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Abstract
During the last three decades, scholars have proposed several conceptual structures to 
represent teacher knowledge. A common denominator in this work is the assumption that 
disciplinary knowledge and the knowledge needed for teaching are distinct. However, 
empirical findings on the distinguishability of these two knowledge components, and their 
relationship with student outcomes, are mixed. In this replication and extension study, we 
explore these issues, drawing on evidence from a multi-year study of over 200 fourth- and 
fifth-grade US teachers. Exploratory and confirmatory factor analyses of these data sug-
gested a single dimension for teacher knowledge. Value-added models predicting student 
test outcomes on both state tests and a test with cognitively challenging tasks revealed that 
teacher knowledge positively predicts student achievement gains. We consider the implica-
tions of these findings for teacher selection and education.

Keywords  Content knowledge · Dimensionality · Teacher knowledge · Mathematics · 
Student learning · Teaching-specific knowledge

Introduction

There is wide consensus among scholars, teacher educators, and policymakers that teacher 
knowledge is an important asset in teachers’ toolkits. Despite this consensus, the composi-
tion of this knowledge and its role in supporting student learning has long been debated. 
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Drawing on Shulman and colleagues’ work (Shulman 1986, 1987; Wilson et  al. 1987), 
scholars in mathematics education have proposed different conceptual structures for this 
knowledge (Ball et al. 2008; Grossman 1990; McCrory et al. 2012; Rowland et al. 2005). 
These conceptual structures often separate pure content knowledge (CK) from the knowl-
edge that facilitates teaching. However, some scholars (Bernarz and Proulx 2009; Huillet 
2009) doubt whether CK is separable from the knowledge needed for teaching, and empiri-
cal work on the distinguishability of these two components provides mixed findings. In 
fact, a systematic review of 60 research papers focusing on pedagogical content knowledge 
(PCK, Depaepe et al. 2013) surfaced disagreements among scholars about whether CK and 
PCK are distinct or intertwined. Perhaps equally inconclusive is the empirical evidence on 
the predictive validity of teacher knowledge on student learning. Despite the accumulated 
body of research examining this issue, the magnitude of the contribution of teacher knowl-
edge to student learning is still unclear.

To contribute to the ongoing discussions about the structure of teacher knowledge and to 
help illuminate the role of teacher knowledge in student learning, this paper asks: Is teach-
ers’ CK distinguishable from the knowledge needed for teaching, or do these two types 
of knowledge compose a unidimensional construct? Further, how do these two knowledge 
components contribute to student learning, as measured by student achievement gains on 
standardized tests?

Answering these questions will shed light on two important issues. From a theoretical 
perspective, more empirical evidence is needed to understand the nature of teacher knowl-
edge. Conceptualizations of teacher knowledge advanced thus far—from Shulman’s work 
(1986) to more recent ones—suggest multidimensionality, yet empirical evidence support-
ing this dimensionality is inconsistent at best. From a practical standpoint, determining 
the contribution of teacher knowledge to student learning might inform ongoing efforts to 
improve teacher selection and education [cf. Committee on the Study of Teacher Prepara-
tion Program in the United States 2010; National Mathematics Advisory Panel (NMAP), 
2008].

We structure the remainder of this paper into five sections. In the second section, we 
review theoretical work delineating the structure of teacher knowledge in mathematics, 
the focal subject of this paper, then review empirical attempts to examine this structure, 
and examine studies exploring the association of teacher knowledge to student learning. In 
this section, we also outline the ways in which the present study complements and extends 
prior work. After outlining our research questions (Theoretical perspectives on the knowl-
edge needed for teaching), we then detail the methods we pursued to empirically explore 
the dimensionality of teacher knowledge and its association to student learning (Empirical 
findings on content knowledge and knowledge needed for teaching). In the last two sec-
tions, we present the findings of this exploration and discuss their implications for teacher 
selection and education.

Background

Theoretical perspectives on the knowledge needed for teaching

Interest in the structure of teacher knowledge is not new. Almost two and a half thousand 
years ago, Aristotle distinguished between a knower, who simply learns and possesses 
the subject matter, and a master, who not only knows the content, but can also teach it. 
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However, only in the mid-1980s did the distinction between content knowledge and the 
knowledge needed for teaching come to the forefront of scholarly research. In his seminal 
work, Shulman (1986) defined CK in terms of both substance and syntax of the discipline 
itself. As he described, the teacher

need not only understand that something is so [i.e., substance]; the teacher must fur-
ther understand why it is so, on what grounds its warrant can be asserted, and under 
what circumstances our belief in its justification can be weakened and even denied 
[i.e., syntax]. (p. 9)

Shulman also hypothesized that CK alone would not suffice for the work of teaching. 
Instead, he and others (Ball and McDiarmid 1990; Grossman 1990; Shulman 1986, 1987; 
Wilson et  al. 1987; Wilson and Wineburg 1988) held that an accomplished teacher also 
holds general pedagogical knowledge (e.g., classroom management techniques and strate-
gies), knowledge of learners and their characteristics, knowledge of educational contexts, 
curriculum knowledge, and pedagogical content knowledge (PCK). Defined as the “special 
amalgam of content and pedagogy that is uniquely the province of teachers, their own spe-
cial form of professional understanding” (Shulman 1986, p. 8), PCK includes an under-
standing of different forms of representations, analogies, illustrations, examples, explana-
tions, and demonstrations that the teacher can employ while teaching. It also encompasses 
knowledge of why specific topics are easy or difficult to learn, and what (mis)conceptions 
students might hold.

Shulman’s work catalyzed the thinking of many scholars who, in turn, created a robust 
field of inquiry around what teachers know and how they think about specific content (see, 
e.g., Lannin et al. 2013; Mitchell et al. 2014; Remillard and Kim 2017; Sleep 2012; Steele 
et al. 2013). In accordance with Shulman’s views, most authors make a clear distinction 
between CK and additional knowledge needed for teaching. For example, scholars work-
ing on the Teacher Education and Development Study in Mathematics (TEDS-M) make a 
distinction between mathematics content knowledge and mathematics PCK, with the for-
mer pertaining to fundamental definitions, concepts, and procedures within mathematics, 
and the latter including knowledge of how to represent content to students, and specifi-
cally, taking into account their prior knowledge and difficulties (Blömeke et al. 2011). In 
Rowland and colleagues’ Knowledge Quartet (Rowland et al. 2005; Rowland et al. 2009), 
CK (named “overt subject knowledge”) appears as one of 17 elements composing the four 
dimensions of this framework. While this component pertains to the “foundation” dimen-
sion, three other dimensions—transformation, connections, and contingency knowledge—
capture knowledge needed for teaching.

A clear distinction between these two types of knowledge is also reflected in the Knowl-
edge for Algebra for Teaching framework (McCrory et al. 2012). Here, two types of CK are 
proposed: CK equivalent to the content taught in middle and high school (knowledge of 
school algebra), and more advanced CK, related to calculus and abstract algebra. The ele-
ments related to the knowledge needed for teaching in this framework include knowledge 
of typical student errors, canonical uses of school mathematics, and knowledge of curric-
ulum trajectories. Knowledge for teaching is also reflected in the latter two components 
of Tchoshanov’s (2011) work, which includes knowledge of facts and procedures (which 
corresponds to CK), as well as knowledge of concepts and connections and knowledge of 
models and generalizations.

In Ball and colleagues’ work on Mathematical Knowledge for Teaching (MKT) (Ball et al. 
2008), common content knowledge (CCK)—or the mathematical knowledge commonly 
found in settings other than teaching—is one of six separate domains of teacher knowledge. 
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The other five domains include specialized content knowledge (SCK; wholly mathematical, 
but specialized to the work of teaching), horizon content knowledge (HCK; knowledge of 
topics on the academic horizon), knowledge of how students learn the content (knowledge of 
content and students; KCS), knowledge of how best to teach specific materials (knowledge 
of content and teaching; KCT), and knowledge of content and the curriculum (KCC). As 
explained below, in this article we largely draw on a specific type of CCK—advanced com-
mon content knowledge—and SCK and KCT, as knowledge needed for teaching.

Although many academics view CK and the knowledge needed for teaching as theo-
retically discrete elements, not all agree with this distinction. Drawing on Chevallard’s 
anthropological theory of didactics, Huillet (2009), for example, argues that the distinction 
between CK and PCK is artificial and that these two components cannot be separated from 
each other in practice. Similarly, Bernarz and Proulx (2009) argue that teachers’ decisions 
at any given point in time are concurrently informed by mathematical, didactical, and peda-
gogical considerations, thus making it hard to distinguish between disciplinary-based con-
tent knowledge and the content knowledge needed for teaching. Thus, for these scholars, 
“at the heart of a teacher’s practice [one] can find a very specific knowledge, composed of 
intertwined […] dimensions” (p. 14, emphasis added).

In sum, with some notable exceptions, most theoretical models of teacher knowledge 
suggest that it is multidimensional. We now turn to empirical investigations into this issue.

Empirical findings on content knowledge and knowledge needed for teaching

A number of studies have empirically evaluated claims that teachers’ knowledge contains 
multiple, separable elements. In most cases, authors investigated such claims by developing 
survey instruments measuring CK and some aspect of the knowledge needed for teaching, 
administering the instrument to a large number of teachers and then subjecting the resulting 
data to factor analyses, structural equation modeling, or other analytic techniques designed to 
determine dimensionality. In our review of these studies, we first start with those that capital-
ized on the distinction between CK and PCK proposed by Shulman and then continue with 
other studies based on the MKT conceptualization, the conceptualization considered here.1

Krauss and colleagues’ (2008, 2013) work represents perhaps the earliest and most sys-
tematic attempt to explore the relationship between CK and PCK. This group administered 
a test including CK and PCK items to a representative sample of 10th-grade mathematics 
teachers in Germany (N = 198). A subsequent structural equation model showed that the 
data were best fit by a model representing the CK and PCK factors separately; these factors 
were, however, highly correlated (r = 0.79). Interestingly, when the same analysis was run 
separately for two subgroups—Gymnasium teachers (i.e., academically oriented teachers 
who had received intensive training in CK) and non-Gymnasium (i.e., general track) teach-
ers—the two factors were more distinguishable for the non-academic track group. For aca-
demic-track teachers, the CK-to-PCK correlation was r = 0.96; in the non-academic track, 
the correlation was r = 0.61. This led the authors to speculate that the distinguishability of 
the two constructs might be a function of the teachers’ level of expertise.

Evidence on the distinguishability between CK and PCK also comes from the TEDS-
M study (Blömeke et  al. 2011), which collected data from about 13,000 preservice pri-
mary and secondary school teachers from 15 countries. The analysis of these data revealed 
that the two multidimensional models tested (i.e., with and without cross-loadings of items 

1  Our review of the literature yielded no studies examining the dimensionality of constructs other than CK-
PCK and MKT.
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across knowledge factors) had better fit to the data than a unidimensional model, thus sug-
gesting that CK and PCK represent two distinguishable factors. Interestingly, this structure 
was found consistently in all 15 countries. The two constructs in one of the multidimen-
sional models tested were strongly related (r = 0.85) with this correlation, however, ranging 
from r = 0.65 (Georgia) to r = 0.97 (Botswana).

Complementing the TEDS-M study, more recent work (Kleickmann et  al. 2015) 
explored the dimensionality of teacher knowledge with in-service—rather than preser-
vice—teachers in Germany and Taiwan. Using the same sample of 198 German teachers 
utilized in Krauss et  al. (2008) and a stratified random sample of 209 Taiwanese math-
ematics teachers, these scholars provided evidence of a two-dimensional cross-culturally 
invariant structure of teacher knowledge. Like the previous study, the correlations between 
the two constructs varied but were generally moderate to marginally high, with r = 0.64 and 
r = 0.79 for Taiwanese and German teachers, respectively. Another study that utilized data 
from preservice teachers at different stages in their teacher education (Kleickmann et al. 
2013) reported similar correlations between CK and PCK for first-year preservice teach-
ers (r = 0.64) and both third-year preservice teachers and prospective teachers during their 
induction period (r = 0.78). In sum, the studies considered above suggest that although 
empirically discernible, CK and PCK are moderately or more strongly correlated, depend-
ing on the educational systems and the teacher populations examined.

Moving from studies that conceptualize teacher knowledge as CK and PCK, a group 
working at the University of Michigan (Ball et al. 2008; Hill et al. 2004) developed multi-
ple-choice items reflecting two elements of MKT: CK and a construct originally identified 
as “knowledge of students and content.” Using data from almost 1500 K-5 teachers par-
ticipating in professional development programs, these scholars experimented with differ-
ent models to better understand the nature of the knowledge needed for teaching. Similar 
to the analyses above, their work revealed that teacher knowledge was multidimensional: 
besides a general factor identified as representing CK, two other factors also accounted for 
part of the variance in teachers’ answers. The first represented SCK and included items 
such as analyzing non-standard algorithms or procedures, using representations to illustrate 
mathematical ideas, and providing explanations. Answering these items required mathe-
matics knowledge, but it was not mathematical knowledge that we expect non-teachers to 
know. The second factor comprised some of the knowledge of students and content items; 
other knowledge of students and content items loaded only on the main factor. In sum, the 
study results lend credence to the argument that knowledge for teaching includes elements 
beyond CK. However, the cross-loadings of some items led these scholars to speculate 
that, although there seem to be certain identifiable knowledge components, these might be 
imperfectly discerned from CK (see, for example, Schilling 2007).

More recently, nationally representative samples of middle school (Hill 2007) and ele-
mentary school (Hill 2010) mathematics teachers have not uncovered multiple interpret-
able factors of MKT. In both cases, items failed to load onto theoretically specified factors; 
hence, the author scored teacher responses based on a single-factor model. A secondary 
analysis of data collected from fourth- and fifth-grade teachers participating in the Meas-
ures of Effective Teaching project (Copur-Gencturk et al. 2018) also challenged the mul-
tidimensionality of MKT. The teachers’ answers to 38 items categorized as CCK, SCK, 
and PCK had better fit to a unidimensional model compared to a three-dimensional model. 
In fact, in the latter model, the SCK and PCK factors were practically indistinguishable 
(r = 0.96), whereas the correlation of CCK with the other two factors was strong (r = 0.75 
in both cases)—thus further reinforcing the lack of distinguishability among the three 
knowledge components examined.
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In all, while most theoretical models and empirical results suggest that teacher knowl-
edge is multidimensional, the exact nature of this relationship remains an open issue for 
at least three reasons. First, Table 1, which provides a summary of the studies reviewed 
above, suggests that the existing evidence is less conclusive when considering additional 
factors: whereas most studies that drew on the CK and PCK conceptualization (upper panel 
of Table  1) provide evidence supporting the multidimensionality of teacher knowledge, 
studies drawing on the MKT conceptualization (lower panel of Table 1) show more incon-
sistent results. Second, even when multidimensionality appears, the strength of the relation-
ship between the emerging factors (and therefore their discernibility) varies depending on 
the teacher population examined and the settings in which teachers’ knowledge was exam-
ined. For MKT, results varied depending upon whether teachers’ knowledge was assessed 
in professional development settings (as in Hill et al. 2004) versus more typical settings; 
for CK-PCK, whether the teachers assessed were preservice versus in-service, whether the 
teachers taught in academic or non-academic sectors, and across educational systems.

Finally, the presence or lack of multidimensionality may relate to the items that com-
prise these assessments. Assessments that use the CK and PCK conceptualization tend to 
ask straightforward, open-ended CK problems—e.g., finding the length of ribbon (Blömeke 
et al. 2011), or proving that 0.9̄ equals one (Krauss et al. 2008). PCK items in these sets 
ask teachers to solve these problems in multiple ways, to identify student misconceptions 
with the content, and to design tasks to help students learn. Assessment based on the MKT 
framework, by contrast, use the multiple-choice format and tend to include mostly CCK 
and SCK items (Copur-Gencturk et al. 2018; Hill 2007, 2010). Both specialized and com-
mon content items are set in classroom contexts, and thus difficult to distinguish. This sub-
tlety of distinction may be one reason for the lack of dimensionality in later MKT papers.

Given these distinctions, we see the present work as a replication and extension study 
(cf. Coyne et al. 2013; White et al. 2014) on the dimensionality of MKT, one which retains 
the basic conditions of previous work—collecting data from MKT items and subjecting 
them to dimensionality analyses—while modifying other aspects to subject MKT theory 
to a stronger empirical test. In particular, unlike prior studies, we included CK items that 
are not set in classroom contexts, which is the typical approach pursued in the MKT stud-
ies reviewed above. Second, and more critically, we tapped teachers’ advanced Common 
Content Knowledge (aCCK).2 If knowledge of mathematics itself is dimensional in the way 
Ball and colleagues (2008) hypothesize, we argue that forming a CK scale from straight-
forward (i.e., not embedded in classroom contexts) yet mathematically advanced content 
might reveal that dimensionality3; to date, this has not been attempted by scholars. Third, 

2  Advanced Common Content Knowledge is distinctively different from Horizon Content Knowledge 
(HCK). The latter should not be equated to knowledge of the mathematics content beyond a teacher’s cur-
rent grade level, given that this conceptualization captures the students’—as opposed to the teachers’—hori-
zon knowledge (see more on that in Zazkis and Mamolo 2011). This claim resonates with an elaborated 
definition of HCK, developed in collaboration with Ball and Bass, according to which “HCK is not about 
curricular development of [the] content;” rather it is an “orientation to, and familiarity with the discipline 
[…] that contribute to the teaching of the school subject at hand, providing teachers with a sense for how 
the content being taught is situated in and connected to the broader disciplinary territory” (Jakobsen et al. 
2013, p. 3128).
3  Content knowledge items at teachers’ grade level could be considered as prerequisites for teachers’ PCK, 
given conceptualizations of PCK as the transformation of content knowledge into powerful forms of knowl-
edge that are adaptive to student needs (cf. Mewborn 2003; NMAP 2008). By including content at higher 
grade levels, aCCK items were expected to not necessarily be prerequisites of PCK, and hence be more 
distinguishable from items reflecting PCK (i.e., SCK and KCT items).
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although the present study replicates Copur-Gencturk and colleagues’ (2018) work in cer-
tain respects (e.g., sampling a similar teacher population), it departs from it in significant 
respects. In particular, the current study includes a more diverse and numerous set of CK 
items compared to those used in the former study, in which CK was measured by only 
five items, all tapping teachers’ knowledge of the use of the equal sign. Additionally, the 
current study utilized a different set of items than those in the former study. Because the 
results drawn from any dimensionality study are unavoidably item dependent, carrying out 
replication studies like the present one can help explore the generalizability of the findings 
across a range of items.

We argue that replication and extension studies on the MKT dimensionality are war-
ranted because, as Table 1 reveals, although studies building on the CK-PCK conceptualiza-
tion converge in their results, a similar convergence is not observed in studies drawing on 
the MKT conceptualization. We concur with Copur-Gencturk et al. (2018) that this discrep-
ancy might be due to the lack of clarity in the MKT literature as to how MKT is conceptual-
ized, operationalized, and measured, especially when gauging MKT at different grade levels 
(see Speer et al. 2014 for an elaborated discussion). Therefore, replication studies on MKT 
dimensionality which utilize different operationalization and/or measurement approaches 
might offer insights at several fronts, pushing MKT scholars to better clarify the conceptual-
ization of this construct as well as to rethink ways of operationalizing it.

Teacher knowledge and student learning

Scholarly focus on teacher knowledge has often been motivated by an implicit (e.g., Shul-
man 1986) or more explicit (e.g., Cohen et al. 2003) assumption that this construct con-
tributes to student learning, often through differences in instructional quality. Recent years 
have seen concerted efforts toward understanding whether and how teacher knowledge 
relates to student learning. Some studies have done so using indicators that comprise teach-
ers’ scores across knowledge dimensions, or that represent only one aspect of teachers’ 
knowledge; other studies have aimed to identify the unique contribution of different knowl-
edge components to student learning (see Table 2).4 We review each type in turn.

Single‑construct studies

Hill et al. (2005) examined the extent to which MKT, operationalized as a unidimensional 
measure containing both content knowledge and knowledge-for-teaching items, contrib-
utes to student gain scores. Their study showed that students taught by elementary school 
teachers who scored 1 SD above the mean on their MKT assessment experienced gains 
in their test scores equivalent to one-half to two-thirds of a month of additional growth 
compared to their counterparts taught by average-MKT teachers. Similarly, Rockoff et al. 
(2011) showed MKT to be among the few significant predictors of student achievement 
among a sample of new elementary and middle-school mathematics teachers; in particular, 
one standard deviation (SD) difference in MKT was associated with 0.028 SD difference in 
student achievement when controlling for student prior achievement. A study that did not 

4  We limit our review to studies that obtained actual measures of teachers’ knowledge, instead of using 
proxies for this knowledge, such as teachers’ credentials, number of courses taken, or degrees obtained 
(e.g., Monk 1994).
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use the original MKT measures but developed MKT-like items (Shechtman et al. 2010), 
however, found that in only one of the three models examined did teacher knowledge sig-
nificantly contribute to student gain scores, and that was only for one of the experimental 
groups under consideration. In addition, several other studies found no association between 
teachers’ MKT and student learning. For example, the Measures of Effective Teaching 
study (Cantrell and Kane 2013) and Kersting and colleagues’ (2012) work reported nonsig-
nificant associations between MKT and student gain scores. Similarly, in their randomized 
controlled trial, Ottmar and colleagues (2015), found no direct or indirect effects of MKT 
on student achievement in third grade when controlling for student achievement in sec-
ond grade in either the experimental or the control group. However, the latter two stud-
ies employed significantly smaller teacher sample sizes compared to those in the studies 
reviewed above, which might have made it hard to detect the small effect sizes identified in 
Hill et al. (2005) or Rockoff et al. (2011).

Other studies focused only on teachers’ CK. For example, Metzler and Woessmann 
(2010) estimated the causal effect of teachers’ CK on students’ academic achievement. 
Their analysis showed that a one SD increase in teacher CK increased student achieve-
ment by about 0.1 SD. This, according to the authors, implied that net of other factors, two 
students, one taught by a teacher at the median of the CK distribution and the other by a 
teacher at the 5th percentile of this distribution, would differ by 0.17SD in their achieve-
ment by the end of the school year. Similar results appear in the educational production 
function literature (e.g., Harbison and Hanushek 1992; Mullens et al. 1996). Given the cor-
relations between CK and other forms of teacher knowledge found above, it is not clear in 
any of the above studies whether CK or knowledge for teaching is responsible for the cor-
relations uncovered.

Multiple‑construct studies

In only a handful of studies did researchers compare the contribution of different teacher 
knowledge dimensions to student learning. Baumert and colleagues (2010), for example, 
investigated the relative contribution of two knowledge dimensions, CK and PCK, to stu-
dent learning. Using a representative sample of over 4300 Grade-10 students and their 181 
teachers, and controlling for student achievement in Grade 9, they found CK to be less 
predictive of student achievement at the end of Grade 10 than PCK (β = 0.30 and β = 0.42, 
respectively). Also, the former explained a smaller proportion of the classroom-level vari-
ance compared to the latter (44% vs. 54%, respectively), leading the authors to conclude 
that PCK comprises an indispensable component in a teacher’s toolkit, for “it makes the 
greatest contribution to explaining student progress” (p. 168). A similar finding arose in 
Tchoshanov’s (2011) work, which showed secondary teachers’ knowledge of concepts and 
connections—reflecting PCK in Shulman’s terms—to have a small association with student 
passing rates on a standardized test (r = 0.26), whereas teachers’ knowledge of facts and 
procedures (CK) was not associated with these passing rates (r = − 0.06). A more recent 
study (Campbell et al. 2014) utilizing data from both upper-elementary and middle-school 
US teachers found that for the first sample only CK had a positive effect on student achieve-
ment after controlling for student- and teacher-level characteristics: an increase of one SD 
in teacher CK was associated with an increase of 0.071 SDs in students’ achievement. For 
the latter sample, both CK and PCK had positive and larger effects on student achievement; 
in particular, an increase of one SD in either type of knowledge was associated with an 
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increase of 0.22 SDs in student achievement without any controls and 0.16 and 0.18 SDs, 
respectively, with controls.

The preceding literature review suggests that, despite the wealth of studies on teacher 
knowledge and its contribution to student outcomes, uncertainty remains over this issue, 
especially with regards to elementary grades. Thus, in addition to replicating and extending 
prior studies investigating MKT dimensionality, the present study makes two other con-
tributions. First, by concurrently attending to dimensionality and predictive validity, this 
study addresses a limitation of prior works (e.g., Kersting et al. 2012; Rockoff et al. 2011; 
Shechtman et al. 2010) in which the MKT structure was implicitly taken for granted and 
attention was directed only to predictive validity. Second, recently accumulated empirical 
evidence suggests that the test used to measure student learning plays a role in the predic-
tive-validity conclusions drawn (see, for example, Grossman et al. 2014; Naumann et al. 
2017; Papay 2011). With the exception of only one study (Cantrell and Kane 2013) that 
utilized two tests—a state test and a test examining higher-order thinking skills—all other 
studies reviewed above used only one test at any given data collection round to measure 
student achievement (gains). In these cases, student learning was measured using state tests 
(Campbell et al. 2014; Kersting et al. 2012; Ottmar et al. 2015; Rockoff et al. 2011; Tcho-
shanov 2011), national tests (Metzler and Woessmann 2010), researcher-developed tests 
following state standards (Baumert et al. 2010; Shechtman et al. 2010) or with a commer-
cially developed standardized test (Hill et  al. 2005). Hence, there seems to be a need to 
concurrently draw on different tests to explore the predictive validity of teacher knowledge 
on student learning, especially given that state tests might be capturing more basic math-
ematics knowledge instead of also tapping into students’ reasoning and higher-level think-
ing. In this study, we do so by employing two different tests, as discussed below.

Research questions

Drawing on data from upper-elementary teachers and their students, we ask:

1.	 Is teacher knowledge multidimensional, as advanced by different theoretical frameworks 
and as supported by some empirical evidence, or does it comprise a single construct?

2.	 To what degree does teacher knowledge (or components thereof) predict student learn-
ing, as measured by student achievement gains on two different types of tests?

Methods

To address these questions, we drew on data from the National Center for Teacher Effec-
tiveness project. This project contained three sources of data: a teacher survey designed 
to explicitly assess the dimensionality of teacher knowledge, a project-administered stu-
dent assessment, and district administrative data that included both student state test 
scores and background characteristics. In this section, we describe the instruments used 
to capture teachers’ knowledge, the study participants, and the data collection and analysis 
procedures.
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Instrumentation

Two teacher surveys, administered roughly one year apart  (Y1 and Y2), carried the con-
tent knowledge items used in this study. We selected roughly half of these items to tap 
into teachers’ aCCK; these items were sampled from the released items of the elementary 
Massachusetts Test for Educator Licensure (MTEL), an assessment known for its math-
ematical rigor and which contained content knowledge taught at both the upper-elementary 
grades and above (for the purposes of this study, we only used items corresponding to at 
least middle-grade levels). We drew a second set of items from the Michigan elementary 
MKT forms to represent knowledge needed for teaching, and, in particular, SCK and KCT. 
We illustrate the difference between these knowledge types by describing two CK items 
(Figs. 1, 2) and two knowledge-for-teaching items (Figs. 3, 4).   

The first CK (drawn from the MTEL) item asks teachers to decide which among four 
different options represents a fraction that is equal to a given mathematical expression. To 
choose the correct answer (Option B), one simply needs substantive mathematical knowl-
edge: specifically, that a−n is equal to 1/an; that an is equal to multiplying the base a n 
times; and that an*bn = (ab)n. The second item (also drawn from the MTEL) captures syn-
tactic aspects of content knowledge. One possible path for correctly solving this item (i.e., 
selecting Option C) would be through noticing and analyzing patterns. In this particular 
instance, noticing that the first figure corresponds to 1 cube, the second to 1 + 2 cubes, the 
third to 1 + 2 + 3 cubes, and so on, can lead to the conclusion that the nth figure includes 
1 + 2 + ··· + n cubes. More generally, these items tend to ask teachers to compute or to set 
up computations, to solve word problems, and to identify mathematical facts and defini-
tions. These items pertained to place value with very large numbers; calculating sale price, 
tax and tip; rotation and reflection; linear functions; prime factorization of natural num-
bers; proportional reasoning; and exponents and scientific notation.

Items 3 and 4, in contrast, require more than CK. To answer the third item, one needs 
KCT to see that Option C lends itself to employing multiple unique strategies when com-
paring fractions (e.g., comparing fractions smaller or larger than ½; comparing fractions 
with the same numerator). Similarly, in the fourth item, knowing that two different shapes 
cannot be used to illustrate the given multiplication unless they have the same area, which 
is not the case in Option C, requires SCK. Other knowledge-for-teaching items pertained 
to alternative algorithms for common operations, representing operations such as decimal 
multiplication, and providing mathematical explanations for rules and procedures (e.g., 
why dividing 4/2 by 2/2 does not change the value of the original quantity).

In total, the surveys included 72 multiple-choice items,5 12 of which were presented as 
“testlets”; these testlets included three to five sub-items, all preceded by a common stem. 
As we explain below, we treated each testlet as a single item with an ordinal score equal 
to the number of sub-items answered correctly. A panel of four experts, all developers of 
MKT items (researchers in mathematics education who also worked as mathematics teach-
ers and/or teacher educators in mathematics education) content-validated the items by 
assessing whether they captured any of the MKT domains; for items identified as CCK, 

5  Although we recognize the possibility of answering an item correctly just by mere guessing or test-taking 
skills, a validation study (Hill et al. 2007) showed low rates of strategic test-taking and guessing, especially 
for the content-knowledge items (around 5% of the items taken). To the extent that such low rates were also 
true for the current study, the effect of guessing and test-taking skills could be thought to be minimal, espe-
cially for the aCCK items (which were fewer than the SCK/KCT items).
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these experts were also asked to identify whether they captured at-grade level CCK or 
advanced CCK. After dropping three items that were either too easy or too hard (i.e., the 
lack of variation across teachers would impact factor analyses), we used the 36 items that at 
least three panel experts rated as aCCK or SCK/KCT (we collapsed the last two categories 
into one to reflect knowledge needed for teaching).6 Of these, panelists anticipated that 13 
items would capture aCCK (6 from Y1 and 7 from Y2) and 23 items would reflect SCK/
KCT (12 from Y1 and 11 from Y2).7

(a)

(b)

(d)

(c)

Fig. 1   A released MTEL item intended to capture teachers’ aCCK of exponents

(a)
(b)

(d)
(c)

Fig. 2   A released MTEL item intended to capture teachers’ aCCK knowledge of patterns

6  The present study was part of a larger study aimed at developing a strong Item Response Theory (IRT) 
measure of teacher knowledge. Therefore, the expert panel content validated the items for the purposes of 
the current study after they had been administered.
7  That only half of the items originally designed were eventually used in the study is telling of the limita-
tions of any replication study, which is highly dependent on the items used; it is also telling of the difficul-
ties inherent in designing items that can be unambiguously categorized in certain MKT domains.
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Participants and data collection processes

The project administered surveys to 263 fourth- and fifth-grade teachers in Y1, and 219 
fourth- and fifth-grade teachers in Y2; teachers returned 247 and 214 completed surveys 
each year, respectively. The participants were working in four different districts in three 
Eastern US states. Most were White (67%) or African-American (23%) and about four out 

(a)

(b)

(d)

(c)

Fig. 3   A released item gauging teachers’ SCK

(a)

(b)

(d)

(c)

Fig. 4   A released item gauging teachers’ KCT
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of five were female (83%). At the time of the first survey administration, teachers had on 
average about 10 years of experience, with the youngest in her first year of teaching, and 
the most seasoned teacher having taught for 37 years. The teachers completed each survey 
at the beginning of each school year and received a small stipend for doing so.

Students of these teachers completed two types of tests. The first was their state-man-
dated assessment administered toward the end of each school year and used for school and 
district accountability purposes. We also administered a project-developed test twice per 
year (October–November and March–May); this test was written to require more complex 
reasoning and responses than those typically expected in traditional multiple-choice state 
tests (for more information on differences between the three state tests and the project test, 
see Lynch et al. 2017).

We did not include all students and classrooms in our analyses exploring the relation-
ship between knowledge and student achievement gains. Of 476 classrooms (i.e., unique 
teacher-year observations) and 10,019 student-year observations, our final main analysis 
sample included 434 classrooms (teacher n = 287) and 7890 student-year observations. We 
excluded classrooms that were either atypical in some way (i.e., primarily composed of 
special education students, classroom n = 16, student n = 105; classrooms with fewer than 
five students, classroom n = 1, student n = 3) or whose teacher did not have a knowledge 
score (classroom n = 15; student n = 294). The average sample classroom was composed of 
18 students. We excluded students who either skipped or repeated a test grade level (n = 47) 
or lacked the needed variables to estimate achievement gains (i.e., current-year test scores, 
n = 702, and prior-year test scores, n = 978). Given that a significant number of students 
were missing information on the dependent variable or a key control variable, we deemed 
it more appropriate to exclude them from our analytic sample rather than impute data for 
them (for a similar approach, see Chetty et al. 2014). Our final main sample of students 
was largely non-white (41% African–American; 24% Hispanic), and eligible for subsidized 
lunch (65%). Smaller proportion of students in this sample were special education students 
(11%) or English language learners (21%). Excluded students differed slightly from the full 
sample in that these students were more likely to be African-American (56%) and eligible 
for subsidized lunch (73%). Excluded students were also more likely to be special educa-
tion students (23%) and to have lower prior achievement on the state (− 0.24) and the alter-
native mathematics test (− 0.33). (For a full set of student-level descriptives for in-sample 
and out-of-sample students, see “Appendix” Table 9). In discussing the study findings, we 
acknowledge that our analytic sample is not perfectly representative of students in these 
schools.

Data analyses

Data analysis unfolded in two steps, with each step corresponding to one of the two 
research questions. To determine the structure of teacher knowledge, we used exploratory 
and confirmatory factor analyses. As noted above, we decided to treat the data as ordinal 
rather than nominal to accommodate several testlets. We did so because items belonging to 
testlets are not independent—as verified by some initial explorations—and would therefore 
form factors reflecting the testlet to which they belonged. Given the decision to treat the 
testlet items as ordinal, we employed the WLSM estimator for all the confirmatory fac-
tor analysis models discussed below. Additionally, because some teachers’ responses were 
missing for either Y1 or Y2, we conducted analyses within year rather than across years.
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Cognizant of the mixed and inconclusive evidence of prior dimensionality studies on 
MKT (e.g., Hill et al. 2004; Hill 2007, 2010), our investigation of the structure of teachers’ 
knowledge began with a set of exploratory factor analyses with Geomin rotation (Hattori 
et al. 2017).8 These analyses provided initial insights into the structure of the data. We also 
employed exploratory factor analysis because it could help better understand any discrepan-
cies—should these arise—in fit between our data and the theoretical models explored in 
confirmatory factor analyses. In the context of the latter analyses, we experimented with two 
types of models (see Fig. 5).9 The first model (M1), the most parsimonious one, assumed 
that within each year all items loaded onto a single factor representing a general teacher 
knowledge factor. The second model (M2) included two first-order factors, one encompass-
ing all the aCCK items, and another including the SCK/KCT items. These two factors were 
assumed to load onto a second-order factor representing general mathematical knowledge 
for teaching. In running these models, we were cognizant of the fact that our sample size 
was relatively small, a limitation we revisit when interpreting the study findings.

We then followed the recommended structure of teachers’ knowledge from the factor 
analyses to estimate knowledge scores for teachers. We modeled teacher survey responses 
to all aCCK and SCK/KCT items in either Y1 or Y2 using a generalized partial credit 
item response theory (IRT) model, and then predicted empirical Bayes means of the latent 
knowledge variables, our within-year knowledge scores, for each teacher. Using these IRT 
scores, we answered our second research question investigating the relationship of teacher 
knowledge and student learning, measured by student achievement gains on standardized 
tests, by estimating the following equation separately in Y1 and Y210:

where the outcome of interest, Yjkmgst , represents student j’s standardized score on either 
the (1) state mathematics exam, or, (2) the project-administered mathematics test11 in 
either time t = Y1 or t = Y2. Pjgt−1 represents a vector of prior achievement for student j 
on the state or alternative mathematics exam for the tested grade g at time t − 1. This vec-
tor includes both a quadratic and cubic function for prior math achievement, in addition to 
student j’s prior achievement in an alternate subject, English Language Arts. Djt represents 

Yjkmgsdt = �Pjgt−1 + �Djt + �Ckmt + �Sgst + �g + �d + �mt + �jkmgst

�mt = �TKmt + �mt

8  Geomin rotation, an oblique rotation method, is the default rotation method in MPLUS. This method was 
chosen because it considers the resulting factors as non-orthogonal—which resonates with our assumption 
about a nonzero relationship between the knowledge factors under consideration. Additionally, parameter 
estimates obtained with Geomin rotation have been found to be comparable with those yielded from con-
firmatory factor analysis and to be unbiased (cf. Hattori et  al. 2017). Moreover, an appraisal of different 
rotation methods for dichotomous data—the data used in the current study—showed this method to com-
pare equally well with other oblique rotation methods (cf. Finch 2011).
9  We also considered bifactor models (Chen et  al. 2012) to examine whether more specific factors exist 
above and beyond a general teacher knowledge factor; however, these models failed to converge.
10  On average, teachers with data in both Y1 and Y2 (n = 160) exhibited a slight decrease (seven percent-
age points) in knowledge over time, based on changes in the percentage of survey knowledge items they 
responded to correctly. Furthermore, teacher self-reports of mathematics-specific professional develop-
ment were uncorrelated to these changes (results available upon request). Nevertheless, we opted to run this 
model separately across years to account for the potential of knowledge growth, and because we include 
different teachers in different years based on participation in the study.
11  State test scores were scaled to have a mean of zero and a SD of one within grade and district (due to 
different tests across states). Project test scores were scaled to have a mean of zero and a SD of one within 
grade.
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a vector of student demographic variables for student j at time t, including race, gender, 
free- or reduced-price lunch eligibility, special education designation, and level of limited 
English proficiency. Ckmt represents the aggregates of these two vectors for students in class 
k under teacher m at time t. Sgst represents the aggregates of these two vectors for students 
in grade g in school s at time t. Finally, two sets of fixed effects were included in the model: 
�g represented the effect of grade g (to account for potential differences in standardized 
tests across grades) and �d represented the effect of district or school.

To account for the multilevel structure of the data, where students are nested within 
teachers, we included one random component of variance, �mt . This component, �mt , can 
be decomposed into two parts: TKmt , teacher m’s knowledge score(s) in time t (standard-
ized to have a mean of zero and SD of one for ease of interpretation), and �mt , a random 
effect for teacher m in time t used to represent the component of teacher t’s impact on the 
outcome variable in either Y1 or Y2, or his or her within-year ‘value-added’ score (after 
accounting for teacher knowledge). Thus, the coefficient of interest in answering our sec-
ond research question is � , which represents the relationship between teacher knowledge 
and student outcomes.

In sensitivity analyses, we included other classroom-level variables to test the extent to 
which the relationship between teacher knowledge and student achievement gains may be 
masking the contribution of other important factors for student learning. We focused on 
variables available in our dataset, in particular, ones constructed from responses to the same 
survey that contained the knowledge items. Specifically, we explored whether inclusion 
of teacher self-reports about the climate of their classroom (e.g., students getting along, 
frequency of teacher reprimands of students and student misbehavior, teacher–student rap-
port), their own effort preparing for class (e.g., time spent grading, gathering lesson materi-
als, reviewing lesson content), and experience influenced the importance of teacher knowl-
edge for student outcomes. We chose these potential confounders, in particular, because 
they were factors that had demonstrated significant relationships to student achievement in 
other work (e.g., Lavy 2009; Papay and Kraft 2015; Pianta et al. 2008) and because they 
were likely to influence student learning through channels other than changing teachers’ 

(a) (b)

Fig. 5   Different CFA models a single-factor model (M1), b two-factor model (M2) (aCCK: advanced com-
mon content knowledge, SCK/KCT: specialized content knowledge and knowledge of content and teaching)
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mathematical knowledge. Classroom climate comprised teacher responses to nine items 
and was sufficiently reliable ( � = .88 ); effort comprised teacher responses to five items 
and was also fairly reliable ( � = .73) . We standardized both variables to have a mean of 
zero and SD of one for ease of interpretation. Finally, we included teacher experience as a 
dichotomous variable that flagged whether a teacher had fewer than 2 years of experience 
teaching mathematics.

Results

We organize the results of the study around the two research questions.

The structure of teacher knowledge

Exploratory factor analyses of the teacher survey suggested that a single-factor solution 
was preferable to a two-factor solution. This was implied by two pieces of evidence. First, 
for both years under exploration, the eigenvalue of the first extracted factor was at least 
twice as big as that of the second extracted factor (Y1: first factor = 5.04, second fac-
tor = 1.54; Y2: first factor = 4.45, second factor = 2.22). Ratios of this magnitude support 
a unidimensional rather than a multidimensional construct (cf. Kline 1994). Second, when 
a two-factor solution was fit to the data (Table 3) one item (SCK/KCT7, italicized) of the 
18 from Y1 had similar loadings on both factors; the highest factor loadings for another 
item (aCCK5, with a loading of 0.25, underlined) was lower than 0.40, typically the lowest 
recommended threshold for acceptable factor loadings (cf. Field 2013; Kline 1994); and 
two items (aCCK3 and aCCK4, bold) loaded on the SCK/KCT rather than the aCCK fac-
tor, as had been expected by the expert panel. This situation was even worse for Y2. Out 
of 18 items, two items had similar loadings on two factors (SCK/KCT19 and SCK/KCT23, 
italicized), one had a highest loading lower than 0.40 (SCK/KCT14, underlined), and five 
loaded onto a different factor than that theoretically assumed (in bold).12 Together with the 
eigenvalue ratios, these results strongly suggest a one-factor solution.

We next turned to confirmatory factor analyses and experimented with the models 
shown in Fig. 5. Because for Model 2 we either had problems of convergence or the result-
ing matrix had non-positive variances and therefore could not be considered reliable, we 
mostly examined the correlation of the two first-order factors, instead of trying to form a 
second-order factor, as illustrated by M2 in Fig. 5. As Table 4 shows, for both Y1 and Y2, a 
single-factor and a two-factor solution had comparable fit to the data: they both fit the data 
marginally well, given that their Bentler Comparative Fit Index (CFI) was close to 0.90 
(0.89 in Y1 and 0.88 in Y2 for both models) and even the upper bound of the 90% confi-
dence interval of the root-mean-square error of approximation (RMSEA) index was close 
to 0.06 (0.067 for Y1 and 0.064 in Y2 for both models; see Hu and Bentler 1999; Kline 

12  Similar results were obtained when two other non-orthogonal rotation methods (Equamax and Quar-
timin) were applied. For example, in the Y1 two-factor solution with Quartimin rotation, one item had simi-
lar loadings on both factors; the highest factor loading for another item was lower than 0.40, and two items 
loaded onto a different factor than that theoretically assumed. For Y2, two items had similar loadings on 
two factors and seven loaded onto a different factor than that expected.
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2011).13 The comparison of the two models, however, implied that the more parsimoni-
ous single-factor solution ought to be preferred over the more complex two-factor solution, 
given that in both years, the ratio of the difference in the Chi-square values between the 
two models over their degrees of freedom (see lower panel of Table 4) was not statistically 
significant.

Tables 5 and 6, which present the factor loadings of the items utilized in our analysis for 
either a single- or two-factor solutions provide additional evidence in favor of the former 
over the latter. In particular, for both years, the factor loadings of the two-factor solution 
are very close to those of the single-factor solution (see Columns 4 and 7), with the excep-
tion of item aCCK2 in Y1, which had a marginally acceptable loading of 0.40 in the two-
factor solution and a loading lower than 0.40 in a single-factor solution (in all other cases, 
the factor loadings were consistently either below or above 0.40, regardless of the solution 
considered). Even more critically, the correlations of the two factors in the two-factor solu-
tions were very strong (rY1 = 0.85 and rY2 = 0.89) suggesting that the two factors cannot be 
easily distinguished from one another. Strictly speaking, both solutions—regardless of the 

Table 3   Factor loadings of the 
teacher knowledge Items in a 
two-factor solution

a Items with factor-loading differences less than 0.10 are in italics
b Items with their highest factor loading being lower than 0.40 are 
underlined
c Items loading on a different factor than that originally theorized are 
presented in bold

Year 1a,b,c Year 2a,b,c

Items F1 F2 Items F1 F2

aCCK1 0.59 0.00 aCCK7 0.13 0.41
aCCK2 0.70 0.00 aCCK8 0.18 0.44
aCCK3 − 0.10 0.55 aCCK9 0.49 − 0.09
aCCK4 − 0.18 0.40 aCCK10 0.64 0.03
aCCK5 0.25 0.03 aCCK11 0.17 0.60
aCCK6 0.50 0.06 aCCK12 0.37 0.50

aCCK13 0.55 0.00
SCK/KCT1 0.01 0.44 SCK/KCT13 − 0.54 0.41
SCK/KCT2 0.15 0.48 SCK/KCT14 − 0.20 0.37
SCK/KCT3 − 0.06 0.63 SCK/KCT15 − 0.03 0.46
SCK/KCT4 0.10 0.57 SCK/KCT16 − 0.10 0.40
SCK/KCT5 0.06 0.48 SCK/KCT17 0.12 0.54
SCK/KCT6 − 0.20 0.58 SCK/KCT18 0.26 0.57
SCK/KCT7 0.24 0.30 SCK/KCT19 0.30 0.28
SCK/KCT8 0.10 0.56 SCK/KCT20 − 0.02 0.67
SCK/KCT9 0.00 0.63 SCK/KCT21 − 0.06 0.75
SCK/KCT10 0.07 0.49 SCK/KCT22 0.00 0.43
SCK/KCT11 0.01 0.44 SCK/KCT23 0.23 0.29
SCK/KCT12 0.15 0.48

13  The Chi-square test for the model was violated for both years (given that its p value was lower than 
0.05), but this criterion is sensitive to the size of the analytic sample.
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year of consideration—have limitations, given that in addition to marginally meeting the 
CFI and RMSEA index thresholds, several of their loadings were below the recommended 
minimum loading of 0.40.14 In relative terms, however, a single-factor solution seems more 
preferable than a two-factor solution.

Teacher knowledge and student learning

We followed the recommended structure of teachers’ knowledge from the factor analysis 
results and estimated a generalized partial credit IRT model where teacher performance on 
all aCCK and SCK/KCT items in either Y1 or Y2 loaded onto a single latent knowledge 
factor.15 The year-specific predicted scores on this latent factor were then submitted to mul-
tilevel regression analysis predicting two measures of student learning: student achieve-
ment gains on the state standardized mathematics and project-administered tests.

Findings across the two outcomes and the 2 years were consistent: teachers’ mathemati-
cal knowledge, based on their performance on both aCCK and SCK/KCT items together, 
were associated with mathematics score gains (see Table  7). Specifically, we observed 
that, in comparison with being taught by a teacher of average MKT, a student taught by a 

Table 4   Values of fit statistics for a single-factor solution and a two-factor solution

a M1 (Model 1) as presented in Fig. 5
b M2 (Model 2) pertained to correlating the two first-order factors, instead of also taking a second-order fac-
tor, as shown in Fig. 5

Index Year 1 Year 2

M1a M2b M1a M2b

�2

M
228.02 225.69 205.51 203.25

dfM 135 134 135 134
p 0.001 0.001 0.001 0.001
CFI 0.89 0.89 0.88 0.88
RMSEA 0.055 0.055 0.051 0.050
(90% CI) (0.042–0.067) (0.042–0.067) (0.036–0.064) (0.036–0.064)
�2

B
1001.13 1001.13 734.04 734.04

dfB 153 153 153 153
p 0.0001 0.001 0.001 0.001
Δ�2

M
2.33 2.26

ΔdfM 1 1
Δ�2

M
/ΔdfM 2.33 2.26

p 0.12 0.13

14  We avoided dropping any items to improve the model fit or the factor loadings because any modifica-
tions made to the CFA models need to be theoretically justified (Kline 2011). Additionally, dropping items 
could have led to construct underrepresentation, a key limitation in exploring construct validity (cf. AERA/
APA/NCME 2014).
15  Non-significant or marginally significant but negligible correlations were found between teacher knowl-
edge and either teachers’ effort or teaching experience (effort: rY1 = − 0.13, p = 0.05; rY2 = − 0.11, p = 0.10; 
experience: rY1 = − 0.04, p = 0.58; rY2 = − 0.10, p = 0.17).
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teacher with a knowledge score 1 SD above average had higher gains of 0.042 SD on the 
state mathematics test (SE = 0.019, p < 0.05) and 0.048-SD gains on the project-adminis-
tered mathematics test (SE = 0.018, p < 0.01) in Y1. Similarly, in Y2, being taught by a 
teacher with a knowledge score 1-SD above average was associated with higher student 
achievement gains of 0.046 SD on the state mathematics test (SE = 0.019, p < 0.05) and 
0.036-SD gains on the project-administered mathematics test (SE = 0.016, p < 0.05) com-
pared to a student taught by an average-MKT teacher. Omitting district fixed effects in 
favor of school fixed effects, which may help account for potential sorting of more/less 
knowledgeable teachers to specific schools but would thus be a more conservative test of 
our predictor, saw our knowledge measure remain marginally significant in most specifi-
cations. Notably, the point estimates for the relationship between teacher knowledge and 
student achievement gains across tests and years in these models were similar to those from 
prior work (i.e., Rockoff et al. 2011) and ranged from 0.028 to 0.051.

Table 5   Factor loadings and factor correlation for a single-factor and a two-factor solution (year 1)

a M1 (Model 1) as presented in Fig. 5
b M2 (Model 2) pertained to correlating the two first-order factors, instead of also taking a second-order fac-
tor, as shown in Fig. 5
c In M1 all items load onto the same factor; in M2, the aCCK items load onto one factor (standardized load-
ings shown in italics) and the SCK/KCT load onto a different factor (standardized loadings shown in bold)
d Not tested for statistical significance. All other unstandardized estimates are statistically significant at 
p < 0. 05

Parameter M1a M2b

Factor loadings Factor loadingsc

Unstandardized SE Standardized Unstandardized SE Standardized

aCCK1 0.57 0.15 0.30 1.00b – 0.34
aCCK2 0.67 0.15 0.35 1.17 0.35 0.40
aCCK3 0.94 0.17 0.49 1.61 0.45 0.55
aCCK4 0.58 0.18 0.30 0.95 0.37 0.32
aCCK5 0.33 0.15 0.17 0.58 0.29 0.20
aCCK6 0.63 0.20 0.32 1.13 0.38 0.39
SCK/KCT1 1.00d – 0.52 1.00d – 0.52
SCK/KCT2 1.48 0.22 0.77 1.48 0.22 0.77
SCK/KCT3 0.84 0.19 0.44 0.84 0.19 0.44
SCK/KCT4 1.08 0.18 0.56 1.08 0.18 0.56
SCK/KCT5 1.15 0.18 0.59 1.15 0.18 0.60
SCK/KCT6 1.20 0.20 0.62 1.20 0.20 0.62
SCK/KCT7 0.98 0.21 0.51 0.98 0.21 0.51
SCK/KCT8 0.86 0.14 0.45 0.86 0.14 0.45
SCK/KCT9 0.82 0.21 0.43 0.82 0.21 0.43
SCK/KCT10 1.18 0.17 0.61 1.18 0.17 0.61
SCK/KCT11 1.21 0.18 0.63 1.21 0.18 0.63
SCK/KCT12 1.00 0.20 0.52 1.00 0.20 0.52

Correlation
aCCK–SCK/KCT 0.15 0.04 0.85
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In Table 7, we also provide estimates of the effect size of teachers’ knowledge using 
Cohen’s f 2 . We estimate Cohen’s f 2 by assessing the change in the amount of teacher-
level variance in student achievement explained after including the teacher-level knowl-
edge measure. We conclude across models that the effect size of our measure of teachers’ 
knowledge is, in almost all cases, small ( 0.15 ≥ f 2 > 0.02).

To put the magnitude of these results in context, we compare them to the difference in 
performance between students who were and were not eligible for free- or reduced-price 
lunch on the state (0.05 SD) and project-based tests (0.04 SD). Being taught by a teacher 
whose knowledge was above the average teacher knowledge by 1 SD is associated with test 
score growth that largely offsets this difference. Finally, as shown in Table 8, when controls 
for the classroom climate, teacher effort, and teacher experience were added in the model, 
results largely remained the same for both years under consideration both with and without 
school fixed effects.

Table 6   Factor loadings and factor correlation for a single-factor and a two-factor solution (year 2)

a M1 (Model 1) as presented in Fig. 5
b M2 (Model 2) pertained to correlating the two first-order factors, instead of also taking a second-order fac-
tor, as shown in Fig. 5
c In M1 all items load onto the same factor; in M2, the aCCK items load onto one factor (standardized load-
ings shown in italics) and the SCK/KCT load onto a different factor (standardized loadings shown in bold)
d Not tested for statistical significance. All other unstandardized estimates are statistically significant at 
p < 0.05

Parameter M1a M2b

Factor loadings Factor loadingsc

Unstandardized SE Standardized Unstandardized SE Standardized

aCCK7 1.87 1.39 0.36 1.00b – 0.37
aCCK8 2.30 1.61 0.45 1.24 0.43 0.46
aCCK9 2.54 1.71 0.49 1.38 0.39 0.52
aCCK10 1.33 1.07 0.26 0.73 0.35 0.27
aCCK11 3.34 2.23 0.65 1.82 0.53 0.68
aCCK12 3.12 2.13 0.60 1.71 0.51 0.64
aCCK13 0.99 0.86 0.19 0.55 0.29 0.21
SCK/KCT13 1.00d – 0.19 1.00d – 0.20
SCK/KCT14 1.48 1.08 0.29 1.44 1.03 0.29
SCK/KCT15 2.25 1.51 0.44 2.20 1.43 0.44
SCK/KCT16 1.78 1.20 0.35 1.74 1.14 0.35
SCK/KCT17 2.96 2.09 0.57 2.89 1.98 0.58
SCK/KCT18 3.35 2.27 0.65 3.26 2.15 0.66
SCK/KCT19 1.96 1.40 0.38 1.89 1.32 0.38
SCK/KCT20 3.27 2.19 0.63 3.25 2.11 0.65
SCK/KCT21 3.63 2.46 0.70 3.56 2.33 0.72
SCK/KCT22 2.18 1.61 0.42 2.13 1.53 0.43
SCK/KCT23 0.52 0.63 0.10 0.47 0.60 0.10

Correlation
aCCK–SCK/KCT 0.07 0.05 0.89
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Discussion and conclusions

When considering the nature of teacher knowledge, many scholars distinguish between 
pure content knowledge and knowledge needed for the work of teaching. However, empiri-
cal work has yielded mixed and inconclusive findings regarding this distinction. Respond-
ing to recent recommendations (Cai et al. 2018; Makel and Plucker 2014), this work repli-
cates earlier analyses, but also extends and complements these efforts in several respects. 

Table 7   Predicting student mathematics assessment achievement

a All models include controls for student prior achievement, demographics, peer and school aggregates, 
grade indicators, and random effects for teacher. Standard errors reported in parentheses
~ p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001

State testa Project testa

District FE School FE District FE School FE

Panel A: Year 1
Teacher knowledge 0.042* (0.019) 0.051* (0.021) 0.048** (0.018) 0.036~ (0.019)
Cohen’s f 2 0.03 0.06 0.05 0.03
N teachers 230 230 230 230
N students 4201 4201 4201 4201
Panel A: Year 2
Teacher knowledge 0.046* (0.019) 0.028 (0.021) 0.036* (0.016) 0.037~ (0.020)
Cohen’s f 2 0.03 0.01 0.04 0.04
N teachers 204 204 204 204
N students 3689 3689 3689 3689

Table 8   Predicting student mathematics assessment achievement—sensitivity analyses

a All models include controls for student prior achievement, demographics, peer and school aggregates, 
grade indicators, and random effects for teacher. Standard errors reported in parentheses
~ p < 0.10; *p < 0.05; **p < 0.01; ***p < 0.001

State testa Project testa

District FE School FE District FE School FE

Panel A: Year 1
Teacher knowledge 0.049** (0.018) 0.054** (0.020) 0.049** (0.018) 0.036~ (0.019)
Controls for climate, effort, and 

experience?
Y Y Y Y

N teachers 226 226 226 226
N students 4154 4154 4154 4154
Panel A: Year 2
Teacher knowledge 0.049** (0.019) 0.025 (0.021) 0.040* (0.016) 0.040* (0.020)
Controls for climate, effort, and 

experience?
Y Y Y Y

N teachers 197 197 197 197
N students 3577 3577 3577 3577
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First, unlike prior studies on MKT, we utilized items that captured advanced CCK (CCK 
above grade level) and were not framed within teaching scenarios. As such, we increased 
the theoretical likelihood of finding multidimensionality, effectively searching for confir-
mation of the knowledge structure posited by both MKT (Ball et al. 2008) and other schol-
ars of teacher knowledge (e.g., Rowland et al. 2005). Second, we used a more diverse set of 
CCK items than that typically found in prior work, including Copur-Gencturk et al. (2018), 
which used a small number of items, and papers by Hill (2007, 2010) that used CCK and 
SCK items written in classroom contexts. Third, in this work, we explored both dimen-
sionality and predictive validity, which are seldom reported concurrently in a single study. 
Fourth, we utilized two different types of tests to explore the predictive validity of teacher 
knowledge, recognizing that the test may matter for the conclusions we draw. Finally, we 
examined the contribution of teacher knowledge to student learning controlling for a vari-
ety of student, teacher, and classroom indicators, which is rather rare in prior pertinent 
studies.

A key limitation of our work pertains to the relatively small analytic sample utilized, 
which might have led some of our more complex models to fail to converge and which 
might partly account for the fact that our models were slightly below the acceptable thresh-
olds for CFA. For example, some scholars (e.g., Tate 2002) suggest that when using cat-
egorical data, three to five subjects per correlation might be required. Despite this limita-
tion, we think that these findings can still provide important insights into the construct 
of teacher knowledge, especially if one takes into consideration the small analytic sample 
used in prior studies as well (see Table  1). At the same time, we acknowledge that our 
analytic sample is not perfectly representative of students in these schools; because teach-
ers may be more (or less) effective with specific populations, our estimates may vary from 
what they would be in the full population. Although we have no a priori reason to expect 
student characteristics to mediate MKT impacts on student outcomes, this is a topic for 
future research.

Challenging common assumptions, this study suggests that teacher knowledge—at least 
with respect to the two components investigated16 and as operationalized and measured 
herein—comprises a single dimension. The results of both the exploratory and the con-
firmatory analyses suggest this finding, in that both showed a single-factor solution for 
Y1 or Y2 to be more preferable than a two-factor solution. In making this argument, we 
recognize the limitations of the single-factor solution, including marginally acceptable fit 
indices and low loadings for certain items. Relatively speaking, however, this solution was 
better than the two-factor solution for three reasons. First, the loadings of the exploratory 
factor analyses for several items did not make any theoretical sense, since they departed 
from patterns expected based on the expert panel. Second, the confirmatory factor analyses 
implied that the more parsimonious model should be preferred. Third, these analyses also 
showed that the correlations between the two factors in the more complex solution were 
very strong, suggesting that the two factors were hardly distinguishable.

While consistent with prior work that also identified a unidimensional structure for 
MKT (Copur-Gencturk et  al. 2018; Hill 2007, 2010), our results do not align with the 
MKT conceptualization (Ball et al. 2008), in which teacher knowledge comprises different 
distinct domains. Two explanations, one theoretical and one methodological, could account 

16  We did not study knowledge components beyond those related to the content to be taught, such as teach-
ers’ general pedagogical knowledge. Including such components might have led to a multidimensional solu-
tion, as suggested in a recent study (Blömeke et al. 2016).
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for this discrepancy, both of which require systematic future exploration. Theoretically 
speaking, the MKT knowledge domains might not be that distinguishable, a possibility 
that Ball and colleagues themselves (ibid., p. 404) acknowledge as a “boundary” problem. 
Hence, although distinguishing these domains might serve other purposes (e.g., teacher 
education), unlike the apparently clear-cut distinction between CK and PCK in Shulman’s 
conceptualization, the MKT domains might be difficult to disentangle, at least at the ele-
mentary level. Methodologically speaking, the study results could also be an artifact of the 
multiple-choice format used to capture teacher knowledge. This format might better lend 
itself to capturing more static aspects of teachers’ knowledge, thus failing to tap into teach-
ers’ knowledge-in-use, which is how MKT has originally been theorized. This argument 
is supported by both studies reporting on the difficulties in writing multiple-choice items 
that capture knowledge-in-use (e.g., Herbst and Kosko 2014; Hill et al. 2008) and studies 
documenting the potential of more dynamic approaches that engage teachers in analysis of 
actual (e.g., Kersting et al. 2012) or simulated (e.g., Charalambous 2008) teaching practice 
in capturing this type of knowledge. This latter explanation surfaces another study limita-
tion that pertains to the fact that we measured more static aspects of teacher knowledge 
instead of exploring more dynamic aspects that relate to engaging teachers in certain math-
ematical practices.

Regardless of the interpretation given, the study findings stand in contrast to prior 
empirical work on CK and PCK (e.g., Blömeke et al. 2011; Kleickmann et al. 2013, 2015; 
Krauss et al. 2008). In fact, as Table 1 suggests, almost all studies drawing on the CK-PCK 
distinction provided dimensionality evidence, whereas studies utilizing the MKT concep-
tualization largely failed to do so. One possibility is that the CK-PCK dimensions are more 
distinct from one another than the CCK and SCK/KCT domains, which are closely related 
in the MKT conceptualization (see Ball et al. 2008). However, in CK/PCK studies, the dis-
tinguishability of the knowledge components may also be a function of several contextual 
parameters, including item format, level of expertise in the responding teacher population, 
experiences with professional development, training in CK (e.g., teachers from academic 
vs. non-academic sectors) and the educational system in which they serve—as our review 
of the literature suggested. Future work could reach stronger conclusions by systematically 
varying either the teacher population under consideration and/or other contextual factors 
(see Table 1) but holding constant the knowledge conceptualizations and operationaliza-
tions they utilize. Such studies could also employ more complex research designs com-
pared to the correlational and cross-sectional designs; for example, research on expert and 
novice teachers or longitudinal studies following groups of teachers throughout different 
stages of their career could provide more insights into the nature of teachers’ knowledge, 
and most critically on the extent to which this nature changes as a function of teachers’ 
education, experience, and expertise.

At the same time, the study results seem to align with some conceptualizations on 
teacher knowledge (e.g., Bernarz and Proulx 2009; Huillet 2009) and some models of 
teaching proficiency (e.g., Kilpatrick et  al. 2001) that view different facets of teacher 
knowledge as intertwined. Understanding why the MKT components—as operationalized 
and measured herein—appear to be intertwined, however, lies beyond the scope of the 
present study. Future studies that employ more qualitative approaches to explore teachers’ 
thought processes as they answer the study items might shed more light into this issue. 
Studies that compare the thinking processes of teacher and non-teacher populations could 
be particularly informative toward this direction, as they could help reveal the (re)sources 
upon which these populations draw when answering items from seemingly distinct knowl-
edge types.
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In addition to exploring the nature of teacher knowledge, in this study we also inves-
tigated the contribution of teacher knowledge to student learning. In line with prior stud-
ies documenting positive effects of teacher knowledge on student learning (e.g., Hill et al. 
2005), this study showed associations ranging from 0.036 SD to 0.054 SD, depending on 
the model used (school vs. district fixed effects) and the type of test (state vs. project-based 
test) considered. Interestingly, these effects were of similar or larger magnitude than those 
found in similar prior studies on MKT (e.g., Rockoff et  al. 2011). These effects are, of 
course, smaller in size than those reported in studies utilizing conceptualizations other than 
MKT (e.g., Baumert et al. 2010; Kersting et al. 2012).

This difference in magnitude might, however, be not only an issue of conceptualiza-
tion but also an issue of modeling, since the latter studies either used almost no controls 
(e.g., Kersting et al. 2012) or controlled only for student-level background characteristics 
(e.g., Baumert et al. 2010). In contrast, in the present study we used standard economet-
ric models, controlling for several student background and classroom-instruction charac-
teristics but also including grade and school/district fixed effects. Indeed, we found that 
removing all student- and classroom-level controls from our multilevel models resulted in 
larger associations between teacher knowledge and student achievement (i.e., point esti-
mates of 0.06 to 0.10, depending on the model, results not shown), though we note that 
even the models with uncontrolled-for associations are still fairly small given the full range 
of student achievement. Despite this small magnitude, our results do cast another vote in 
favor of the positive link between teacher knowledge and student learning, especially if one 
considers that teacher effects are typically small [i.e., two students taught by teachers of 1 
SD apart typically exhibit learning differences of 0.10–0.15 SD, cf. Nye et al. (2004) and 
Rockoff (2004)] and that these effects derive from a variety of sources, including not only 
teacher knowledge but also the curriculum materials employed, curricular alignment with 
the assessment, teachers’ ability to connect with and engage students, and so forth.

As such, this study carries several implications for teacher selection and education. First, 
it suggests selecting elementary teachers from among the more mathematically able when-
ever possible. In fact, recent changes in both policy and labor markets may have improved 
indicators of preservice teacher knowledge, including average SAT score and the academic 
rigor of teachers’ undergraduate institution (Goldhaber and Walch 2014; Lankford et  al. 
2014). However, there remain additional checks during the recruitment and hiring process 
that could be implemented, including using mathematics certification test scores as a factor 
in hiring decisions.

Teacher education programs should also attend to subject-specific knowledge; in the 
USA, many alternative certification programs have moved to preparing teachers as general-
ists rather than specialists, potentially overlooking the knowledge critical to working with 
students in classrooms. Finally, teachers need ongoing opportunities to learn the knowledge 
they use in teaching—both common and otherwise—in settings that highlight the inter-
twined nature of that knowledge. In making this argument, we are, of course, cognizant of 
the fact that MKT is one among many factors that can help explain student learning gains 
and that other factors also need to be taken into consideration when trying to understand 
teacher effectiveness.

In this study, we also capitalized on two different types of tests to examine the pre-
dictive validity of teacher knowledge: the typical state tests often administered toward 
the end of the year, and an alternative, low-stakes but more cognitively demanding, test 
which required more reasoning on the part of the students (Lynch et  al. 2017). We pre-
dicted that teachers’ MKT might more strongly correlate with student achievement on the 
alternative test given empirical evidence suggesting a positive link between teachers’ MKT 
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and the cognitive level at which mathematics is presented and enacted in the classroom 
(e.g., Charalambous 2010). Yet we found that the role of teacher knowledge was similar 
across tests even slightly favoring the state test rather than the alternative test. This result 
could (partly) be attributed to the fact that the state test is more high-stakes; hence, teach-
ers might better mobilize their knowledge to support student learning in domains that are 
captured by this test, thus teaching to the test. In contrast, the effects of teacher knowledge 
on the latter test might be more difficult to detect not only because it is lower stakes, but 
also because developing student mathematical reasoning might be a long-term process. As 
such, this reasoning might be more difficult to capture in about 6 months (i.e., the time that 
elapsed in between the pre- and posttest administration of the alterative test, as opposed 
to the entire 9-month period captured by state tests). Relatedly, teachers in our sample 
accounted for relatively less variance in student achievement on the alternative test than 
the state test (i.e., 8 vs. 16%), potentially weakening relationships between the teacher-level 
measure of MKT and student learning.

We do not take this finding to contradict prior studies documenting that the test matters 
when exploring predictors of student learning (e.g., Grossman et al. 2014; Papay 2011). 
Rather, we interpret this finding as calling for better ways to measure teacher knowledge 
and student learning; more critically, the small effects found for both tests underline the 
need to carefully align the measures examining teacher knowledge, instructional quality, 
and student learning. From this respect, it appears productive to reformulate the questions 
we ask, from questions interrogating whether teacher knowledge matters for student learn-
ing to inquiries attending more to how teacher knowledge matters and for which particular 
types of student learning (cf. Charalambous and Pitta-Pantazi 2016). Qualitative studies 
which explore the mechanisms through which stronger knowledge can inform teaching 
and, through that, promote specific types of student learning will also be needed in the 
future.

The past three decades have seen significant theoretical and empirical work on under-
standing teacher knowledge and its different components, in essence by dissecting this con-
struct into distinct parts. Given the knowledge that has been accumulated thus far in this 
domain, and provided that future studies empirically corroborate a unidimensional rather 
than a multidimensional character of this knowledge, scholarly attempts could be directed 
to bringing these different components together, seeking to understand their complex inter-
relationships and how they synergistically contribute to instructional quality and student 
learning.
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