oning a whole into unequal parts (n = 151)

Preferred model for teaching par�cular frac�on idea

Pre-made circles Pre-made rectangles Frac�on bars Pa�ern blocks Cuisenaire rods

Geoboards Counters Prefer not to use manipula�ves for this big idea

Fig. 9   Manipulatives preferred by teachers for teaching a particular fraction idea (percentage of respondents 
for each idea)
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bars were clearly the most preferred manipulative (with pre-made rectangles being pre‑
ferred for teaching improper fractions). This result is perhaps surprising, given that multi‑
ple wholes are not considered as easily visualised with rectangles, compared to circles, and 
compared to fraction bars, each of which is a whole (Cramer & Wyberg, 2009). Fraction 
bars can be arranged in a long line to connect to a number line representation, an important 
link between representations which one of the previously mentioned teachers referenced.

Relating teachers’ personal and practice‑based preferences

Given that a set (discrete) model was most preferred by these teachers for solving tasks in 
all of the five schemes except for #2 (Partitive Unit; See Fig. 2), we created cross-tabula‑
tions to investigate their preference for discrete models when solving fraction tasks and 
their preferences for teaching with discreet representations (the set model and counters 
manipulative). These are presented in Table 6.

In the second column of Table 6, it can be seen that nearly two thirds of the teachers 
preferred a set model for solving tasks in two or more schemes (out of five). For teaching in 
general (Columns 3 & 4), there were larger proportions of teachers indicating a high level 
of preference for sets (models) compared to counters (manipulatives). This same pattern 
can be seen in Columns 5 and 6 for teaching specific fraction concepts. This suggests that 
static discrete representations are more likely to be used by teachers than counters (chips) 
as such. Prior research has pointed to the effectiveness of manipulatives compared to static 
models for learning fractions (Martin et al., 2012). In this study, we did not ask teachers to 
critique models versus manipulatives, but future research on their preferences and if, how, 
and when they use manipulatives instead of static models would be worthwhile.

Given that many teachers described the arrangement of groups or columns or arrays as 
the reason for their personal preference for solving with a set model (Table 3), yet do not 
also use counters for teaching fractions, it seems likely that if teachers are using arrays in 
their teaching, it is not necessarily for fractions per se. In the Year 2 curriculum content, 

Table 6   Cross-tabulation of teachers’ discrete model preferences for solving fraction tasks and manipulative 
preferences for teaching (n = 198)

Solving own tasks Teaching in general Teaching specific ideas

Discrete (sets) model 
preferred

Model—Sets Manipulative—
Counters

Model—Sets Manipula‑
tive—
Counters

Num. schemes Subtotal 
(n = 198) 
(%)

High preference (%) High preference (%) Preferred for at 
least 2 ideas (%)

Preferred 
for at least 
2 ideas 
(%)

0 schemes 12.1 2.5 2.5 1.0 –
1 scheme 20.2 10.1 9.6 2.0 1.0
2 schemes 19.2 10.1 7.6 5.1 2.5
3 schemes 23.2 19.2 16.7 10.6 4.0
4 schemes 18.2 12.6 8.1 5.6 1.5
5 schemes 7.1 6.1 5.6 4.5 1.0

Subtotal 60.6 50.0 28.8 10.1
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students are to ‘Recognise and represent multiplication as repeated addition, groups and 
arrays’ (ACMNA031; ACARA, 2017). The array representation, which the teachers them‑
selves preferred to use for solving fraction tasks, seems more likely to be used for teaching 
multiplication.

Similarly, it can be seen that a majority of the teachers who showed a strong preference 
for solving fraction tasks with the discrete model (three or more schemes out of five) also 
indicated a strong preference for using them in their teaching. Out of the 25% who selected 
the discrete model for four or five schemes, nearly three quarters indicated a high prefer‑
ence for teaching with sets as well. When we calculated the Pearson’s correlation coef‑
ficient for solving with a (set) discrete model (0 to 5 schemes) and level of preference for 
teaching fractions with the set model in general (score of 0 to 4; don’t use to prefer greatly), 
we found a medium positive correlation (0.356). When we calculated the Pearson’s cor‑
relation coefficient for solving with a (set) discrete model (0 to 5 schemes) and number of 
fraction ideas for which a set model is preferred for teaching (0 to 7 ideas), we also found 
a medium positive correlation (0.379). When we calculated the Pearson’s correlation coef‑
ficient for solving with a discrete model and number of ideas where a discrete manipulative 
(counters or chips) is preferred for teaching (0 to 7 ideas), we found a negligible positive 
correlation (0.149). These results suggest that teachers who preferred the (static) set model 
for solving also indicated a preference for teaching with it in general and for specific ideas, 
but not for teaching with the matching manipulative counters (chips). There was noticeable 
association between not selecting a discrete model for any of the schemes (12.1% of teach‑
ers) and a low level of preference for teaching with either a discrete model or a discrete 
manipulative.

Given that the teachers demonstrated a noticeable preference for the fraction bars across 
most of the specific fraction concepts (Fig. 9), we also created cross-tabulations to relate 
this preference both to teaching in general and to solving with a linear model. These are 
presented in Table 7.

We calculated the Pearson’s correlation coefficient for number of fraction ideas for 
which fraction bars are preferred for teaching (0 to 7 ideas) and level of preference for 
solving with a linear model (0 to 5 schemes) and we found a negligible positive correlation 
(0.104). This result suggests that those teachers who preferred fraction bars for teaching 
specific fraction concepts do not necessarily prefer a linear model for their own solving 
of fraction tasks. Cuisenaire rods are also a linear manipulative, and interestingly, 41% of 
teachers overall indicated a high preference for them across the range of levels of prefer‑
ence for fraction bars.1

Some illustrative examples of the written reasons teachers gave regarding their prefer‑
ence for Cuisenaire rods (with their nominated year level in parentheses) are:

Great for kids to discover by trial and error which rods are ‘half’ and ‘one quarter’ 
the length of others. (Foundation)
Cuisenaire rods for a linear model—the whole can be different lengths (unlike the 
fraction bars which are usually named). (Yr 2)
Cuisenaire rods are easy for students to compare fractions and show fractions of 
something. (Yr 4)
Cuisenaire rods—great to visualise for students to manipulate and move. (Yr 5)

1  An Australian company produced Cuisenaire rod kits from the 1970s and the government resourced pri‑
mary schools with them; the kits continue to be readily available to teachers.
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These responses highlight the perceived value of Cuisenaire rods’ manipulability in the 
process of making sense of fractions, for representing unit fractions, for comparing frac‑
tions, and for making connections to linear models such as the number line. There seemed 
to be less emphasis on showing equivalence, compared to the fraction bar responses. 
Interestingly, the Year 2 teacher in the second quote above compared Cuisenaire rods to 
fraction bars and highlighted the flexibility of the rods in being able to change the size of 
the wholes, unlike commercial fraction bars which are typically labelled with the fraction 
name (as part of the longest ‘whole’ bar).

More than half of the teachers (55.1%) did not select a linear model at all for solving 
fraction tasks and yet their preferences for teaching with fraction bars were spread across 
the full range of fraction concepts (from 0 to 7 concepts). This suggests that many teach‑
ers may consider fraction bars a valuable manipulative even though they prefer not to use 
linear models for their own solving. Several teachers commented negatively on the need to 
use estimation or measuring for solving the given tasks, and it seems probable that because 
fraction bars are pre-cut into unit fractions, they are viewed as different to unpartitioned 
linear representations (we used in the scheme tasks). If we had also pre-partitioned the 
linear bars in the solving tasks, the responses may have been different. It is worth noting 
that the developers of the five Fraction Schemes framework highlighted the importance 
of learners being able to partition into equal parts themselves as evidence of having con‑
structed the schemes, rather than always being presented with pre-partitioned representa‑
tions (Stevens et al., 2020).

In reverse, perhaps surprisingly, nearly 30% of the teachers did not choose fraction bars 
for teaching any of the fraction concepts, even those for whom fraction bars are recom‑
mended, such as ‘equivalent fractions’ and ‘adding and subtracting fractions’ (Clarke & 
Roche, 2014). Nearly two thirds of these teachers also did not select a linear model for 
solving any of the scheme tasks, suggestive of a relationship between not solving with a 
particular model and not teaching with it.

Discussion and conclusion

There is widespread agreement that for learning fraction concepts, students need opportu‑
nities to make connections across different constructs and visual representations of rational 
number. This study sought to investigate practising teachers’ knowledge for teaching frac‑
tions through their preferences, both for solving fraction tasks themselves and for teaching. 
This study contributes to the literature on primary teachers’ pedagogical reasoning with 
fractions through their critiques of different models and manipulatives.

Teachers’ personal preferences

In this study, we found evidence that teachers’ preference for a particular model was at least 
in part task-specific. Nearly 90% did not choose the same type of model across all five Frac‑
tion Schemes and their reasons suggested that the nature of each task’s requirements, and the 
specific fractions involved, influenced their preferences. Nearly three quarters of the teach‑
ers selected two or even three model types across the tasks, which was not suggestive of a 
stable model preference independent of context. Nevertheless, a majority of teachers in this 
study indicated a preference for the set (discrete) model for all five schemes, with the excep‑
tion of Scheme #2 (Partitive Unit), for which most teachers preferred a circle model. Their 
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reasons were most frequently related to the discrete (rather than continuous) nature of the set 
representation that made it visually easy for them to see parts of the whole without having to 
measure or estimate equal parts. We surmise that the teachers’ preference was at least par‑
tially influenced by our decision to include sets arranged in an array where the columns match 
the unit fraction needed for the task. This likely enabled ‘calculating-by-structuring’ rather 
than ‘calculating-by-counting’ (Venkat et al., 2021) which would have been necessary with 
an ‘ad hoc’ set of dots. A different array (where columns didn’t match the unit fraction) or a 
random arrangement would have certainly required more work to partition the set and iterate 
parts. The research on Fraction Schemes in the literature (Lovin et al., 2018; Norton et al., 
2018; Stevens et al., 2020) emphasised the importance of students experiencing partitioning 
into equal parts, i.e. not providing learners with pre-partitioned representations all the time. 
In one sense the arrays in the tasks for this study were pre-partitioned, unlike the other three 
representations—circle, rectangle, and linear. Pre-partitioning these models as well may have 
also produced different results.

The finding that most teachers preferred the circle model for Scheme #2 (Partitive Unit)—
which involved identifying part of a whole—also confirmed the likelihood of teachers’ pref‑
erences being at least partially task-specific. Their reasons highlighted that the quarter circle 
shape was easily recognised in comparison to the whole circle. If we had chosen a different 
unit fraction to one quarter for this item, whose mental representation was less familiar—such 
as one seventh—the teachers may have preferred another representation where iterating parts 
would have been easier, such as the linear model. Nevertheless, Cramer and Wyberg (2009) 
argued that for comparing unit fractions to the whole (needed for Scheme #2) the circle is 
clearer than the set (discrete) model. This could explain the teachers’ circle preference with 
only this scheme.

In their study of pre-service teachers (PSTs), Boyce and Moss (2017) found evidence of 
the PSTs using sets for proportional reasoning with whole numbers and not with Fraction 
Schemes as such. They were found to solve fraction tasks correctly with a set model but not 
structurally identical tasks with linear or circle models. In our study with practising teachers, 
we did find references to proportional reasoning or multiplicative thinking, but there was also 
evidence of teachers partitioning and iterating with the set model. To delve further into the 
teachers’ noticeable preference for the discrete model, future research involving set models not 
arranged into arrays, and pre-partitioned models for all types, would be worthwhile. Further 
research could also explore the influence of choice of fraction on teacher preferences and also 
with hands-on manipulatives (rather than with only static models).

Regarding the circle model in Schemes #3 to 5 (Partitive, Reversible Partitive, and Itera-
tive), we had included tasks where the referent whole was not a whole circle, and we surmise 
that this is also likely to have influenced teachers’ preferences. Boyce and Moss (2017) found 
that PSTs ranked such tasks with circles as the most difficult compared to similar tasks with 
other representations. Yet flexibility, in being able to coordinate the referent whole, is con‑
sidered critical to the development of Scheme #5 (Iterative), particularly for understanding 
improper fractions conceptually (Stevens et al., 2020). As previously mentioned, our online 
survey did not ask teachers to include their solutions for the task versions (as we felt this was 
too onerous for them in an online context compared to the originally intended hardcopy for‑
mat which did prompt for solutions). More fine-grained research and teachers solving the 
same task type with various models and explaining their pedagogical reasoning with them 
would be valuable.
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Teachers’ preferences for teaching

To gain multiple sources of data about teachers’ representation preferences for teaching 
fractions, the survey prompted for levels of preference about specific models and manip‑
ulatives in general (see Figs.  4 and 6), and also choice of a model and manipulative 
for teaching specific fraction concepts (see Figs.  8 and 9). Overall, the teachers indi‑
cated most frequently a high level of general preference for the set (discrete) model and 
secondly for the rectangle model. These preferences did not evidence being associated 
with teachers’ nominated year level (Fig. 5). The only exception was their preference for 
number lines, which increased with increasing year level. This is perhaps unsurprising 
given the teachers’ curriculum context. Their prescribed national curriculum explicitly 
refers to a ‘number line’ for fractions in Years 4 to 6 (ACARA, 2017; see Appendix for 
the actual content descriptions). ‘Shapes and collections’ are mentioned in Year 2, and 
the direction to ‘model and represent’ is prescribed for Year 3, but otherwise the teach‑
ers’ national curriculum does not specify fraction models or representations. In research 
with practising teachers, Lee et al. (2011) associated difficulties in reasoning about frac‑
tions with number lines (compared to area models) and with a lack of flexibility in coor‑
dinating the referent whole. This issue could also be implicated in the lower levels of 
preference for number lines at lower year levels found in our study.

The teachers’ noticeable preference for set models, for solving the scheme tasks and 
for teaching in general, was not found to match their preferences for teaching with dif‑
ferent types of manipulatives, either in general or for teaching specific concepts. Instead 
of counters (chips), they demonstrated a strong preference for fraction bars, which are 
a linear representation. This was evidenced in general and across several specific con‑
cepts. Their written reasons for such a preference were related to the fraction bars’ use‑
fulness for teaching partitioning and comparing fractions, and pervasively about dem‑
onstrating the equivalence of different fractions. It is worth considering that similar to 
set (discrete) models arranged in an array, that the teachers personally preferred fraction 
bars, are also pre-partitioned, so again there is no need for estimating or measuring. This 
could be the link between the teachers’ model preference for solving tasks and teaching 
in general (discrete sets) and their manipulative preference (linear fraction bars), even 
though the type of model is different. Although the teachers also evidenced positive 
views about Cuisenaire rods, they were not as popular as fraction bars. As previously 
mentioned, one teacher remarked on (commercial) fraction bar pieces being labelled as 
a particular type (e.g. one half, one quarter etc. of the longest bar), and preferred Cui‑
senaire rods because the referent whole could be changed. This suggests that teachers’ 
preferences may be less about a particular type of representation (area, linear, discrete) 
but perhaps more about the perceived level of salience of parts and the whole. Cui‑
senaire rods are also linear manipulatives suitable for learning about equivalence and 
flexibility with referent units, but they are not labelled. Future research on the issues of 
partitioning and referent wholes with different types of representations would be worth‑
while to learn more about their role in teachers’ decision-making.

We found evidence that some practising teachers may not be using models or manip‑
ulatives at all for teaching operations with fractions, and especially multiplication and 
division. More than 30% of teachers in our study indicated that they prefer not to use a 
model and more than 40% that they don’t use manipulatives for multiplication and divi‑
sion, but it was not clear from our data if they found representations problematic for 
students’ learning or if they personally preferred written procedures. This finding is also 
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evident in previous research in the literature on PSTs’ (e.g. Jansen & Hohensee, 2016; 
Lovin et al., 2018) and on practising teacher knowledge of representations for fraction 
operations (e.g. Copur-Gencturk & Doleck, 2021; Ma, 2020). Ma (2020) in research on 
teacher knowledge for division by a fraction found that a lack of conceptual meaning for 
the procedure itself hindered teachers’ ability to generate an appropriate representation 
for the operation. Further research on teacher reasons for preferring not to use represen‑
tations for teaching the operations would be worthwhile.

Cramer and Wyberg (2009) highlighted students’ difficulties with, and incorrect use 
of discrete and rectangle representations when learning to add fractions, which reinforce 
whole number thinking (adding the numerators and adding the denominators). They sug‑
gested that the ease of losing a sense of the referent whole was problematic with these par‑
ticular representations. They argued that the circle representation is more supportive when 
teaching fraction operations because the need for a common denominator is particularly 
salient. Our study found evidence that few teachers seem to be utilising circle representa‑
tions in this way, possibly because of conflicting opinions about the efficacy of circles for 
teaching these more complex concepts beyond part-whole ideas (e.g. Moss, 2005). Recent 
research on practising teachers’ responses to multistep fraction problems highlighted that 
stronger strategic competence was associated with the use of fraction representations 
(rather than abstract algorithms), and in ways that evidence the Fraction Scheme opera‑
tions—partitioning, iterating, and coordinating the three levels of units (Copur-Gencturk 
& Doleck, 2021). More research on teachers’ reasoning with different types of representa‑
tions and for teaching fraction operations would be worthwhile.

Relating teachers’ preferences for solving fraction tasks and for teaching

In our cross-tabulation comparing teachers’ representation preferences personally for solv‑
ing fraction tasks and for teaching, we found that a high personal preference for a set (dis‑
crete) model was associated with a preference for teaching with the same model in general 
and for teaching specific fraction concepts, but not for teaching with the matching manipu‑
lative (counters or chips). This result suggests that teachers may have responded positively 
to the static representation of sets, and as arrays, not just the ‘exactness’ of numbers of 
objects inherent in a discrete representation. Evidence, however, was found of very high 
or very low personal preferences being mirrored in teachers’ teaching preferences, but the 
relatively small (and convenience) sample (n = 198) precludes statistical generalisation to 
other teachers and contexts. Further research on the influences on teachers’ decision-mak‑
ing for using (or not using) models and manipulatives in their teaching practice would be 
worthwhile. Potential influences include teachers’ own prior learning and teaching experi‑
ence (including professional learning), familiarity with particular representations, and use 
of certain curriculum and teacher resources. Researchers in the literature have emphasised 
the importance of teachers developing their knowledge for when and why fraction repre‑
sentations are best used so that they teach concepts and not only procedures (e.g. Izsák 
et al., 2012; Lee et al., 2011).

In another cross-tabulation, we found that although teachers favoured the use of fraction 
bars for teaching, this was not associated with a personal preference for a linear model when 
solving fraction tasks. Fraction bars are pre-partitioned, whereas the linear models we used 
in the scheme tasks were not. We surmise that whether a representation is pre-partitioned 
may play a role in influencing teachers’ personal representation preferences. Several teachers 
explained that they preferred the set (discrete) model because they did not need to estimate 
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or measure parts of the whole, suggestive of disliking the ‘messiness’ of having to partition 
continuous models. Coles (2021) argued that recent research in various contexts has provided 
compelling evidence that curriculum needs to move away from counting discrete objects 
(and numbers as discrete) as a primary basis and instead draw much more on a non-numeric 
exploration of relations, such as between lengths, areas, and other measurement attributes, as 
advocated historically by Davydov. Further research into teachers’ reasoning and critique of 
continuous and discrete representations of rational number for teaching fractions is considered 
important for developing effective professional learning opportunities for them.

Appendix 1

See Table 8.

Table 8   Fraction-related content descriptions from the teachers’ prescribed Australian Curriculum: Math-
ematics (ACARA, 2017)

Level Curriculum content descriptions for fractions

Foundation —
Year 1 Recognise and describe one half as one of two equal parts of a whole. (ACMNA016)
Year 2 Recognise and interpret common uses of halves, quarters and eighths of shapes and collec-

tions. (ACMNA033)
Year 3 Model and represent unit fractions including 1/2, 1/4, 1/3, 1/5 and their multiples to a com‑

plete whole. (ACMNA058)
Year 4 Investigate equivalent fractions used in contexts. (ACMNA077)

Count by quarters halves and thirds, including with mixed numerals. Locate and represent 
these fractions on a number line. (ACMNA078)

Recognise that the place value system can be extended to tenths and hundredths. Make con‑
nections between fractions and decimal notation. (ACMNA079)

Year 5 Compare and order common unit fractions and locate and represent them on a number line. 
(ACMNA102)

Investigate strategies to solve problems involving addition and subtraction of fractions with 
the same denominator. (ACMNA103)

Recognise that the place value system can be extended beyond hundredths. (ACMNA104)
Describe, continue, and create patterns with fractions, decimals and whole numbers resulting 

from addition and subtraction. (ACMNA107)
Year 6 Compare fractions with related denominators and locate and represent them on a number 

line. (ACMNA125)
Solve problems involving addition and subtraction of fractions with the same or related 

denominators. (ACMNA126)
Find a simple fraction of a quantity where the result is a whole number, with and without 

digital technologies. (ACMNA127)
Make connections between equivalent fractions, decimals, and percentages. (ACMNA131)
Continue and create sequences involving whole numbers, fractions, and decimals. Describe 

the rule used to create the sequence. (ACMNA133)
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