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Abstract
Given the prevalence of research in undergraduate mathematics education focused on stu-
dent reasoning and the development of instructional innovations that leverage student rea-
soning, it is important to understand the ways undergraduate mathematics instructors make 
sense of these innovations. We characterize pedagogical reasoning about inquiry-oriented 
instruction relative to vertices of the instructional triangle (content, students, and instruc-
tor). Through this lens, we analyze conversations of twenty-five mathematicians who 
elected to attend a workshop on inquiry-oriented instruction at a large national mathemat-
ics conference. Identifying differences in talk between two breakout groups, we argue that 
deeper mathematical engagement in task sequences designed for students supported deeper 
engagement in students’ mathematical reasoning and engendered reasoning about instruc-
tion that was more frequently accompanied by rationale based in mathematics or students’ 
reasoning about mathematics. Importantly, deeper mathematical engagement was observed 
when the discussion facilitator prompted participants to engage through a mathematical 
lens rather than an instructional lens.

Keywords  Inquiry-oriented instruction · Undergraduate mathematics · Instructional 
change · Pedagogical reasoning

National organizations in the USA have called for instructional change in undergraduate 
Science, Technology, Engineering, and Mathematics (STEM) in general, and mathematics 
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in particular, with growing urgency in recent years (Fairweather 2008; PCAST 2012; 
Braun et al. 2016). Current research leaves little doubt that student-centered approaches to 
instruction are related to greater student interest, persistence, and learning gains in STEM 
fields when compared with more traditional, lecture-based modes of instruction (e.g., Free-
man et al. 2014; Laursen et al. 2014). In a recent meta-analysis of 225 studies in under-
graduate STEM, Freeman et al. (2014) documented drastically different student outcomes 
between courses that actively involve students as learners and those that do not; students 
in lecture-based classes were 1.5 times more likely to fail than students in classes with 
active learning, and students in active learning classes outperformed those in lecture-based 
classes by almost half a standard deviation on concept inventories designed to measure stu-
dent understandings of core ideas.

Encouragingly, there appears to be awareness, support, and movement toward more 
student-centered instructional approaches in the USA. For instance, Hurtado et al. (2012) 
found in a national survey that while 61% of STEM faculty report using extensive lecturing 
when they teach, a promising 49% of STEM faculty report incorporating cooperative learn-
ing into their courses. Furthermore, research indicates that even instructors who do report 
extensive use of lecture sometimes also report misgivings about the practice. As an exam-
ple, in a survey study conducted with undergraduate abstract algebra instructors, Johnson 
et al. (2018) found that 64% of the respondents who think lecture is not the best way to 
teach still lecture. Additionally, Iannone and Nardi (2005) found that university mathemat-
ics instructors in their study acknowledged shortcomings of lecture but saw it as an inher-
ent element of their institutional setting. These instructors viewed interaction as important 
for students’ learning and identified sites where interaction with instructors could occur 
outside lecture (e.g., seminars, tutorials, and in homework feedback).

As these shifts in awareness and attitudes toward lecturing occur, undergraduate math-
ematics education researchers have been developing more student-centered instructional 
approaches. Research into these approaches has documented greater conceptual learning 
gains, as well as more productive student attitudes and dispositions, when compared with 
classes in which lecture is the dominant instructional practice1 (e.g., Kogan and Laursen 
2013; Kwon et al. 2005; Larsen et al. 2013; Bouhjar et al. 2018). These findings are well 
aligned with the efforts of strong and growing communities of mathematicians in the 
USA working toward sustained instructional change (e.g., The Academy of Inquiry-Based 
Learning and the Mathematical Association of America’s Project NExT).

Even with these positive trends, we know that instructional change is difficult to achieve 
at scale (Henderson et  al. 2011). Thus, we view the question of how to effectively sup-
port instructional change at scale as one of the most critical questions facing education 
researchers. This challenge is heightened in undergraduate math, as instructors’ reasoning 
about pedagogical issues has, until recently, been largely unexamined (Speer et al. 2010). 
As such, our work in this study informs the broader goal of understanding and achieving 
instructional change at scale by examining efforts to support instructors’ understanding of 
specific research-based, student-centered instructional materials for undergraduate math-
ematics courses.

1  In presenting these literature findings, we are not arguing that lecture as a pedagogical tool has no instruc-
tional value. Even in inquiry-oriented instruction and other forms of active learning, there is a place for 
integrating teacher-centered discourse (Rasmussen and Marrongelle 2006). Additionally, research has found 
instructors who describe their instruction as “lecture” often report utilizing a wide variety of other instruc-
tional techniques (Johnson et al. 2018).
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In particular, the instructional materials at the center of this study are inquiry-oriented 
materials developed for undergraduate mathematics courses. The implementation of such 
materials offers a host of challenges for instructors. These challenges include interpreting 
students’ idiosyncratic mathematical reasoning (Johnson 2013; Johnson and Larsen 2012; 
Speer and Wagner 2009), determining the potential of students’ contributions, and then 
leveraging those contributions to advance the mathematical agenda (Johnson 2013; Speer 
and Wagner 2009; Rasmussen and Marrongelle 2006). Given that undergraduate mathe-
matics instructors typically have limited pedagogical training, coupled with mounting pres-
sure at the undergraduate level to shift toward student-centered pedagogies, we argue that 
learning to support instructors effectively in relation to the aforementioned challenges is 
particularly important and thus implies a need for professional development programs that 
foster the development of undergraduate mathematics instructors’ pedagogical reasoning.

Here, we analyze data from a professional development program designed to support 
instructors as they engaged with inquiry-oriented instructional materials. In the context 
of this program, we examine instructors’ pedagogical reasoning as evidenced by conver-
sations in two different content area breakout groups with two different facilitators. The 
nature of conversations and pedagogical reasoning differed between the two groups in ways 
we believe to be consequential. We explore the origins of these differences through the fol-
lowing research questions:

1.	 What is the nature of mathematicians’ talk when asked to engage in mathematical 
problem-solving tasks designed to support student learning, to consider student reason-
ing, and to speculate about instructional choices in relation to mathematical goals of 
said tasks?

2.	 What patterns of talk support rich pedagogical reasoning about inquiry-oriented instruc-
tion?

Literature review and theoretical perspective

In 2010, Speer, Smith, and Hovarth conducted a literature review on collegiate math-
ematics teaching. This review concluded that instructors’ practice (i.e., their pedagogical 
actions and reasoning related to those actions in the context of instructional activities) 
remains largely unexamined in the research literature. In the last decade, there have been a 
number of research articles on the development of inquiry-oriented instructional materials 
and their implementation at the undergraduate level (e.g., Andrews-Larson and 2017; John-
son and Larsen 2012; Larsen et al. 2013; Rasmussen and Kwon 2007; Speer and Wagner 
2009; Wawro et al. 2012; Zandieh et al. 2017). However, research on professional devel-
opment in undergraduate mathematics education is still sparse, especially when the focus 
is on instructors and tenure-track faculty (as opposed to programs for graduate teaching 
assistants).

Speer and Hald (2008) reviewed findings on teacher learning from elementary and sec-
ondary mathematics education literature and suggested ways in which this literature can 
inform the training of mathematics graduate students who are learning to teach—yet few 
studies have examined this further, as highlighted by Florensa et  al. (2017). Nardi et  al. 
(2005) delineated a framework for a spectrum of pedagogical awareness by drawing on 
interview data collected from a set of six undergraduate mathematics tutors. This frame-
work organizes these tutors’ conceptualizations of student difficulties and how they address 
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those in their teaching. While Nardi et  al. (2005) examined the reasoning of tutors, oth-
ers have examined the reasoning of mathematicians with regard to the ways in which they 
motivate topics, structure explanations, and pose questions (Viirman 2015), or decide 
how to present proofs (Lai and Weber 2014). However, we are specifically interested in 
the reasoning of instructors working to teach in ways that are responsive to student rea-
soning—particularly that leverage student reasoning as a resource (rather than a deficit) to 
inform their instruction. Thus, we decided to ground our professional development work 
in the research literature about the implementation of inquiry-oriented instruction at the 
undergraduate level. In particular, we attend to the pedagogical reasoning presented in that 
research base.

The context of this study was a professional development workshop designed to support 
the implementation of three sets of inquiry-oriented instructional materials that had been 
developed for undergraduate mathematics courses in linear algebra (Wawro et  al. 2013), 
differential equations (Rasmussen et al. 2018), and abstract algebra (Larsen et al. 2016). 
Each of these curricula were informed by the instructional design heuristics of Realistic 
Mathematics Education and were designed to leverage students’ informal and intuitive 
ways of reasoning as starting points from which to build more sophisticated and formal 
mathematical understandings (Freudenthal 1991). These cycles of inquiry and formaliza-
tion, supported by the task sequence and guided by the instructor, are usually carried out in 
collaborative small groups and whole-class discussions. The commonalities in the design 
and instructional intentions of these materials serve as the foundation for what we refer to 
as inquiry-oriented instruction (IOI).

In order to theorize the pedagogical reasoning that may be particularly relevant for IOI, 
we grounded our work in the IOI research base to include literature that characterizes IOI 
(e.g., Kuster et al. 2018; Kuster et al. 2019) and research that examines the implementation 
of IOI (e.g., Andrews-Larson et al. 2017; Johnson 2013; Johnson and Larsen 2012; Ras-
mussen and Marrongelle 2006; Speer and Wagner 2009; Wagner et al. 2007). In our theo-
rizing, we leverage Horn and Little (2010) ideas about examining pedagogical reasoning 
relative to the instructional triangle (i.e., content, students, and teacher). In particular, we 
attend to how the IOI research literature discusses implementation related to mathematical 
content, engaging with student thinking (especially in the moment), and instructional deci-
sion making. This theorizing about the pedagogical reasoning needed to implement IOI 
served as the foundation for the design and analysis of our professional development.

In inquiry-oriented instructional materials, the mathematical content may be developed 
in ways that are unfamiliar to the instructor. As a result of the novel mathematical tra-
jectory presented in the materials, some instructors have difficulty understanding how the 
subject matter fits together to form a coherent whole. Wagner et al. (2007) described this 
challenge in the following way:

By examining the materials, an instructor could discern the general direction of the 
curriculum, but without actually working through all the problems and activities 
ahead of time, it might be difficult to discern the “hidden agenda” supported by those 
activities that revealed how they are connected across the semester. (p. 262)

Thus, when considering the mathematical demands placed on the instructors, we see a 
need for “working through all the problems” in order to fully appreciate the mathematical 
rationale and trajectory of the tasks/lessons/units. However, this is only one form of math-
ematical activity that supports the implementation of IOI.

One of the defining characteristics of IOI is the notion that instructors must use student 
contributions and reasoning to inform the direction of their lesson (Kuster et  al. 2018). 
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Therefore, instructors must make sense of, and use, student thinking in the moment. John-
son (2013) documented a number of mathematical activities that support an instructor 
in being responsive to their students’ emerging reasoning while implementing IOI. This 
teachers’ mathematical activity includes interpreting students’ mathematical reasoning 
and contributions (Johnson and Larsen 2012); analyzing student work, contributions, and 
proofs (Johnson and Larsen 2012); figuring out the potential of student ideas to advance the 
mathematical agenda (Speer and Wagner 2009); and leveraging student ideas to advance 
the mathematical agenda (Rasmussen and Marrongelle 2006). The idea that instructors 
must attend to student thinking in the moment is not specific to IOI. In fact, similar ideas 
have been discussed extensively in the elementary and secondary mathematics education 
literature. This includes the work on teacher noticing (e.g., Jacobs et al. 2010; Mason 2002; 
van Es and Sherin 2008) and research that aims at unpacking the knowledge that teachers 
draw upon while teaching (e.g., Ball et al. 2008; Rowland et al. 2005).

Moreover, it is not enough for instructors to understand the mathematical content, the 
way in which that content is developed in the context of the materials, and to be able to 
make sense of, and engage with, student contributions. Instructors must also coordinate 
the intended mathematical goals and the emerging student understanding to inform their 
instructional decisions. The literature has several examples of instructional practices 
that support such coordination. These practices include: engaging in generative listen-
ing wherein a teacher revises a lesson trajectory in response to a student’s contribution 
(Johnson and Larsen 2012); selecting student ideas to pursue (Speer and Wagner 2009); 
using transformational records in which instructors annotate student contributions in ways 
that help establish links to conventional mathematical language and notation (Rasmussen 
and Marrongelle 2006); and using generative alternatives in which instructors present stu-
dents with a set of possible ideas related to a task and ask students to make arguments for, 
against, and/or relating the set of ideas to one another (Rasmussen and Marrongelle 2006).

Such coordination practices have been shown to be quite complex and challenging for 
instructors. For example, in an inquiry-oriented classroom, it is crucially important for the 
instructor to become skilled at identifying potentially productive approaches to a problem 
(which are often partially correct or expressed in idiosyncratic, informal, and imprecise 
ways), selecting which approaches should be shared and/or discussed, and deciding how to 
orient those contributions so that they might be made sense of and leveraged mathemati-
cally by all students in the class. As such, what the teacher notices in an inquiry-oriented 
classroom determines what they are able to interpret and how they choose to respond 
instructionally (see Johnson and Larsen 2012 for an example). Additionally, given the 
research literature on IOI (e.g., Johnson and Larsen 2012; Speer and Wagner 2009; Wagner 
et al. 2007), we have reason to believe that the teacher’s understanding of the mathematics 
may be related both to what they notice in students’ mathematical reasoning and the extent 
to which they are able to leverage that understanding to inform pedagogical decisions. 
Thus, in the context of this study, we are interested in how instructors engage with the 
mathematics, what instructors notice about students’ mathematical reasoning, and instruc-
tors’ own ideas about the instructional choices they might make based on their understand-
ing of students’ reasoning.

With the research literature on the implementation of IOI as our foundation, we 
define rich pedagogical reasoning in IOI as reasoning that is grounded in the mathemat-
ical goals of the lesson and informed with an understanding of students’ mathematical 
reasoning. Accordingly, we propose the hypothetical model for supporting rich peda-
gogical reasoning among mathematicians shown in Fig. 1. Encapsulated in this figure is 
our conjecture that both reasoning about mathematics and an understanding of students’ 
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mathematical reasoning are equally important components of rich pedagogical reason-
ing. This model informed the design of our professional development as well as our 
analysis; it focused our attention on the kinds of talk that we theorized to be impor-
tant. It also supported us in identifying patterns in talk that ultimately allowed a revised 
model to emerge from the results of our analysis.

Study design

The analysis presented in this paper draws on data from a broader NSF-funded pro-
ject, < BLINDED >investigating what is needed to support instructors interested in 
learning to teach in inquiry-oriented ways. To test (and ultimately refine) our hypo-
thetical model, we examined conversations from participants in two content area break-
out groups from the same professional development program. The data for this analy-
sis come from a summer workshop offered at a national mathematics conference. The 
workshop lasted a total of 4 h and was split across two 2-hour sessions. On each day, 
about half of the time was spent discussing issues of inquiry-oriented instruction that 
cut across content areas, and the other half of the time was devoted to work in content-
specific breakout groups. The two content areas we present here are abstract algebra and 
linear algebra.

Data sources and participants

Our primary data source in this analysis was a set of audio/video recordings from the 
workshop sessions. The workshop included 25 participants, 21 of whom responded to a 
workshop pre-survey that provided us with information about their teaching background 
and home institutions. Of those participants that provided pre-survey data, all but one 
were housed in mathematics departments, and the group represented a variety of institu-
tions and positions (see Fig. 2). Less than a third of survey respondents reported that 
they prefer to lecture most of the time, more than 70% reported that they like to have 
students work in groups on problems in class, and more than 60% reported they fre-
quently ask students to explain their thinking to the whole class when they teach.

Fig. 1   Hypothetical model for 
supporting rich pedagogical 
reasoning about IOI

Rich 
Pedagogical 
Reasoning 
about IOI

Instructor's 
mathema	cal 

reasoning 

Understanding 
of students' 

mathema	cal 
reasoning 
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Study context: workshop activities and mathematical content

Workshop facilitators designated time in each of the breakout groups for participants to 
focus on three main activities, each of which corresponded to the vertices of the instruc-
tional triangle and to the components of our hypothesized model. Our plan for the work-
shop was for the participants to first work through selected mathematical tasks from the 
inquiry-oriented curricular materials, then examine evidence of student reasoning on these 
tasks as documented through classroom video and/or written work, and finally discuss 
related implementation considerations and in-the-moment instructional decisions.

In the USA, introductory abstract algebra (AA) courses are normally taught to upper 
division mathematics majors in small classes, typically less than 40 students. During the 
summer workshop, the AA group worked through a set of tasks designed to introduce the 
idea of subgroups and support the development of a “subgroup criteria” conjecture—i.e., 
to conjecture about the minimal criteria needed to ensure that a subset of a group is itself a 
group. The task sequence begins by defining a subgroup as a subset of a group that is itself 
a group. Subsequent tasks ask the students—or, in this case, workshop participants—to (1) 
verify that 5 ℤ is a subgroup of ℤ (under addition), (2) determine a smaller set of condi-
tions that are sufficient (and necessary) to ensure that a subset of a group is a subgroup 
(i.e., reinvent the subgroup criterion), and (3) in anticipation of difficulties with the last 
task, show the identity of a subgroup is the same as the identity in the ambient group and 
that the inverse of any element in the subgroup must be the same as that element’s inverse 
in the ambient group. (See Larsen and Zandieh 2008 for a comprehensive discussion of 
this task sequence. Notes about task rationale and student thinking are also provided in the 
online appendix.)

There were three professional development activities planned around this task. To set 
up the activities, the participants were first to be asked to take a few minutes to write down 
how they typically teach subgroups and/or how they were taught subgroups. After that pri-
vate reflection, the mathematics instructors were going to be asked to engage with the tasks 
as written—i.e., to solve the tasks as if they were students. The facilitator planned to struc-
ture the discussion of these tasks much as she does when she teaches these materials: after 
the participants had a few minutes to think privately, they were to collaborate in pairs or 
small groups, there would then be a whole group discussion around the mathematics in 

Fig. 2   Position and institution types of survey respondents
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which the participants would share their mathematical thinking and the group would come 
to a consensus around a reduced list of axioms.

In the second session, the plan was for the participants to watch classroom video of 
these tasks being implemented. To frame this activity, the facilitator planned to share a 
tension inherent to implementing IOI—that instructors are expected to build on the stu-
dents’ informal ideas to help them construct the formal mathematics while ensuring that 
the students maintain ownership of the emerging mathematical ideas (Johnson et al. 2013). 
As the participants watched the video, they were to be asked to try to track the students’ 
mathematical contributions and the evolution of the classroom’s subgroup criteria conjec-
ture. After the video, there was a discussion that focused on “where the students are” and 
“where we want them to be” in relation to the evolving mathematical agenda. Finally, in 
the last session, the participants were to be asked, if they were the instructor, “what might 
you do next?” After a discussion of ideas, the group would finish watching the classroom 
video data to see what the instructor decided to do in the moment, followed with a discus-
sion of pros and cons about that decision.

In the USA, introductory linear algebra (LA) courses are typically taught after students 
have completed two semesters of calculus. Class sizes for this course in the USA usually 
range from 20 to 80 students, with 45 or fewer being typical. The LA group worked on 
activities from a sequence of tasks intended to help students develop and coordinate geo-
metric and algebraic ways of symbolizing linear combinations of vectors as they learn 
about span and linear independence. The context for this work is shown in Fig.  3. The 
sequence of four tasks involves: (1) determining if and how a given pair of vectors in ℝ2 
can be weighted and combined to “reach” a particular location in the plane, (2) determin-
ing if there is any location in the plane that cannot be reached using that pair of vectors 
(this primes the formalization of span), (3) determining if three given vectors in ℝ3 can be 
combined to make a journey that starts and ends at the origin (this primes the formalization 
of linear dependence), and (4) generate examples of sets of vectors that satisfy particu-
lar properties (e.g., “Give an example of two vectors in ℝ2 that form a linearly dependent 
set”) in order to motivate more general conjectures about linearly (in)dependent sets. (See 
Wawro et al. 2012 for a comprehensive discussion of this task sequence. Notes about task 
rationale and student thinking are also provided in the online appendix.)

Fig. 3   Context for the linear algebra group’s task sequence
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Similar to the AA group, the professional development plan for the LA group was to 
be to first ask the participants to reflect on how they typically teach, or how they were 
taught, span and linear independence. The facilitator then planned to provide an overview 
of the task sequences, before asking the participants to work through the second task in the 
sequence. As they worked on the second task, the facilitator planned to ask them to: solve 
the task themselves, think about how a student might approach it, and think about how they 
might introduce the concepts of span and linear independence based on how they imagine 
the students will approach these tasks. Then, there was to be a discussion about the dif-
ferent solutions/approaches elicited by the tasks, how the mathematical concepts emerge 
from the task sequence, and things participants think might be challenging for students. 
The facilitator brought six samples of student work that featured a variety of approaches; 
these were to be used to offer insight into how students might reason about the task, and to 
discuss how participants might sequence approaches in whole-class discussion.

In the second day’s session, the plan was to watch a class video in which several student 
groups presented their approaches to the second task prior to formalization of the definition 
of span. Participants would similarly be asked to keep track of students’ contributions to 
support a discussion of their current reasoning and how it could be leveraged to link to the 
formal definition of span; the plan was similarly to then watch how the instructor did this 
in the video.

In looking across the two content areas, there are a few differences in the nature of the 
tasks. In the abstract algebra task sequence, the main mathematical activity is conjectur-
ing, whereas there is a stronger emphasis on notating and generalizing in the linear alge-
bra tasks. Relatedly, in the abstract algebra group, the goal of the guided reinvention is a 
conjecture and theorem, whereas the goal in the linear algebra group is the reinvention of 
intuitive notions of span and linear (in)dependence that serve as a basis for the instructor to 
introduce formal definitions of those constructs. However, the structure of the professional 
development for the two content areas was largely consistent. Generally speaking, the plan 
was to have the participants focus on the mathematics, then consider examples of student 
thinking, and finally think about instructional decisions.

Methods of analysis

Immediately following the workshop, the facilitators (and members of the authorship team) 
noted and discussed perceived differences in terms of the participants’ level of mathemati-
cal engagement. In order to more systematically investigate the nature of mathematicians’ 
pedagogical reasoning about inquiry-oriented instruction in the context of our workshop, 
we conducted a qualitative content analysis (Elo and Kyngäs 2008). As we were work-
ing from a hypothesized model for pedagogical reasoning, we conducted a deductive con-
tent analysis with the vertices of the instructional triangle serving as our initial codebook. 
However, in order to test and refine this hypothesized model, we decided to use an uncon-
strained characterization matrix. Because it was an unconstrained matrix, we had the flex-
ibility to refine the codes following the principles of inductive content analysis.

Using our initial codebook, the authors analyzed complete transcripts of the abstract 
algebra and linear algebra breakout sessions (a total of approximately 2 h of video for the 
abstract algebra group and 2 h of audio for the linear algebra group). The authors made a 
first attempt to code participants’ talk relative to the instructional triangle via the rough 
codes mathematics, students, and teaching. In discussions that followed, the research team 
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agreed on a number of refinements that were needed to capture variation in participant 
talk that was relevant to our research questions and related to the research literature more 
precisely. This subsequent inductive phase (detailed below) allowed us to refine our initial 
theory-driven codes, in a data-driven way (DeCuir-Gunby et al. 2011).

With regard to the “Mathematics” vertex, after reflecting on our data and the initial 
phase of analysis we decided it was important to differentiate between talk in which par-
ticipants were actually doing mathematics and talk that was merely about mathematics. 
As such, the mathematics code became “Doing Mathematics” (DM). This reflection also 
indicated a need to distinguish between the depths of mathematical reasoning discussed. 
Within the DM code, each turn of talk was therefore assigned a High Depth sub-code if the 
speaker described his or her solution method or reasoning about a particular mathematical 
task with relative specificity, or a Low Depth sub-code if the speaker described what he 
or she would do without rationale or specific evidence of actually working through math-
ematical details (see Table 1).

Moreover, the decision to use the code DM, as opposed to mathematics, allowed us 
to distinguish whose mathematics was being discussed (students’ mathematics versus the 
participant’s own mathematics). Accordingly, a new data-driven code was developed—
“Engaging with Students’ Mathematical Reasoning” (ESMR)—to capture many of the 
comments that were previously associated with the Student vertex of the instructional tri-
angle. Some statements related to students’ mathematical reasoning were based on empiri-
cal evidence, while others were based on what participants speculated students might do 
or think. To capture this nuance, sub-codes were developed to reflect whether or not par-
ticipants’ comments about student thinking were empirically based (referring to evidence 
of what students had said or done) or hypothetical (what students might do or think) and 
to assign depth to a statement (High or Low) based on specificity regarding the mathe-
matics (see Table 2). Here, we arrived at four ESMR codes: ESMR—Hypothetical—Low, 
ESMR—Hypothetical—High, ESMR—Empirical—Low, and ESMR—Empirical—High.

Finally, participant comments related to the original “Instruction” code were grouped 
into three main categories: Instructional Principle, Instructional Choice, or Instructional 
Observation (examples are given in Table  3) and classified as either Instruction—High 
Depth or Instruction—Low Depth. We considered instructional comments that were explic-
itly linked by participants to their own mathematical thinking, or their explanations of stu-
dents’ thinking, to be indicative of rich pedagogical reasoning. Thus, we considered an 
Instruction code to be High Depth precisely when it appeared in combination with another 
code (either DM, ESMR, or a second type of Instruction code) and we considered turns of 
talk to be Instruction—Low Depth if only a single instructional code was assigned in isola-
tion. Our rationale for this is aligned with our theorization of rich pedagogical reasoning 

Table 1   Abbreviated codebook for “Doing Mathematics”

Sub-codes Explanation Examples

High Depth Participants refer to “my/our math.” 
Includes specificity, description of, 
or rationale for reasoning

Yes, I had to assume distribution worked like we 
believe it did in Z, use the closure of Z, use the 
identity from Z and use the inverses from Z

Low Depth Participants refer to “my/our math.” 
Describes general approach with-
out specifics or characterization of 
reasoning

I could set up a system of equations
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as that which attends to mathematical goals and students’ reasoning—with a broadening to 
acknowledge that in the patterns of talk observed, articulations of rationale often attended 
to other broader issues that are also of instructional value. Thus, we viewed multiple codes 
together as evidence of richly connected rationale about instruction. It is these “Instruc-
tion—High Depth” turns of talk that capture our notions of rich pedagogical reasoning.

Two researchers independently coded transcripts for the linear algebra and abstract alge-
bra groups. Codes were assigned at the level of turns of talk, though not every turn of 
talk received a code, and some turns of talk received multiple codes. Coding discrepancies 
were resolved by discussing and coming to consensus on a final code. We then quantified 
differences in talk between the LA and AA group using our coding scheme.

Findings

To offer the reader a sense of the context and focus of conversations in which we exam-
ine mathematicians’ pedagogical reasoning, we provide an overview of the conversations 
that took place in the two breakout groups over the 2 days. We then provide representa-
tive examples of the participant talk in each content group in relation to each of our three 
codes. In order to identify patterns of talk that supported rich, inquiry-oriented pedagogical 
reasoning, we examine the results of our coding quantitatively.

Examples of participant talk and coding scheme: linear algebra

As previously mentioned, facilitators of the breakout groups collaborated to structure 
workshop activities so as to focus on each vertex of the instructional triangle in turn, start-
ing with mathematics, building to consider student thinking, and ultimately, examining 
the role of the teacher. On the first day of the workshop, after introducing themselves, LA 
participants were asked to engage in specific tasks from the curricular materials and were 
encouraged to work through the math together. Participants spent some time speculating 
about what students might do and discussing logistical aspects of task implementation 
before eventually completing the task and then examining some samples of student work. 
On the second day of the workshop, participants watched video of students explaining their 
approaches in class and considered how they would introduce the concept of span to build 

Table 3   Abbreviated codebook for “Instruction”

Sub-codes Explanation Examples

Principle General belief about teaching I do repeat myself a lot. You never know what moment 
somebody is listening. I tend to write very quickly on the 
board and so I like to try and pause and give them time to 
write that down and that means not everyone is listening at 
the same moment

Choice Refers to a specific, in-the-
moment instructional 
choice

I would probably have one of the first two groups go first

Observation Report or description of 
observed teaching or past 
experience

It did seem like a natural progression, more and more 
abstraction
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on these ideas. In the following subsections, we characterize in greater detail the partici-
pants’ engagement as it relates to our coding scheme.

Doing Mathematics

The first mathematical task the linear algebra participants were asked to engage in was 
whether it was possible to use two specific vectors in ℝ2 to get anywhere in the plane by 
traveling on each for different amounts of time (see Fig. 3). Here is an excerpt from the 
transcript:

LA-P1	� They can generate any vector that is on opposite sides of the parallelogram… 
pretty easily, because all they have to do is restate this and add this and…in 
two-dimensions if they remember… they would not solve a system…

LA-P2	� Do they have problems with dealing with the fractional parts of time? Cause it 
might be possible that they need to ride one of these for a fractional amount of 
time to get some place

Facilitator	� I am going to ask you guys to entertain the notion, like actually work through 
it as a student. Does that make sense?

LA-P3	� I can’t think of any other way than how I would do it…
Facilitator	� So that’s fine as a starting point

Notice that in the first two comments the participants did not focus on their own think-
ing, and instead focused on how students might approach this task (i.e., “they can gener-
ate any vector”). Thus, these comments were not coded as Doing Math—rather they were 
coded as ESMR—Hypothetical—Low. The facilitator then attempted to redirect partici-
pants to actually work through the mathematics as a student, and a participant remarked 
that he did not know how students would do it, only how he would do it. This comment 
was coded as Doing Math—Low Depth, and the conversation subsequently turned to 
a discussion of prerequisite coursework. Another participant made the following remark 
(which was also coded as Doing Math—Low Depth) that explicitly acknowledged the dif-
ficulty in trying to solve the problem without using the full breadth of their mathematical 
background:

LA-P2	� I know no matter where we go, I know I can come up with a linear combination 
that will get me there, I’m trying to, I don’t know, it’s hard for me to pull away 
my knowledge

Eventually, most members of the linear algebra group worked through the task more or 
less completely on Day 1. They came together for a more focused discussion about partici-
pants’ own mathematical strategies, but the conversation repeatedly turned toward issues of 
implementation as they related to student thinking. Below we highlight turns of talk from 
several participants that were coded as Doing Math—High Depth. It is noteworthy that the 
prompt by the facilitator at the outset of this conversation is the third such invitation for 
participants to share their mathematical thinking—and it was in this exchange that most of 
the Doing Math—High Depth codes for the linear algebra groups were assigned.

Facilitator	� Let’s start by discussing strategies because they were actually different when 
people solved it for themselves.
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LA-P3	� I immediately put the numbers in a matrix and solved for an arbitrary vector x, 
y

LA-P4	� So, I am rusty on my linear algebra so I went back to the analogy, if I am 
given a location x, y that I need to get to, how long using each mode of trans-
portation. And so I built a linear combination and then turned it into a matrix 
and row-reduced by hand. That way, given x and given y, I knew how long to 
ride this and how long to ride that.

LA-P1	� I did a more geometric approach. I drew the two vectors and then just kind of 
built the lattice of if you take integer combinations and then…I first looked 
at positives because I didn’t hear any of the discussion about time and with 
negatives you can see how this extends over the whole plane and fractional 
parts and non-integer coefficients.

LA-P2	� Since the pre-req for my class is precalc and we go over systems of equations, 
I turned it into a system of equations, but I don’t think my students would do 
that because it is a system with two unknowns and that would probably freak 
them out.

All four of these participant turns of talk were coded as Doing Math—High Depth (and 
the final comment also received an ESMR—Hypothetical—Low code). The final quote is 
indicative of the mathematical conversations in the LA group: when participants did speak 
about their own solutions to the mathematical tasks, their statements about math were 
often tied either to student thinking or to instructional decision making. More broadly, lin-
ear algebra participants’ engagement with the mathematics tended to be framed in terms of 
what students (“they”) might do, rather than in terms of their own (“our/my”) mathemati-
cal reasoning.

Engaging in students’ mathematical reasoning

After discussing the mathematical underpinnings of the task sequence and potential 
approaches, the LA group engaged in two activities related to students’ mathematical rea-
soning: looking at student work (which took place on day 1) and watching video where 
students explain their approaches in class (which took place on day 2). About 44 min into 
the first day’s session, the facilitator distributed copies of students’ work with six different 
mathematical approaches to the problem they had discussed (the second problem in the 
task sequence). Below are comments made as participants examined this student work:

Facilitator	� So what things are people noticing that are surprising?
LA-P3	� This tangent approach is kind of off the wall for me. I am not sure how I 

would respond to that group
Facilitator	� I think that they may have abandoned that. Sometimes you get things on a 

white board that were part of an attempt, but ended up not being productive 
so that might have been part of that… I am curious about Group 6 and what 
people interpret that diagram to be indicating

LA-P2	� I would want to know more about their reasoning but it looks like they are 
saying you can get to anywhere in here but the coefficients of both vectors is 
positive. Over here both of the coefficients are negative and here that one is 
positive negative and this one is negative–positive
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LA-P1	� And that is why 1 and then 2 builds on that by adding something to that, and 
the, I think in terms of the geometry, 6 is really what completes the geometric 
picture and then 3 and 5 add in algebra in slightly different ways

The first participant comment in this exchange was coded as ESMR—Empirical—Low, 
as they were referring to the sample student work, but only by giving a general charac-
terization of the student’s approach (i.e., “this tangent approach”). This comment was 
also coded as instructional choice as it raised the question of what to do with a particular 
approach. The other two participant comments were both coded as ESMR—Empirical—
High Depth because they involve some degree of specificity, though we note that neither 
delved into student rationale nor reasoning related to their observations. In general, the 
LA group’s engagement in students’ mathematical reasoning was consistent with the ways 
in which they discussed the mathematics. Overall, we saw a frequent focus on issues of 
implementation, varying depth of talk (with High Depth talk rarely occurring in a sus-
tained way), and often surface-level descriptions of mathematical details.

Instruction

It was the intention of the facilitators of both the LA and AA groups to host a discus-
sion on the second day of the workshop regarding issues of implementation after watch-
ing classroom video. After the LA group watched video in which students explained their 
approaches to the task, participants were asked to describe how they would introduce the 
concept of span if their students were reasoning in the ways shown in the video they had 
just watched. One participant responded in terms of what conclusions the class had made 
about what locations in the plane can be reached with (linear combinations of) the given 
pair of vectors. Below is transcript including both the facilitator’s prompt and participants’ 
responses.

Facilitator	� Turn to the person sitting next to you and see if you can brainstorm the math-
ematical approaches and ideas that have been brought out so far and in terms 
of thinking about the sequencing of the tasks, think about how do you think if 
you were teaching, that you would introduce the concept of span because they 
still haven’t heard that word…if you were teaching this and you knew that you 
wanted to use this to introduce span, how would you do it?

LA-P2	� So it seems as though there’s been the geometric approach a couple geometric 
approaches that come out, both with the vectors and with the equations.

LA-P5	� Well, the big thing that’s come out, although they haven’t called it this yet, is 
the idea of independence.

LA-P1	� …. they could combine the geometric approach and the algebraic… They 
could go directly to symbols. They haven’t used trig. Do they know vectors? 
Or do they just know. oh, they have to know vectors to write even 3,1 and 
1,2—

Facilitator	� Right, and on the first day she gave sort of an overview of vectors, linear com-
binations of vectors and she already introduced the language for scalars



142	 C. Andrews‑Larson et al.

1 3

LA-P5	� We noticed that there were geometric and algebraic and you could kind of 
take a geometric or an algebraic point of view (inaudible) lines shifting and 
intersecting and then also the algebraic way you could actually solve…

LA-P6	� If the consensus becomes “everything” then you set the tone, you can go into 
the animation, and the definition can be using linear combinations and… all 
possible ways of scaling the first one and adding the second, and then scaling 
the second one and adding the first one… then you’re primed to talk about… 
all possible linear combinations and it spans ℝ2 in this case

Many of the statements in this exchange focused on mathematical representations and 
topic order without explicit connection to student reasoning or learning goals (e.g., how 
to sequence the introduction of independence and dependence). This suggests that partici-
pants were still wrestling with what students knew about the mathematics—which may 
relate to the way in which participants’ themselves had been positioned to reason through 
the mathematics in the task sequence. As such, the only turn of talk in this exchange coded 
as being explicitly about instruction was the final one. This last turn of talk was assigned 
a single code of instructional choice; since there is no explicit evidence of taking on a 
student’s perspective or doing any mathematics, it was considered to be Instruction—Low 
Depth. All other participant remarks in this exchange received ESMR codes. More broadly, 
instructional codes from the linear algebra group tended to be evaluative comments about 
the quality of a solution or explanation (without attending to student reasoning or how that 
would affect instructional choices).

Examples of participant talk and coding scheme: abstract algebra

On the first day of the workshop, abstract algebra participants spent nearly the entire one-
hour breakout session discussing how to apply the definition of a “subgroup” (i.e., a subset 
of a group that is itself a group) in various contexts. First, they used the definition of “sub-
group” to demonstrate that 5ℤ is a subgroup of ℤ under addition by checking to verify that 
all of the group axioms were still satisfied in 5ℤ . They then drew on this definition in order 
to develop a different, more efficient method (i.e., the subgroup criterion) for deciding 
when a subset of a group is a subgroup. On the second day of the workshop, the abstract 
algebra breakout group was shown a video of students explaining their partial progress 
in thinking about ways to develop a more efficient way to check if a subset of a group is 
a subgroup. Following this video, participants reasoned about how students in the video 
were making sense of the mathematics, proximal mathematical goals given students’ cur-
rent reasoning, and what they would do next if they were the instructor.

Doing Mathematics

In contrast with the linear algebra group who frequently discussed aspects of instruction 
and student reasoning as they worked through the mathematics, the abstract algebra par-
ticipants spent nearly the entire one-hour breakout session on the first day deeply engaged 
directly in the mathematical tasks. As an example, consider the following exchange that 
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took place after workshop participants were asked to consider the closure axiom2 in the 
subgroup setting.

Facilitator	� I have a question for you, what does the check on closure mean? [points to 
paper with a check mark] Can you write that out formally for me, please? 
More importantly can you write out formally the check on inverses? Is it the 
same thing you would check if you are checking a group? …

AA-P1	� Like you know this would be in H automatically by the first condition… by 
closure.

AA-P2	� We don’t know that. That isn’t what the identity is.
AA-P1	� What you’re saying is—Sorry—once we have both conditions, because you 

have h and g−1 in H then its product is, but we’re trying to get identity from 
inverses. So assuming those two and let this element be in H and therefore the 
identity of G lies in H to prove that it is the same operation for H.

AA-P2	� Well, it is an identity for H. We still don’t know-
AA-P1	� And then so either you need to know uniqueness of identities.
AA-P2	� That’s not part of our definition.

In this exchange, the participants are themselves reasoning through the mathematical 
tasks. They are constructing mathematical arguments, they are trying to verify group axi-
oms, and they are questioning what they know and what they have to prove. In short, they 
are engaging in the task directly, from their own points of view, with great specificity. The 
turns of talk in this exchange, as well as 70 of the 76 coded turns of talk from the first day, 
were coded as Doing Math—High Depth.

Engaging in students’ mathematical reasoning

To start the second day of the workshop, the AA breakout group was shown video from a 
whole-class discussion. These students were working through the same set of tasks that the 
participants worked through on Day 1, and in the video they were discussing their progress 
in determining the minimal criteria needed to determine that a subset of a group was itself 
a group. After watching, the participants were asked to comment on the students’ math-
ematical reasoning.

Facilitator	� I’m going to bring you guys together now. So, do people feel comfortable 
with the statement about where the class’ mathematics was? Do you think you 
could answer that question? Where the class was in the process?

AA-P1	� I don’t think it’s super clear. I don’t think everybody has the same thing in 
their mind from what people were saying. We were getting the impression 
that there was still a real tension between some of the ideas that had been 
expressed and where the discussion was going right at the end. There were 

2  In order to verify that a set under an operation is a group, one must ensure that when you perform the 
operation on any two elements, the resulting element is still in the set. For instance, if you add two integers, 
the result will always be an integer. Thus, we would say that the “integers are closed under addition”. How-
ever, if you divide two integers the result may no longer be an integer (e.g., 1 divided by 2); thus, we would 
say “the integers are not closed under division”.
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still unresolved tensions, I thought, between different ideas of what the task 
was even

Facilitator	� Can you elaborate on what those tensions were?
AA-P1	� Well, the same kind of tensions we experienced yesterday in some of the 

groups, where, is the task to take this list of four axioms and just strike off 
things from that list, but keep them exactly as the statement or is it to actually 
produce something where those statements get revised into something rather 
different, and simpler and shorter. The discussion started with something that 
really had to do with revising in terms of “is eG equal to eH” and things like 
that. And then just at where you stopped it if you looked at the board the bot-
tom of the board was simply a list of four things with some stuff struck off. I 
think that was just an artifact that it was really very much still in the middle 
of the discussion, but if I were a student in the class at that moment I think I 
would have been quite possibly rather confused and I know that that would be 
okay, as to what the eventual product is that we’re going to come up with here 
and what’s the real issue

Here, we see an abstract algebra participant trying to make sense of the students’ math-
ematical reasoning based on a classroom video. This participant’s turns of talk were coded 
ESMR—Empirical—High Depth. It was coded as Empirical because the participant was 
making explicit reference to the evidence of students’ reasoning presented in the video clip. 
In particular, this participant was commenting that they saw the students in the clip strug-
gling with one of the key mathematical subtleties of this task sequence—“is the task to 
take this list of four axioms and just strike off things from that list, but keep them exactly 
as the statement or is it to actually produce something where those statements get revised 
into something rather different, and simpler and shorter.” The specificity of this comment, 
which was further elaborated on by referencing a particular axiom that the students were 
discussing in the video (“is eG equal to eH?”), is indicative of a “High Depth” code.

We also note that the mathematics the students are reasoning about in the video is the 
same mathematics that the participants had engaged in during the previous day of the 
workshop, and that this was acknowledged by this participant. This is captured in the com-
ment “the same kind of tensions we experienced yesterday in some of the groups.”

Instruction

Day 2 of the AA breakout concluded with the workshop participants being asked to con-
sider what they would do next if they were the instructor of the class whose discussion they 
had just watched. The comments made by several participants evidenced a layering of rea-
soning that drew both on their own mathematical reasoning and the student reasoning they 
had just discussed. The exchange below highlights this layering of reasoning:

AA-P3	� I’m assuming they have already shown the identity is unique.
Facilitator	� They have shown the identity is unique.
AA-P3	� So, and I’m, if they haven’t shown that the inverse is unique, then I would ask 

can an element have more than one inverse. And then I would ask what can 
you say about a subset of a group if it is closed under inverses.
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This participant’s comment shows evidence of pedagogical reasoning that attends to the 
mathematics (“the identity is unique”), what students know (“if they haven’t shown that the 
inverse is unique”), and what the instructor might do next to advance students’ reasoning 
about that mathematics (“I would ask what you can say about a subset of a group if it is 
closed under inverses”). The third turn of talk from this exchange was coded as Instruc-
tion—High Depth, as it was an instructional choice paired with an ESMR code.

Overall, instructional talk in the AA group tended to focus on two primary issues: how 
to help students refine conjectures into mathematically provable statements (as see in the 
previous exchange) and how to maintain student authority over notation (e.g., who is doing 
the symbolizing and how). We posit that participants’ own deep engagement with this 
mathematics themselves on the first day of the workshop supported this nuanced coordina-
tion of the vertices of the instructional triangle. This was especially clear in moments when 
the participants referenced ways in which they saw similarities in how they had worked 
through the mathematics and how the students were talking about the mathematics.

Comparison of linear algebra and abstract algebra groups’ talk: by the numbers

Our initial impressions that the mathematical focus of the two groups differed sharply were 
supported by the quantitative results of our coding. As shown in Fig. 4, nearly half of all 
participants’ turns of talk in the abstract algebra group were coded as “Doing Mathemat-
ics” compared to only 23% of the linear algebra turns of talk.3 In contrast, many more turns 
of talk in linear algebra (39%) were focused on ESMR than were in abstract algebra (22%). 
These quantities alone might suggest that the abstract algebra group conversed primarily 
about mathematics, while the linear algebra group placed greater emphasis on student rea-
soning. Differences in the nature of talk between the two groups, however, suggest a more 
nuanced interpretation.
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Fig. 4   Percentage of turns of talk assigned each code (across both days)

3  Note that each turn of talk could receive more than one code, so the percentages in Fig. 4 sum to over 
100%. Turns of talk coded as “Other” included introductions, logistics (“Does everyone have a handout?”), 
etc.
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Doing Mathematics

In addition to having a larger portion of talk coded as Doing Mathematics, when compared 
to the linear algebra group, more of the abstract algebra group’s mathematical talk was of 
High Depth (see Fig. 5). In the abstract algebra group, 93% of the 72 turns of talk coded as 
Doing Mathematics were of High Depth. In contrast, in the linear algebra group only about 
65% of the 23 turns of talk coded as Doing Mathematics were of High Depth.

Engaging in students’ mathematical reasoning

As shown in Fig. 4, a larger portion of talk in the LA group was coded as Engaging in Stu-
dents’ Mathematical Reasoning (ESMR) as compared with the AA group (approximately 
39% and 22%, respectively). Our coding, however, also indicates important differences in 
the nature of this talk. Recall that a turn of talk coded as ESMR was considered to be 
High Depth if it attended to specific details of students’ mathematical reasoning and Low 
Depth if it provided only a generic description of students’ mathematics without details of 
their process or reasoning. Further, ESMR comments were coded as Empirical if they ref-
erenced evidence explicitly (e.g., from video data or student artifacts) and Hypothetical if 
they referenced what a student might do or think without empirical evidence.

Table 4 shows a breakdown of ESMR codes for each group by depth and use of evidence 
(empirical versus hypothetical). The abstract group exhibited more sophisticated ESMR 
at a higher rate than the linear algebra group as indicated by the proportion of Empiri-
cal—High ESMR codes when talking about students’ mathematical thinking. More than 
half (53.2%) of the abstract algebra group’s ESMR codes were of High Depth, whereas 
only 42.5% of ESMR codes were of High Depth in the linear algebra group. Furthermore, 
we see that when the abstract algebra participants engaged in students’ mathematical 

Fig. 5   DM codes, by content area 
and depth
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Table 4   Percentage breakdown of ESMR codes

Linear algebra (n = 39 turns of talk) Abstract algebra (n = 32 turns of talk)

High Depth Low Depth Total High Depth Low depth Total

% Empirical 27.5 32.5 60.0 43.8 28.1 71.9
% Hypothetical 15.0 25.0 40.0 9.4 18.8 28.1
% Total 42.5 57.5 100 53.2 46.9 100
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reasoning, they drew on empirical evidence nearly 72% of the time, whereas linear alge-
bra participants did so only 60% of the time. Considering the intersection of these catego-
ries, we find 43.8% of the ESMR codes for the abstract algebra group were High Depth—
Empirical as compared to 27.5% in linear algebra. Thus, the abstract algebra group not 
only focused more on what students actually did (empirical), but these participants were 
engaging in this evidence in greater mathematical depth.

When we look within the ESMR codes for the two groups, we see evidence that the AA 
participants’ prolonged work with the mathematics appeared to support talk surrounding 
ESMR as they connected student reasoning that resembled mathematicians’ reasoning in 
their own mathematical talk. This is contrasted with the LA group in which many of their 
participants’ ESMR codes, even those of High Depth, made much less explicit connection 
to their own mathematical thinking and instead focused on what students might do given 
situational factors (e.g., prerequisite coursework).

Instruction

As a reminder, we grouped instructional comments made by participants during the work-
shop breakout sessions into three broad categories: statements of instructional principles, 
statements of instructional choices, and instructional observations. We considered instruc-
tional comments that were explicitly linked by participants to their own mathematical 
thinking, or their explanations of students’ thinking, to be indicative of rich pedagogical 
reasoning. Thus, we considered an instructional code to be High Depth precisely when 
it appeared in combination with another code (either DM, ESMR, or a second type of 
instructional code) and we considered turns of talk to be Instruction—Low Depth if only a 
single instructional code was assigned in isolation.

Both linear algebra and abstract algebra groups had similar proportions of talk explicitly 
focused on instructional issues. As shown previously in Fig. 4, the linear algebra partici-
pants produced 21 turns of talk that were assigned some instructional code and the abstract 
algebra participants produced 33 turns of talk coded as either instructional choice, princi-
ple, or observation (21% and 22.6%, respectively). Figure 6 shows the breakdown of High 
and Low Depth for each group.

In the linear algebra group, 28.57% of the 21 turns of talk receiving an instructional 
code were High Depth. In the abstract algebra group, 57.58% of the 33 turns of talk receiv-
ing an instructional code were High Depth. From this, we conclude that the abstract alge-
bra group engaged in richer pedagogical reasoning.

Fig. 6   Instructional codes by 
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Discussion, facilitation, and limitations

Regarding our research questions, we highlight the following findings. First, we found 
that the mathematicians in our context engaged in talk about mathematics in two primary 
ways: as doers of mathematics and as instructors of mathematics. When engaged as doers 
of mathematics, participants typically engaged with mathematical tasks at a high level of 
depth. When engaged as instructors of mathematics, participants typically engaged with 
mathematical tasks at a low level of depth (e.g., describing the kinds of approaches or 
representations they might anticipate rather than working through the task themselves) or 
engaged in the tasks based on hypothesized student knowledge, often at a similar level of 
mathematical depth. We found that mathematicians engaged in student reasoning at vary-
ing levels of depth, and that they tended to rely on either empirical evidence or hypoth-
esized student understandings. Further, our analysis indicates a relationship between the 
depth of the instructors’ own mathematical engagement with the tasks and the depth with 
which they engage with empirical evidence of student reasoning.

Second, we found that mathematicians engaged in talk about instruction in different 
ways as related to prior conversations about mathematics and student reasoning. Those 
who had engaged in talk about mathematics and student reasoning at lower levels of depth 
tended to focus on describing representational choices and evaluation of student contribu-
tions. In contrast, those who had engaged in talk about mathematics and student reasoning 
in greater depth focused on supporting students in refining their conjectures into math-
ematically provable statements and how to maintain student authority with regard to nota-
tion and symbolizing.

Our findings provide connections to documented pedagogical conceptions among those 
who teach undergraduate mathematics. There is a strong research base in elementary and 
secondary mathematics education showing that teachers can learn more about student 
thinking, and that this knowledge is related to improved instruction (e.g., Jacobs et al. 2010; 
Carpenter et al. 1996). Our findings provide empirical evidence in support of Speer and 
Hald’s (2008) conjecture that this finding generalizes to the post-secondary mathematics 
instructors—and particularly highlights the importance of the work of solving innovative 
mathematical tasks as an important entry point for undergraduate instructors to learn about 
student thinking. Further, our data show that this kind of entry point can generate conver-
sations in which post-secondary mathematics instructors quickly come to engage in some 
of the higher levels of pedagogical awareness featured in Nardi et al.’s (2005) framework. 
The lowest levels of pedagogical awareness in this framework are marked by tendencies to 
describe student difficulties in general rather than specific ways (and to blame student dif-
ficulties on lack of effort). Intermediate levels of pedagogical awareness are characterized 
by efforts to analyze student difficulties and speculate on their origins, by monitoring stu-
dent progress, and by adjusting instruction. At the highest levels of pedagogical awareness, 

Fig. 7   Emergent model for supporting rich pedagogical reasoning about IOI
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instructors empathized with student difficulties, and linked those difficulties to pedagogical 
issues in detailed and nuanced ways. Not only did participants in our study engage in rea-
soning in ways aligned with the most sophisticated forms of pedagogical awareness high-
lighted in Nardi and colleagues’ work, but they did so in a framing that focused on an 
asset-based view of student reasoning rather than a deficit-based view.

This analysis has informed an emergent model for an entry point for mathematicians 
to engage in rich pedagogical reasoning about IOI (see Fig.  7). A primary distinction 
between this model and our initial hypothetical model (Fig. 1) came from observing how 
deep engagement in students’ mathematical reasoning built on participants’ own prior 
mathematical engagement. We argue that this revised model better captures the patterns 
of talk found in our data. In particular, in the abstract algebra group we saw ways in which 
the participants explicitly drew on their own mathematical engagement with the tasks as 
they worked to make sense of student reasoning. Then, when discussing possible instruc-
tional decisions, these participants were able to coordinate their own mathematical work, 
the mathematical goals of the lesson, and their understanding of the students’ reasoning. 
In contrast, in the linear algebra group, we saw that the participants did not have the same 
level of mathematical engagement. Without that deep mathematical engagement, we also 
saw this group rarely attending deeply to empirical evidence of student reasoning, and we 
saw fewer instances of instructional talk that coordinated student reasoning and mathemat-
ical goals. We speculate that, for mathematicians, mathematics (rather than issues more 
intertwined with pedagogy) may serve as a more productive common entry point for exam-
ining student reasoning and related instructional choices. It is reasonable to assume that a 
group of mathematicians are more likely to hold a common set of shared disciplinary (i.e., 
content-based) understandings and commitments than they are to hold a common set of 
shared pedagogical (i.e., instruction-based) knowledge and commitments.

Additionally, the act of making sense of, and utilizing, student contributions is itself a 
mathematical activity (Johnson 2013). Thus, we argue that the revised model—which fore-
fronts the ways in which teachers must draw on their own mathematical understanding in 
order to make sense of their students’ mathematical reasoning—better speaks to the teach-
ers’ mathematical activity (Johnson 2013) that is central to implementing IOI. However, 
we also believe that more research needs to be done to test this model in order to better 
understand how instructors coordinate, and draw on, their own mathematical reasoning and 
their students’ mathematical reasoning in order to inform their pedagogical reasoning. A 
need remains to examine the role of the mathematical tasks themselves in shaping math-
ematicians’ pedagogical reasoning. In our data set, the two groups engaged in tasks that 
were notably different with regard to their mathematical framing—with one more oriented 
toward refining provable criteria, and the other more oriented toward modeling a situa-
tion. However, we have no reason to believe the participating mathematicians were dif-
ferently equipped to engage in the two types of mathematical tasks, yet they did engage in 
the mathematics differently. Additionally, both groups were given access to empirical data 
that offered insights into student reasoning, yet the group with deep mathematical engage-
ment was more attentive to that empirical data. Further research is needed to explore issues 
related to the nature of the mathematical tasks, as well as the nature of empirical evidence 
highlighting student reasoning, that productively support rich pedagogical reasoning about 
IOI.

Given the importance of deep mathematical engagement for rich pedagogical reason-
ing found in our data set, we believe professional development facilitators may need to 
pay careful attention to how they shape instructors’ engagement in mathematics. In 
order to consider how our results may inform the design and facilitation of professional 
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development, we want to note some important differences we saw in how the facilitators 
positioned the workshop participants. After highlighting and exemplifying these differ-
ences in facilitation, we discuss some study limitations and present practical implications 
and conclusions.

Facilitation of Doing Mathematics: disciplinary versus instructional orientations

In reflecting on the facilitation of the workshop, we noted important differences in how the 
participants in the two groups were positioned for the mathematics tasks. In the abstract 
algebra group, we see more direct language asking the participants to reason through task 
sequences from their own mathematical perspective:

AA Facilitator	� I have a question for you, what does the check on closure mean? [points to 
paper with a check mark] Can you write that out formally for me, please? 
More importantly can you write out formally the check on inverses? Is it 
the same thing you would check if you are checking a group? …

In contrast, the linear algebra facilitator opened the session with a discussion that fore-
grounded participants’ teaching contexts, provided an overview of the task sequence, and 
tended to prompt participants to engage with the mathematics from more of an instruc-
tional perspective:

LA Facilitator	� I am going to ask you guys to entertain the notion, like actually work 
through it as a student. Does that make sense?

We argue that these subtle differences in facilitation likely influenced participants of the 
two groups to engage with the mathematics from different perspectives.

Asking participants to “think about it from the perspective of a student” likely primed 
the linear algebra participants to approach these tasks as a teacher. This could account for 
why participants, when the facilitator was trying to get them to do the mathematics, specu-
lated about how their students might respond (i.e., ESMR—hypothetical codes) and asked 
how the tasks played out in classrooms for different student populations (e.g., “how long 
did they work?” and “can I ask what the prerequisites are for your linear algebra classes?”). 
This is in contrast to the AA group, where the participants were treated very much like 
students in an inquiry-oriented classroom. They were asked to work on mathematical tasks 
in pairs, while the “teacher” (facilitator) circulated through the room asking questions and 
holding whole group discussions.

As a result, the AA participants engaged from a disciplinary perspective as doers of 
mathematics, with the vast majority of coded turns of talk on the first day being Doing 
Mathematics—High. In contrast, the linear algebra participants’ engagement was framed 
from an instructional lens and, pursuant to that, requests to approach mathematical tasks as 
their students might create barriers that functioned to obscure their mathematical engage-
ment. We posit that LA participants’ more limited mathematical engagement subsequently 
interfered with their ability to engage in students’ mathematical reasoning and thus link 
instructional choices to mathematical goals and student reasoning.
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Limitations

Our study carries some limitations. First, our discussion of differences in facilitation is 
speculative in nature. Other factors could contribute to differences in participant engage-
ment, such as differences in the mathematics and nature of the task sequences and differ-
ences in participants’ orientation and prior experiences. Secondly, it is plausible that math-
ematicians’ prior engagement in the math tasks could lead mathematicians to project their 
experience onto students. Third, our analytic methods relied on coding turns of talk and 
thus did not capture the length of turns of talk or attend to key points that were addressed 
across larger or smaller numbers of turns of talk. Finally, the context for this study—a pro-
fessional development seminar held for volunteers who were interested in implementing 
IOI and had reason to believe this would fit their institutional context—likely meant that 
some of the decision-making factors typically discussed in instructional change literature 
were alleviated. Thus, the findings presented here largely ignore other situational and indi-
vidual factors such as resources, values, biases, and institutional context (Schoenfeld 2011; 
Winsløw et al. 2014). However, even when considering these other factors, we would argue 
that instructors’ mathematical reasoning and the extent to which they attend to student 
mathematical reasoning, are necessary for pedagogical decision making in IOI.

Recommendations and concluding remarks

Overall, our findings suggest that when mathematicians’ pedagogical reasoning is engaged 
through a content-specific mathematical lens, rich and layered connections among their own 
mathematical reasoning, students’ mathematical reasoning, and possible instructional moves 
can be forged in a relatively short period of time. We saw this layering evidenced more richly 
in comments from abstract algebra participants, who: (1) articulated specifics of their own 
mathematical reasoning at a high level of depth, (2) drew on empirical evidence to engage in 
students’ mathematical reasoning with a high level of depth, and (3) linked in-the-moment 
instructional comments with rationales rooted in mathematics and student reasoning about 
mathematics.

Based on our analysis, we offer two recommendations for designing professional develop-
ment aimed at supporting rich pedagogical reasoning about inquiry-oriented instruction. First, 
we propose deep mathematical engagement is better achieved by asking participant to work 
through task sequences from a disciplinary perspective (their own mathematical lens) rather 
than from an instructional perspective. Second, we propose that a productive way of engaging 
participants in students’ mathematical reasoning is to present empirical evidence that empha-
sizes partially formed student understandings rather than students’ presentations of their final 
solutions. We conjecture that this approach helps to generate an intellectual need for identify-
ing and discussing possible in-the-moment instructional goals and decisions that an instructor 
might make to leverage students’ ideas in ways that move forward their mathematical under-
standings. These recommendations are consistent with the research design employed in other 
substantial projects that have similarly engaged mathematicians and examined their pedagogi-
cal reasoning (e.g., Iannone and Nardi 2005; Nardi et al. 2005).

The data presented in this paper offer a glimpse into the thinking of mathematicians inter-
ested in instructional change, and points toward what is possible when mathematics educa-
tion researchers work with such mathematicians. To that end, this work expands research 
on pedagogical reasoning to include mathematicians’ reasoning about a particular form 
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of student-centered instruction, namely inquiry-oriented instruction. This is important for 
informing efforts designed to scale up instructional change in undergraduate teaching (par-
ticularly for those interested in designing workshops for mathematicians to learn about stu-
dent-centered instructional innovations rooted in student reasoning). We further argue that a 
way to move toward achieving instructional change at scale is by forging sustainable alliances 
between instructors of undergraduate mathematics and mathematics education researchers, 
and that these alliances should be structured so as to leverage mathematicians’ deep discipli-
nary knowledge and teaching experience in ways that can support robust instructional change. 
By leveraging the unique resources and insights brought to collaborative efforts by both under-
graduate mathematics instructors and mathematics education researchers, we as a field will be 
better equipped to implement changes that support students’ mathematical learning.
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