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Abstract Eliciting and responding to student thinking are high-leverage practices that

have powerful implications for student learning. However, they are difficult to enact

effectively, particularly for novices, and more research is needed to understand how tea-

cher education can support teachers in developing these skills. This study examined ways

prospective elementary teachers (PSTs) responded to unanticipated incorrect student

solutions to high-demand problem-solving tasks and how their responses changed over a

6-week field experience embedded in a practiced-based mathematics methods course. Data

were collected in 6 weekly cycles of planning (written plans), enactment (video of prob-

lem-solving sessions with students), and reflection (written reflections on video). Problem-

solving task implementations were analyzed using cognitive demand and math-talk

frameworks. Of the three collaborating PST groups, two groups improved at responding to

unanticipated incorrect solutions, but these two groups also developed a tendency to shut

down anticipated solutions. The third group showed no patterns in their responses to

unanticipated incorrect solutions, but did maintain the cognitive demand when responding

to anticipated solutions. I present a case of one group of collaborating PSTs who made

improvements in responding to unanticipated incorrect solutions in terms of the peda-

gogical moves they employed, cognitive demand associated with their responses, and how

their responses changed over time. Implications for teacher education are discussed.
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One of the central goals of mathematics instruction is for students to develop a conceptual

understanding of mathematics and of the norms for constructing, defending, and ques-

tioning mathematical arguments [Blanton et al. 2001; National Council of Teachers of

Mathematics (NCTM) 1989, 1991, 2000, 2006; National Research Council (NRC) 2001;

Peressini and Knuth 1998]. The most recent mathematics curriculum standards call for

students to ‘‘construct viable arguments and critique the reasoning of others’’ [National

Governors’ Association and Council of Chief State School Officers (NGA and CCSSO)

2010, p. 6]. Engaging students in representing, articulating, analyzing, evaluating, and

justifying their and others’ thinking about mathematical ideas places heavy demands on

teachers (Ball 1993, 1997; Baxter and Williams 1996; Brendefur and Frykholm 2005;

Brodie 2010; Nicol 1999; Sherin 2002b) and requires two fundamental prerequisite skills:

eliciting student thinking and leveraging that thinking to address important mathematical

concepts.

This article presents a portion of the results of a larger study that focused on developing

prospective elementary teachers’ (PSTs) ability to support pairs of elementary children in

reasoning and making sense of mathematics by developing, explaining, and justifying

conjectures. Specifically, in this study, I examined how PSTs’ pedagogical moves to elicit

and respond to children’s thinking influenced cognitive demand and how planning influ-

enced their task implementations during a 6-week field experience. Several layers of

planning activities built into the study’s design were intended to prepare the PSTs for

children’s typical solutions and approaches to the tasks. I believed that being able to

anticipate children’s thinking would better enable PSTs to respond to that thinking in ways

that did not lower the cognitive demand of the task (Smith and Stein 2011). Despite the

study’s focus on anticipating solutions, the PSTs still encountered thinking that they had

not anticipated while planning, we had not discussed in class, or they had not already seen

in the field. This article addresses the research question of how PSTs responded to

unanticipated incorrect solutions to problem-solving tasks during a field experience

focused on implementing high-demand tasks in ways that focused on children’s thinking. I

highlight results of one PST group as an example of participants that improved at

responding to a particular type of solution: those that were both unanticipated and incor-

rect. I discuss pedagogical moves PSTs employed in responding to unanticipated incorrect

solutions and the levels of cognitive demand associated with their responses.

Background

In reviewing literature, I contrast student–teacher interactions of the typical mathematics

classroom with those advocated by standards documents (NCTM 2000, 2014; NGA and

CCSSO 2010; NRC 2001) that have been shown to promote students’ conceptual under-

standing (e.g., Cobb et al. 1992; Kazemi and Stipek 2001; Lampert 1990; Stein et al. 2000;

Yackel and Cobb 1996). I then discuss the skills teachers need, questioning and attending

to student thinking, the difficulties of enacting these skills, and research in preparing

prospective and practicing teachers to elicit and respond to student thinking.

In the most prevalent mode of student–teacher interaction, the teacher initiates with a

question (often focused on procedures) that is followed by short student responses which

are then quickly evaluated by the teacher for correctness (Mehan 1979). While an initia-

tion–response–evaluation (IRE) model of communication may keep students attentive, it

fails to engage them in reasoning or constructing arguments. In what Knuth and Peressini
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(2001) term dialogic discourse, the speaker and listener generate meaning through shared

dialogue, the ‘‘zig-zag of discovery’’ (Lakatos 1976, p. 42). Dialogic discourse is consistent

with recommendations of standards documents and differs from the IRE model in several

key ways. Teacher questions press for meaning, requiring that students explain and justify

their ideas, not just describe a procedure (Kazemi and Stipek 2001). In lieu of praising or

correcting answers, teachers explore student solutions by eliciting their thinking with

further questioning and set up students to judge the validity of their own solutions (Boaler

and Brodie 2004; Crespo 2000).

Questioning to elicit student thinking

Developing effective teacher questioning is key to moving away from an IRE model.

Questions need to explore both mathematics content and children’s’ thinking about

mathematics. Teacher questions have the power to enhance children’s arguments that

justify their work, generalize their strategies to other problems, and extend their thinking

by inviting students to compare their work to that of others (Martino and Maher 1999).

Sahin (2007) has found that while a wealth of research on questioning exists, very little has

focused on guiding or probing questions that explored students’ thinking. In her study of

PSTs’ challenges in working with students, Nicol (1999) employed a ‘‘question–listen–

respond’’ model and found the teacher’s response after listening to a student needed to

connect to the students’ thinking. In making their thinking public, students wrestle with

important mathematical ideas and misconceptions. Teachers then gain insight into student

thinking and are able to extend it to new contexts (Chapin et al. 2003, 2013; Pirie and

Schwarzenberger 1988). Boaler and Brodie (2004) identified nine types of teacher ques-

tions and found that teachers using traditional curricula almost exclusively asked questions

that gathered information or led students through a specific procedure, similar to those used

in an IRE model. Though teachers in Boaler and Brodie’s (2004) study who used reform

curricula also posed information gathering questions, they additionally posed a variety of

other types of questions that elicited and explored student thinking.

Using student thinking as a centerpiece of mathematics, instructional practice has been

shown to provide students access to significant learning opportunities (Carpenter et al.

1999; Franke et al. 2007, 2009; Kazemi and Stipek 2001). Teachers who were engaged in a

professional development program focused on children’s mathematical thinking had stu-

dents who reported a greater understanding of mathematics, and this was borne out by test

score gains from teachers’ previously low-achieving students (Carpenter et al. 1989). In

describing their construct of professional noticing of children’s mathematical thinking,

Jacobs et al. (2010) discuss three interrelated skills: attending to, interpreting, and

responding to children’s thinking. In comparing 131 practicing and prospective teachers

who represented four levels of experience with children’s thinking, Jacobs et al. (2010)

found that those with more teaching experience were more likely to attend to and be able to

interpret student thinking, but teaching experience alone did not account for teachers’

abilities to respond to student thinking. Only teachers involved in at least 2 years of

professional development focused on children’s thinking provided evidence of being better

able to respond to student thinking.

Challenges of attending to student thinking

In being ‘‘intellectually honest to both mathematics and the child,’’ (Ball 1993, p. 377)

teachers must maintain the rigor of the mathematics while supporting and attending to
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student thinking (Sherin 2002a). One of the underlying assumptions of student-centered

pedagogy is that the teacher often does not explicitly model procedures. Maintaining the

cognitive demand of mathematical tasks (e.g., requiring students develop their own

strategies rather than imitate the teacher’s strategy) is essential to ensure that students

grapple with challenging mathematics (Stein et al. 2008). Teachers, however, persist in

their reliance on a question–answer–evaluate model (Boaler and Brodie 2004). Leading

questions reduce a worthwhile task to the execution of procedures prompted by the teacher.

Crespo (2000) noted that, ‘‘For prospective teachers the idea of listening to students is

not obvious’’ (p. 156). PSTs in her study focused on the correctness of student work and

not the thinking underlying the work; incorrect solutions were corrected and correct

solutions were praised not explored. Teachers also struggled to follow up on student

thinking after an initial inquiry about their strategies (Franke et al. 2009). Moyer and

Milewicz (2002) found that PSTs relied on series of short recall questions and leading

questions that guided students to the answers, only questioned incorrect responses, and

used general questions that did not address the specifics of a child’s work. Nicol (1999)

found that prospective teachers experienced tension between asking questions that elicited

student thinking and asking questions that lead students through the teacher’s way of

thinking to a correct answer. Listening to students’ thinking was overwhelmed by listening

for what the prospective teachers expected to hear, and responding to student thinking left

prospective teachers with a sense of loss of authority.

Teachers also struggle to respond to incorrect or incomplete solutions (Mewborn and

Huberty 1999; Nicol 1999). In an IRE model, an incorrect response typically prompts an

evaluation from the teacher in the form of a correction. Yet a contradiction between a

student solution and a given parameter of a problem can lead to students analyzing and

evaluating their own and others’ work, and by turning a student’s attention to incorrect

solutions, the teacher provides the opportunity for students to understand why solutions are

invalid (Staples and Colonis 2007).

Attending to student thinking is a teaching skill that can be learned (Franke et al. 2009;

Jacobs et al. 2010), and extensive work has been undertaken in helping prospective and

practicing teachers learn to notice, interpret, and respond to children’s mathematical

thinking. Van Es and Sherin (2008, 2010) and Leatham et al. (2015) have studied using

video with prospective and practicing teachers to help them learn to notice and interpret

children’s mathematical thinking. They found that both groups showed improvement in

noticing and interpreting student thinking and that for practicing teachers this increased

attention to student thinking was evident in instruction as well. Nicol (1999) found that

with concentrated support and reflection over a one-semester methods course, prospective

teachers were able to improve in asking questions that attended to student thinking.

Rationale

Eliciting and responding to student thinking are a ‘‘high-leverage practice,’’ one that is

essential for novices to know and be able to carry out on their first day of teaching (Ball

and Bass 2000) and that has a substantial payoff for student learning (Ball et al. 2009).

However, it can be challenging for teachers to attend to student thinking, especially

prospective teachers who have less experience with children’s mathematical thinking.

Because it is a teaching skill that can be learned (Franke et al. 2009; Jacobs et al. 2010),

research needs to examine how teacher education might support prospective teachers in

developing these skills. Work has been undertaken in helping prospective and practicing
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teachers learn to notice, interpret, and respond to children’s mathematical thinking. Van Es

and Sherin (2008, 2010) have studied using video with prospective and practicing teachers

to help them learn to notice, interpret, and respond to children’s mathematical thinking.

They found that both prospective and practicing teachers showed improvement in noticing

and interpreting student thinking and that for practicing teachers this increased attention to

student thinking was evident in instruction as well. Nicol (1999) found that with con-

centrated support and reflection over a one-semester methods course, prospective teachers

were able to improve in asking questions that attended to student thinking.

These can be considered examples of practice-based teacher education (Ball and Forzani

2009; Feiman-Nemser 2001; Hiebert and Morris 2012; Lampert 2010), where teachers learn

in, from, and for practice. Practice-based teacher education offers a means of developing

PSTs’ skills in high-leverage practices through ‘‘repeated opportunities for novices to

practice carrying out the interactive work of teaching’’ (Ball and Bass 2000, p. 503).

Decomposing teaching into specific high-leverage practices that can be ‘‘articulated, studied,

and rehearsed’’ (Sleep and Boerst 2012, p. 1039) helps to make practices accessible to

novices. I designed my study to help PSTs zoom-in on a particular high-leverage practice

(eliciting and responding to student thinking) in ways that can ‘‘articulated’’ bymodeling and

discussing practices for engaging students in high-demand tasks, and ‘‘studied and

rehearsed’’ by enacting the same tasks over multiple weeks and reflecting on that work to

improve task implementations. My study took place with pairs of students outside of the

typical classroom setting, where the complexities of classroom practice (managing the

curricular, social, and disciplinary demands) could be minimized. Because weak content

knowledge can limit teacher ability to decipher and interpret student thinking (Sherin 2002b;

Yackel 2002), PSTs in this studywere chosen specifically for their strong content knowledge.

Situated within a practice-basedmathematics teachingmethods course, with an integrated

field experience and a pedagogical focus of facilitating discussions, my study builds on work

developing practice-based teacher education and makes an initial foray into describing

prospective teachers’ growth in a practice-based setting. The goals and activities of the

course were explicitly aimed at preparing for, practicing for, and reflecting on the work done

in the field with pairs of elementary students. The work undertaken by my PSTs centered on

creating and analyzing representations of practice (Crespo et al. 2011) and employed a cycle

of planning, enactment, and reflection similar to the process used by Kazemi et al. (2010). In

teaching this course over previous semesters, I learned several things about difficulties my

prospective teachers experienced while doing challenging mathematics with young children

that informed the design of this study. They only developed tasks that involved performing

routine procedures or word problems. When provided cognitively demanding tasks, they

spent minimal time planning and then lacked the experience to develop in-the-moment

responses. Similar to Ding and Carlson’s (2013) findings, when given guidelines for lesson

planning, they only considered superficial aspects of the tasks and the teacher’s actions, not

the students. Thus, in this study, I asked PSTs to hypothesize potential solutions, both correct

and incorrect, and consider how they would respond.

Framework

Hufferd-Ackles et al. (2004) present a detailed framework for studying teacher develop-

ment in specific aspects of facilitating discourse. Their work is based on a year-long study

in a whole-class setting of one teacher working to build a math-talk community, where all
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participants, both teacher and students, work together using discourse to engage all stu-

dents in serious mathematical work. The math-talk framework (see Appendix 4 for revised

framework) provides four levels (0–3) that range from a strictly teacher-directed lecture-

based instruction to instruction where student ideas, explanations, and judgments drive

classroom activity. Within each level, four components of math-talk (questioning, ex-

plaining mathematical thinking, source of ideas, and responsibility for learning) are

described. Because this framework breaks discourse into these four components, it is

helpful for comparing specific teacher moves to other features of classroom interactions.

The framework’s attention to teacher and student responses makes it appropriate for

examining the relationship between the two. The multi-level nature of this framework

makes it appropriate for studying teacher changes over time.

However, to fit the context of this study, I made some key changes to the framework and

how it was used. First, the math-talk framework (originally developed in a whole-class

setting with an experienced teacher) did not translate smoothly to the context of two

teachers working with two students. Thus, I modified the descriptions of the levels to fit the

context of two teachers working with two students (e.g., ‘‘Teacher is physically at the

board, usually chalk in hand, telling and showing students how to do math,’’ was modified

to, ‘‘Teacher shows how to solve or tells correct answers or appropriate strategies.’’).

Second, as novices, PSTs often only made small changes each week that did not translate

to a change in level of math talk; they often straddled the fence providing evidence of parts

of each of two adjacent levels. Using the same process, Hufferd-Ackles et al. (2004)

described to create their original framework, I added mid-levels (0.5, 1.5, 2.5) to describe

PST actions that did not fit cleanly into only one level (for more detail on this process, see

Hallman-Thrasher 2011; see Appendix 4 for the revised framework). Third, Hufferd-

Ackles et al. (2004) generally found that the four components of math talk developed

together (e.g., a Level 2 teacher was a Level 2 in all four components). However, as

novices, the PSTs in this study were less able than an experienced teacher to maintain

consistency across all components. Hence, their implementations provided evidence of

different levels in each component of math-talk framework and so each component of math

talk was coded with its own level (e.g., a Level 2 in questioning, but only a Level 1 in

explaining).

In assessing the PSTs’ implementation of problem-solving tasks, I also wanted to

associate math talk with opportunities for student learning. Thus, I also relied on the

mathematical task analysis guide which categorizes a task’s cognitive demand (Stein et al.

2000), ‘‘the cognitive processes in which students actually engage as they go about

working on the task’’ (Stein et al. 1996, p. 461). To gauge cognitive demand, Stein et al.

(1996) use two levels, low and high, and within each level provide two categories that

describe the types of thinking students use to complete a task. Low-level cognitive demand

tasks may be classified as memorization (recall of memorized fact) or procedures without

connections (execute known procedures with no attention to the concepts they embody).

High-level cognitive demand tasks may be classified as procedures with connections

(focused on the ways procedures connect to one another or to mathematical concepts) and

doing mathematics (synthesize knowledge in non-routine ways to explore and understand

concepts). Different goals for a lesson dictate which type of task is appropriate (e.g., if a

teacher wants to engage students in reasoning and constructing arguments, she would use a

high-level task). Stein et al. (2000) also developed the mathematical task framework which

describes the trajectory of a task as it moves through several phases: the task as it is

written, the task as the teacher sets it up, and the task as implemented with students. The
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transitions between phases represent critical points where the intended cognitive demand

of a task could change.

My use of cognitive demand differs from Stein et al. (2000) work in two important

ways: (1) my use of cognitive demand as a scale and how I mapped the descriptions of the

four cognitive demand categories to context of this study and (2) how I used cognitive

demand to analyze task implementations. First, Stein and colleagues categories of cog-

nitive demand were not intended to be used hierarchically. High-level tasks require more

cognitive effort from students in terms of thinking and reasoning than do low-level tasks,

but within high or low, one type of task was not superior to the other. A doing mathematics

task was not better than procedures with connections task; they were different types of

tasks both requiring high cognitive effort from students, but that served different

instructional goals. In this study, where the goal was to press elementary students to reason,

make sense of mathematics, and justify their solutions to non-routine, high-demand tasks,

it was appropriate to treat the categories of cognitive demand as hierarchical levels. PSTs

used doing mathematics tasks (so classified because children did not have a set of known

algorithms to use in solving them) and through planning activities, methods course dis-

cussions, and modeling by methods course instructors were provided strategies for

extending the tasks in ways that maintained the cognitive demand at a doing mathematics

level. In my study what distinguished a doing mathematics task from a procedure with

connections task was that the former required inventing and justifying a strategy whereas

the later ‘‘suggest[ed], implicitly or explicitly, pathways to follow’’ that connected to an

underlying concept (Smith and Stein 2011, p. 16). Therefore, I decided doing mathematics

level of implementation required more cognitive effort than procedures with connections

and, hence, was a higher level of cognitive demand than procedures with connections.

Memorization tasks involve ‘‘previously learned facts, rules, formulas, or definitions’’

(Smith and Stein 2011, p. 16). In the context of the elementary school mathematics of my

study, what students most likely had memorized that related to the tasks were basic facts.

Hence, when PSTs turned the high-demand task implementation into a series of basic facts

questions or yes/no questions about task or the student’s work, I classified this as mem-

orization and, because it was so far from the intended goal of the task implementation, it

was the lowest level of cognitive demand. When PSTs broke the task into a suggesting

series of known procedures and failed to explore the concepts underlying those procedures,

the implementation was procedures without connections. Because procedures without

connections required more cognitive effort than stating memorized facts, I considered

procedures without connections level of implementation a higher cognitive demand than

memorization. Thus, in my study, the levels of cognitive demand were ordered from lowest

to highest as memorization, procedures without connections, procedures with connections,

and doing mathematics.

Second, Stein et al. (2000) assigned a single cognitive demand category to an entire

implementation, using the guideline of which category best described what more than half

of the students were doing more than half the time. Using a single level did not work for

this study for two reasons. First, working with only two students meant that applying the

‘‘more than half the students’’ guideline meant either both students had to be putting in the

same amount of cognitive effort or I was unable to code the implementation. Even using

only a ‘half the students’ guideline ignored important work and contributions of the other

student. Second, I also found that novice teachers changed the cognitive demand at many

points throughout a session and those changes were important. I wanted a more fine-grain

analysis to capture what was happening to cognitive demand as PSTs employed particular

pedagogical moves. Thus, I chunked the video transcripts into segments whose start was
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defined by the introduction of a change in student thinking (see data analysis for more

detail on this process) and coded each segment with its own level of cognitive demand.

Methods

Context

The study was conducted in conjunction with the field experience associated with a

mathematics teaching methods course for early childhood (grade K-5) education majors at

a large university in the southeastern United States. Children’s mathematical learning was

the first course in a required two-course sequence that focused on counting, number sense,

basic operations with whole and rational numbers, and making sense of standard arithmetic

algorithms. Some key goals of the course were to become aware of children’s mathe-

matical thinking, how it differs from adult thinking, and how attending to children’s

thinking might impact teaching practices. The central feature of the course was an 8-week

field experience in which the class, together with myself (also the course instructor), and

teaching assistant, made weekly visits to a local elementary school. This study was con-

ducted only during the last 6 weeks of the field experience. The first 2 weeks of the

experience focused on developing a rapport with the students and completing a case study

that explored the mathematical thinking of a single student.

In the field experience, I assigned PSTs to teams of three, and each team worked with

pairs of fifth-grade students: Two PSTs interacted with the two students, while the third

PST made a video record of the session. The tasks PSTs presented to the students were not

connected to students’ daily classroom mathematics lessons. This was an intentional part of

the design of this field experience to ensure PSTs were not responsible for covering any

particular instructional objectives, and the students’ regular classroom teachers had no

responsibility for observing or monitoring the PSTs’ work. This arrangement allowed the

PSTs freedom to work at the pace that was set by their students and to maintain student-

centered dialogue without the pressure of being held accountable for content coverage. In

order to help the PSTs begin to understand how children think mathematically, I directed

them to allow the students to approach tasks in their own way and to use effective

questioning techniques and talk moves (e.g., Boaler and Brodie 2004; Chapin et al. 2003,

2013; Kazemi and Stipek 2001; Mewborn and Huberty 1999; Nicol 1999; Smith and Stein

2011) to elicit student thinking and promote discussion. The goal I set forth to the PSTs

was to use strategies we discussed in the methods course to elicit the students’ thinking,

understand students’ thinking, and connect students’ thinking to the mathematical concepts

underlying the problem-solving task. In class, we specifically worked on questions that

required explaining how or why a process worked and that pressed for a complete and clear

explanation. To help elicit thinking, we focused on asking how questions, revoicing student

ideas, and attending students to specific parts of their representations to help them artic-

ulate and clarify their ideas. We discussed that incorrect solutions were opportunities for

exploring student thinking, and asking questions about them could help students identify

their own errors or misconceptions. Because explaining and justifying solutions were a

main of goal of our work, I stressed the importance of questioning correct solutions as well.

To help PSTs (and later their students) see connections among different solutions, I also

asked them to solve a task they had already completed in a different way, or prompted

them to execute classmate’s strategy and compare it with their own. These were teaching
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practices the PSTs had read about and discussed in class and that I modeled during class so

they could experience these strategies as learners themselves. Our course and their work

with students in the field experience emphasized helping students articulate their thinking

and using that thinking as a basis for solving tasks.

Participants

Of 30 PSTs in the class, I selected 12 for participation in this study, all of whom agreed to

participate, and I assigned them to teams of 3 PSTs each. Due to absences, one participant

was actively involved in only one session of enactment, and for the rest of the study her

teammates operated as group of 2. I discarded this participant’s incomplete data and

analyzed her group’s data as if they were a team of 2. One of PST groups (Group G) failed

to complete all aspects of data collection in the manner I specified (during the first block,

they did not consistently do the assigned tasks with students and in the second block 4 of

their 6 students repeated tasks they’d already done) and hence were also dropped as

participants. Therefore, the final structure of the participants was one group of 2 PSTs and

2 groups of 3 PSTs each.

I chose PSTs based on their strong mathematics and communication skills and openness

to teaching mathematics in ways that were different from their own elementary school

experiences. I assessed these traits based on their written class assignments, contributions

to class discussion, and an individual interview in which they completed and explained

their work on a problem-solving task similar to what they would later enact with ele-

mentary students. The fifth-grade students with whom the PSTs worked were selected by

their teachers for having average mathematics performance. Of the 30 teacher-selected

students, 13 agreed to be a part of this study.

Data collection

I collected data in two 3-week blocks. Each block focused on a set of 5–10 tasks, which in

their written form were high demand. They all involved non-routine problem-solving with

each set organized around a different problem-solving strategy: generalize and explain

patterns, make organized lists, work backward, reason algebraically, and reason deduc-

tively. Generalize and explain patterns tasks required students to identify a pattern existed,

make a conjecture as to what the pattern was, explain why that pattern occurred, and

generalize that pattern to any case. Making organized lists tasks asked students to construct

and count a number of combinations while ensuring they accounted for all possibilities

without double counting. Often making an organized list was the most efficient strategy for

these tasks (though not one children typically attempted initially). Working backward tasks

had an unknown starting amount, a known ending amount, and multiple steps were needed

to find the starting amount from the ending amount. While these tasks could all be solved

via working backward, it was expected that students would have different approaches (e.g.,

guess and check) and that PSTs should be prepared to manage these approaches. Algebraic

reasoning tasks involved solving for two unknowns, and, like the working backward tasks,

PSTs were to prepare for several approaches. Deductive reasoning tasks included logic

problems and problems in which students had to draw conclusions based on given

statements.

Because this field experience was not connected to particular K-5 classroom content, in

semesters past, PSTs viewed the tasks as random without understanding how they might

relate to content covered in their students’ K-5 mathematics lessons. To help PSTs see
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mathematical connections among tasks, I grouped them in these sets. Grouping them by

strategy also served as a reminder to PSTs that tasks within a set were linked by a common

strategy or concept. The intention was not to require students use that strategy, but to

ultimately help students connect their thinking to an underlying mathematical concept.

Within each set, I selected 2 focus tasks that I required PSTs to enact with students (see

Appendix 1). The focus tasks were at a doing mathematics level of cognitive demand

because the students did not have available to them known algorithms for solving the tasks.

Both focus and non-focus tasks were chosen because they had a low-entry, high-exit

threshold; a student with any level of background knowledge could easily start the tasks,

even if only through a guess and check strategy, and to complete them students experi-

enced important mathematical concepts that went beyond the K-5 curriculum. The tasks

also provided opportunities for multiple solution approaches and, hence, opportunities to

discuss those approaches. Having enacted the tasks myself and observed PSTs enacting the

focus tasks with K-5 students in the past, I was familiar with K-5 students’ approaches,

which allowed me to better support my PSTs in anticipating their students’ thinking. The

non-focus tasks also allowed the PSTs to gain more practice with a particular concept with

which they themselves might struggle and provided them additional tasks to enact with

students if time permitted.

For the first 3-week block, each PST group enacted 2 assigned focus tasks with a

different pair of elementary students each week. In the second 3-week block, I assigned

each PST group a new set of problem-solving tasks and, accordingly, 2 new focus tasks to

enact. Each PST group was assigned 4 tasks over the 6 weeks, but each PST group could

not be assigned the same 4 tasks without having students repeat tasks. To ensure that no

students repeated tasks during the study, all PST teams were not assigned the same set of

tasks for each 3-week block. In addition, some weeks, some groups were only able to

complete one of their focus tasks (see Table 1 for each group’s task sets, focus tasks, and

students, denoted Cx). This repetition of tasks within each block allowed PSTs to use what

they learned about students’ strategies on a task to inform their work with a new pair of

students on the same task.

Within each week of both 3-week blocks, the PSTs engaged in a cycle of planning,

enactment, and reflection modeled on the work of Kazemi et al. (2010) (see Table 2).

Planning data for each 3-week block included one task dialogue, one activity plan, and two

revisions of that plan for each individual PST. Modified from Crespo et al.’s (2011) work,

in a task dialogue, I suggested three or four possible solutions to each of the tasks and the

PSTs had to create a hypothetical teacher–student dialogue that might follow each solution

(see Appendix 2 for sample assignment, see Appendix 3 for portion of completed

assignment). I provided feedback on the task dialogue, which PSTs then used to develop an

activity plan for how they would implement the tasks. In planning for the first week of a

3-week block, PSTs wrote an activity plan in which they posited possible student solutions

and how they would respond to those solutions. In this activity plan, they had to suggest

specific hints, questions, and teacher moves they would implement to help a student who

(1) did not know how to start, (2) had an incorrect approach, (3) had a nearly correct

solution, and (4) had a correct solution and needed to be further challenged. The activity

plan served as a reference to help them as they worked with students. I provided feedback

on their plans prior to task implementation, and each week they were able to revise plans

by adding new student strategies they observed and refining their responses to student

strategies. I also provided feedback on their plan revisions each week.

For each weekly enactment, two PSTs in each group worked with a pair of students,

while the third video recorded. Within each group, the PSTs decided how to share leading
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the tasks discussions, and this role changed from week to week depending on the needs and

personalities of their students and the PSTs’ expertise on particular tasks. Generally, both

the students were provided time to work alone first and then one or two PSTs supported

Table 1 Field experience organization of prospective teacher groups, students, and tasks

Group Ga: Beth,
Susan, Tara

Group H: Kate,
Nadia, Casey

Group I: Dana, Alice,
Heathera

Group J: Rene, Erica,
Megan

Block 1

Week 1 Reason deductively

Table seats

C1, C6

Make organized lists

12 Penniesb

Clock 6sb

C2, C3

Reason algebraically

Cupcakesb

Ticketsb

C5, C7

Generalize and explain

patterns

6 numbersb

C8, C9

Week 2 Reason deductively

None

C2, C3

Make organized lists

12 Penniesb

Clock 6sb

C1, C6

Reason algebraically

Cupcakesb

Tickets

C8, C9

Generalize and explain

patterns

6 numbersb

C5, C7

Week 3 Reason deductively

None

C8, C9

Make organized lists

12 Pennies

Clock 6s

C5, C7

Reason algebraically

Cupcakes

Tickets

C1, C6

Generalize and explain

patterns

6 numbers

Phone Club

C2, C3

Block 2

Week 4 Make organized lists

Clock 6s

C8, C9

Generalize and explain

patterns

6 numbers

Phone Clubb

C1, C6

Work backward

Puppiesb

C2, C7

Reason algebraically

Cupcakes

Tickets

C10, C11

Week 5 Make organized lists

12 Pennies

Clock 6s

C3, C4

Generalize and explain

patterns

Phone Clubb

C10, C11

Work backward

Puppiesb

C6, C8

Reason algebraically

Cupcakes

Tickets

C2, C12

Week 6 Make organized lists

15 pennies

C2, C3

Generalize and explain

patterns

Phone Club

C4, C7

Work backward

Puppies

C10, C11

Reason algebraically

Cupcakes

C6, C12

a Dropped as participants
b Interactions that included incorrect, unanticipated solutions

Table 2 Timeline of data collection

Block 1: Problem-solving tasks set 1 Block 2: Problem-solving tasks set 2

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Planning
data

Task dialogue
activity plan

Task dialogue
activity plan

Enactment
data

Enactment
video

Enactment
video

Enactment
video

Enactment
video

Enactment
video

Enactment
video

Reflection
data

Week 1
reflection

Week 2
reflection

Week 3
reflection

Week 4
reflection

Week 5
reflection

Week 1–6
reflection

Planning
data

Plan revision Plan revision Plan revision Plan revision
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them in collaborating on each task while the third PST video recorded. At times, groups

allowed students to work individually for part or all of a session, and during these times

one PST worked with one student while the third alternated video recording between the

two student–PST pairs. In these instances, the off-camera pair was audio recorded. In the

group of only two PSTs, one recorded while the other took charge of implementing the

tasks. In all groups, there were instances of the recording PST interjecting from behind the

camera to help out. These video records of PSTs’ weekly sessions comprised the enactment

data. Reflection data were collected in the form of PSTs’ weekly written reflections, in

which they analyzed their video to determine what students understood, how well or poorly

they made use of talk moves to elicit and respond to students and to support students in

explaining and justifying their work, and what changes they could make to future enact-

ments. Each PST in a group wrote her own reflection and then read and made written

comments on one another’s reflections. This paper focuses on analysis of enactment video

data with planning data used to determine which student solutions were anticipated by

PSTs and reflection data used to confirm or disconfirm findings.

Data analysis

I only analyzed data for those tasks that were implemented for all weeks of a 3-week block

by a group and that were being attempted for the first time by students (see Table 1). Thus,

I eliminated data on the 6 Numbers Task for Group H and data on the Tickets and the

Phone Club Tasks for Group J because these groups did not implement these tasks all

3 weeks of the block. I chose to eliminate Group I’s data on the Crayons Task because they

spent the vast majority of their time each week focusing on the Puppies Task.

I analyzed both planning and enactment data using levels of cognitive demand in the

mathematics task analysis guide (Stein et al. 2000) and the revised math talk (Hufferd-

Ackles et al. 2004) framework (see Appendix 4 for revised Math Talk and Appendix 5 for

cognitive demand guidelines). For each dialogue of a task dialogue assignment, I assigned

a level of cognitive demand and a level for each component of math talk. I did the same for

each of the four sections of an activity plan (helping a child start, helping a child with an

incorrect approach, helping a child with a nearly correct solution, and helping a child with

a correct solution who needed to be challenged further).

As discussed earlier, in analyzing the video enactment data I struggled to assign a single

level of cognitive demand or a single level of categories of math talk to given task

enactment: Within a single enactment, there often were moments of low and high demands

and math talk. Applying only one level of cognitive demand to describe a single enactment

of a problem-solving task did not capture the ways the demand and math talk changed

within that one enactment. Thus, to analyze the enactment data, I chunked the video

transcripts into segments. The first segment of an enactment represented PSTs setup of the

task. Each segment thereafter represented a PST (or several PSTs) responding to student

thinking (a solution, strategy, idea, or a lack of solution). Often PSTs responded to no

solution situations; either a student was stuck and asked for help or a student stalled out and

a PST decided to intervene. Each time a student introduced a new solution, strategy, idea,

or had no solution and a PST intervened, this defined the start of a new segment. I then

coded each segment of the video enactment data with one of the four (0–3) levels of

cognitive demand (see Appendix 5) and with one of the seven levels of the modified

version of the math-talk framework (see Appendix 4). Thus, every segment of video

enactment data was coded five times: with a level for cognitive demand, and a level for

each of questioning, explaining, responsibility, and ideas of math talk. Cognitive demand
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(Stein et al. 2000) allowed me to assess the quality of the mathematics made available to

the students in the implementation of the problem-solving tasks and to analyze how PSTs

and students engaged in (or planned to engage in) that mathematics. Math talk (Hufferd-

Ackles et al. 2004) allowed me to determine which teacher moves to elicit and respond to

student thinking were associated with which levels of cognitive demand.

Looking across the analysis, I sought to explore what might account for the fluctuations

in cognitive demand of segments with in a single enactment. The correctness of a student’s

solution or strategy did not fully account for the differences in cognitive demand that I

observed within any given enactment (i.e., cognitive demand was not consistently high or

low for an incorrect versus correct response). I then categorized each segment to indicate if

a student’s response was anticipated or not by the PSTs. I considered a child’s response

anticipated if it was a response that (1) we had discussed in class, (2) the PSTs had

addressed in their task dialogues or plans, or (3) the PSTs had encountered it with students

in a prior week of the study. Because PSTs prepared for how to respond to no solution

situations, I also considered no response as anticipated. Over the full 6 weeks, comparing

the cognitive demand against PSTs’ anticipation of what they were responding to helped to

explain some of the fluctuations in the cognitive demand. The results presented here

address PSTs responses to unanticipated incorrect student solutions.

Results

Of the 3 groups, both Group I and Group H improved at responding to unanticipated

incorrect solutions in ways that maintained high cognitive demand. Group H also devel-

oped a tendency to shut down anticipated incorrect solutions, whereas Group I developed a

tendency to shut down any anticipated solutions. In Group J, each PST responded to

students in different ways so that there was no overall pattern in how they responded to

different types of solutions. First, I provide a brief excerpt of results for Groups I and J.

Next, I present in detail the case of Group H which provides a rich example of PSTs who

made improvements in maintaining high cognitive demand when responding to unantici-

pated incorrect solutions while shutting down anticipated incorrect solutions.

Group I

Group I improved at maintaining high cognitive demand for unanticipated incorrect

solutions, but lowered it for anticipated solutions. In Week 1, when they implemented the

Cupcakes Task, they responded to a series of unanticipated incorrect solutions (red dots in

Fig. 1) in ways that lowered the cognitive demand. They only achieved high cognitive

demand when responding to anticipated correct solutions. C7 interprets the statement of the

task to mean she has 4 and 6 boxes of vanilla and chocolate cupcakes, respectively

(Segment 3). Dana corrected her, ‘‘the chocolate ones are grouped into boxes and they put

6 in a box.’’ C7 persisted in thinking there are only 10 boxes total, and the PSTs restated

the correction several times (Segment 4 and 5). When her partner, C5 chose a random

number of boxes as a starting point (a valid guess and check strategy), the PSTs posed a

series 10 short answer computation questions that involved recall of basic facts (Segment 6

and 7): ‘‘How many boxes of vanilla do you have here? How many cupcakes would that be

total? How many boxes have you used?’’ Dana continued memorization level of cognitive

demand by concluding for the students there are too many cupcakes (Segment 8). When
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the students started making correct adjustments to the number of boxes, Dana briefly

relented in her overly directive interventions (Segment 9). But as the students’ adjustments

moved them further from the correct solution, Dana quickly interjected again with another

series of computation questions and suggested strategies (Segment 10). Only after students

presented a correct solution did she elevate the cognitive demand to doing mathematics by

asking about other solutions (Segment 11), ‘‘Why didn’t it [other combinations of boxes]

work?’’ Dana then pushed for a justification of the correct solution (Segment 12), ‘‘I know

you know. I just want to know, why did this work, having 7 vanilla [boxes] and 5 chocolate

[boxes]?’’ and then continued to press for an explanation, ‘‘Do you think there always

needs to be less chocolate cupcakes than vanilla?’’

In Week 5, in their second implementation of the Puppies Task, Group I encountered a

long series of unanticipated incorrect solutions (related to confusing when to double versus

add in working backward, seen in red dots of Segments 3, 4, 6–8, 10, 113–115, 117, 118,

120–123, 125 in Fig. 1). Alice lowered the cognitive demand to memorization using

leading questions and repeating the same question four times ‘‘Would we add them or not

add them?’’ in effort to get the student to stop adding (Segments 113–117). Dana inter-

vened to help raise the demand to procedures with connections by trying to decipher and

follow the student’s thinking: She clarified the student’s thinking by asking what specific

numbers in his solution represented, how to map back to the original task, and what

justified each calculation of halving, doubling, or adding (Segment 118–123). Alice began

to adopt Dana’s practices (Segment 125), asking the student why he thought he should sum

the numbers. The student persisted in sticking with his incorrect solution over seven more

segments when time ran out. Even though the student did not reach a correct solution

during this time, Dana and Alice tried to understand his thinking and did not attempt to

route him through their solution strategy. Their Week 6 implementation of the Puppies

Task shows that Dana and Alice responded to anticipated solutions by lowering the cog-

nitive demand. When one of their student s quickly found a solution through guess and

check, they led the student through a working backward strategy modeled with unifix cubes

in which the only cognitive effort required of the student was to count up the cubes at each

successive step.

Fig. 1 Cognitive demand levels for segments of selected task implementations for Group I. (Color
figure online)
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Group J

Group J showed no patterns in the cognitive demand for incorrect unanticipated solutions.

Though they spent more time on a single task than other groups (usually only completing

one task in a session), more time did not consistently translate to high cognitive demand.

Regardless of correctness or if solutions were anticipated or not, Erica consistently lowered

the cognitive demand to memorization by drawing conclusions for her students and using

basic recall questions and leading questions such as, ‘‘We have a big number here and a big

number here, do you think that is why?’’ On the other hand, Rene and Megan worked to

maintain or raise the cognitive demand, frequently pressing for clear and complete

explanations, asking for justification of incorrect and correct solutions, and requiring

students verify their own work. When students achieved a correct (and usually anticipated)

solution, they often prompted them to explain their approaches to one another or for one

student to assist the other in finding a correct solution, achieving a procedures with con-

nections or doing mathematics level of cognitive demand (blue dotes of Segments 49, 50,

52, 76, 80, 81, 83, 128 in Fig. 2). When C7 was stuck on finding another solution to 6

Fig. 2 Cognitive demand levels for segments of selected task implementations for Megan and Rene (Group
J). (Color figure online)
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Numbers, Rene turned her attention to her partner’s idea (Segment 46), ‘‘C5 was say-

ing…the side can’t equal less than 9? Wasn’t that what you were saying?’’ She then

prompted C5 to explain to C7 and Megan followed up with five more prompts to help C5

clarify his explanation (Segment 47), ‘‘Say it again,’’ ‘‘What do you mean by that?’’, and

‘‘What do you mean by they’re too high?’’

However, in both the 6 Numbers and Cupcakes Tasks, they could not consistently

achieve high cognitive demand in responding to unanticipated incorrect solutions (red

dots of Segments 19, 25, 30, 40, 51, 64, 77, 78, 113, 121, 129 in Fig. 2). In several

instances, they shut down unanticipated incorrect solutions (Segments 19, 64, 113, and

121) by verifying students’ work, and using vague or leading questions to redirect the

student toward a correct solution. For example, Megan suggested strategies through her

questions (Segment 121), ‘‘Each stick represents a box, right?’’ and ‘‘So do you want to

count them again?’’ When the students failed to pick up on her hints, she persisted with a

vague prompt to change student thinking, ‘‘Are you sure?’’ and Rene interjected more

directively with ‘‘if you want to…put it back where it was a second ago.’’

Group H

Group H group implemented 12 Pennies and Clock 6s Tasks in the first 3-week block and

Phone Club Task in the second. In Week 1, with 12 Pennies, this group lowered the

cognitive demand when presented with unanticipated incorrect solutions by correcting a

mistake and restating the task (Casey) or explaining that if order of the three piles mattered,

each unique combination could be rearranged in six ways (Kate). In Week 2, they main-

tained or raised the cognitive demand in response to an unanticipated incorrect solution and

did so by allowing a student to test a faulty hypothesis (Nadia) and asking for explanation

and justification (Kate). They also raised the demand in response to a correct anticipated

solution by posing a similar question that changed the conditions of the task (Casey). In

Week 3, they did not encounter any unanticipated incorrect solutions. However, they did

make strides in coordinating the participation of their two students by requiring them

explain strategies to one another.

I focus the detailed analysis on the remaining of their two tasks: Clock 6s (Weeks 1–3)

and Phone Club (Weeks 4–6). In the following section, I share details of two teaching

episodes from Group H. In Week 1 of the Clock 6s, they lowered the demand in response

to unanticipated incorrect solutions, and once they anticipated these solutions, in Weeks 2

and 3 they worked to head them off before they could arise. The Week 1 episode serves as

an example of ways that they initially struggled in responding to unanticipated incorrect

student solutions in ways that maintained high cognitive demand. However, in Week 4,

with the Phone Club Task they explored students’ confusions and provided opportunities to

work through them. The Week 4 episode illustrates ways they improved in maintaining

high cognitive demand when responding to unanticipated incorrect student solutions. For

each episode, I discuss the mathematics of the task and typical student approaches, the

unanticipated incorrect solutions the PSTs encountered, and my analysis of the PSTs’

responses to the unanticipated incorrect solutions.

Week 1 episode

In solving the Clock 6s, I wanted PSTs to focus their work with students on developing a

systematic way of solving the task (e.g., making an organized list) and discuss the possible

patterns in the solution. It was not important that students were able to find all 36 solutions,
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but it was important that they identified patterns that helped them find solutions and that

they could identify how their pattern would indicate that all solutions had been found.

There are many ways to organize the solutions, and each way makes particular patterns

evident (Fig. 3). A typical student solution involved randomly generating a list of times

that met the criteria of the task, but missing several solutions or groups of solutions (often

those with four digits, or all possible permutations of a single time). In their planning,

Group H was prepared to assist a student organize a random list of solutions, to discuss

ways of permuting one solution to find others, to find solutions using four digits instead of

only three, and to make connections between the task and sums of 6. However, they were

not prepared to manage the incorrect solutions presented by C3 (in Fig. 4). Next, I describe

C3’s solutions and the PSTs’ responses and then share my analysis of the episode.

C3 created several representations (shown in Fig. 4) that the PSTs, Nadia and Kate, had

not anticipated, starting with an analog clock and thinking about the minute hand of the

clock passing by the number 6 on the clock face. The PSTs moved quickly to shut down

this line of thinking with both Kate and Nadia immediately intervening with firm ‘‘no’s’’

immediately after C3 explained her diagram. Though Nadia reread the question and

directed C3 to identify what is meant by sum of 6, C3 persisted in referring to ‘‘how many

times it [the clock hand] goes through 6’’ for another 3 segments of the episode (Segments

22–25). After C3 admitted she was unsure what to do, a scenario for which the PSTs had a

prepared hint, they suggested she make a list of sums of 6 (Segment 26). At this point, C3

offered a second unanticipated incorrect solution: listing the numbers 6 and 12 (Segment

Clock 6s Task

How many times in a 12-hour period does the sum of the digits on a digital clock equal 6?

6:00
5:01      5:10
4:02      4:20      4:11
3:03      3:30      3:12      3:21
2:04      2:40      2:13      2:31      2:22
1:05      1:50      1:14      1:41      1:23     1:32

10:05    10:50    10:14    10:41    10:23    10:32
11:04    11:40    11:13    11:31    11:22
12:03    12:30    12:12    12:21

(a) Organizing chronologically by hour 
with minutes digits permuted

6:00
5:01 5:10
4:02 4:20      4:11

3:03 3:30      3:12 3:21
12:03 12:30    12:12 12:21

2:04 2:40      2:13 2:31      2:22
11:04 11:40    11:13 11:31    11:22

1:05 1:50      1:14 1:41      1:23 1:32
10:05 10:50   10:14 10:41    10:23 10:32

(b) Organized by hours with minutes 
increasing by one in columns

6+0 → 6+0+0 → 6:00
5+1 → 5+1+0 → 5:10      5:01      1:05     1:50
4+2 → 4+2+0 → 4:20      4:02      2:04     2:40      

→ 4+1+1→ 4:11      1:14      1:41      
3+3 → 3+3+0 → 3:03      3:30       

→ 3+2+1 → 3:12      3:21      2:13      2:31     1:23     1:32
2+4 → 2+4+0 already listed

→ 2+3+1 already listed
→ 2+2+2  → 2:22    

1+5 → 1+5+0
→ 1+4+1
→ 1+3+2

(c)  Organized by converting sums of 6 into a time, and permuting digits

Fig. 3 Clock 6s task solution strategies. (Color figure online)
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27), perhaps indicating that she had interpreted their idea as multiples of 6 or adding 6s.

Nadia explained that they were looking for answers in the form of ‘‘blank plus blank equals

6.’’ When C3 appeared to finally understand what the question was asking by suggesting 6

plus 0, both Nadia and Kate eagerly pushed her to ‘‘make that into a time.’’ Though their

leading hints helped her produce the first correct answer of 6:00, C3’s next answer of ‘‘3

o’clock plus 3 o’clock’’ indicated she still did not comprehend the meaning of the task

(Segment 28). Kate decided this student needed more explicit instructions about how to

solve the task:

You’re not adding the times. Look, look for that, that would be 3:30 right? Because 3

plus 3 plus 0 equals 6. So, you’re not adding the times together. You’re just looking

at any time of the day you look at the clock and those numbers add up to six. Ok?

Does that make sense?

With these guidelines and immediate verification of her next solutions from Nadia and

Kate, C3 began generating correct solutions. For the rest of the episode, Nadia and Kate

were managing a situation for which they were prepared, a random list of solutions that

they could help a child organize to explore patterns.

Kate and Nadia launched the Clock 6s Task at a procedures without connections level

of cognitive demand (Segment 21 in Figs. 5, 6). But when C3 clung to her digital clock

representation (Segment 23), cognitive demand changed to a memorization level and

remained at that level throughout the segments of the episode where PSTs responded to

unanticipated incorrect solutions (see Fig. 5). The cognitive demand was only elevated to

procedures without connections or procedures with connections after C3 produced more

correct solutions, and Kate and Nadia were managing student thinking that fit the

parameters of their plans (Segment 31). Kate was then able to elevate the demand by

exploring patterns in the list C3 created (Segment 33 and 34). Zooming in on the segments

of the episode that involved unanticipated incorrect solutions (Fig. 6) allowed for a careful

examination of the components of math talk to which Kate and Nadia attended. Figure 6

“Ok. I kind of think ‘cause it goes like 1:30, and then like, it’s like how many times it 
hits the six.”

(Segments 22, 23, 24, 25)

Numbers that add up to 6:

6

12

“6. 12.”
(Segment 27)

3:00 + 3:00 = 6:00

“Three times 3 plus…3:00 plus 3:00 equals 6:00. 3 plus 3.”
(Segment 28)

Fig. 4 C3’s unanticipated incorrect solutions to Clock 6s Task
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shows the levels of the components of math talk during the initial portion of the teaching

episode in which the student’s produced mostly unanticipated incorrect solutions. No

components of the math talk even reached the first level, indicating a strongly teacher-

centered dialogue with directive teacher questions, minimal student explanation, and

responsibility for generating and evaluating ideas resting solely with the teacher.

Week 4 episode

To show the changes in how Group H responded to unanticipated incorrect solutions, I

share details of a task implementation from Week 4 (Fig. 7). Like the Clock 6s Task, I

wanted PSTs to focus students’ attention on patterns in the task. However, with the Phone

Club Task I also wanted them to help students discover and articulate a pattern for a

general case.

Fig. 5 Levels of cognitive demand of the segments of Clock 6s Task. (Color figure online)

Fig. 6 Levels of math-talk components of unanticipated segments of Clock 6s Task. (Color figure online)
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The Phone Club Task was presented in two parts, with the first intended to help students

gain an understanding of the task. Part I was generally straightforward and solved by

drawing a picture. Part I gave the PSTs an opportunity to help the students notice two keys

to successfully solving the task: making sure that each member of the phone club was

connected to all the others and having a systematic method to count the ‘‘strings.’’ The

second part of the task asked students to think about the task in the reverse, given the

number of strings needed, find how many people they would connect. A typical initial

student response was to try to draw a picture with 28 strings and then add people. Students

also made random guesses (usually too high) at the number of people and then added

strings. They often alternated between adding strings and people haphazardly, stopping as

soon as they reached 28 strings, regardless of whether all people were connected as the task

described.

In their planning, this group of PSTs planned to encourage students to work up from

four people while asking students questions about patterns as the number of people

increased. This was a common approach the PSTs used when they were first introduced to

the task and it usually led to noticing that if n people were in the club, then the number of

strings was equal to the sum of the first n - 1 counting numbers. A less common approach

for the PSTs and their students was to think multiplicatively about the task: Each person

(n) must have one less string connected to him than people in the club (n - 1), so there are

n(n -1) strings and because each string connects two people, n(n -1) double counts the

strings; thus, n people are connected by n(n -1)/2 strings. However, in Week 4, their first

implementation of Phone Club, they managed a series of C1’s incorrect, unanticipated

solutions (Fig. 8). Next, I describe C1’s solutions and the PSTs’ responses and then share

my analysis of the episode.

C1’s initial idea was that any number of strings will connect two fewer people than

there are strings (Segment 117). Not only is this an unanticipated incorrect solution, it is

worded in reverse of the way most of the PSTs presented it: number of people as a function

of number of strings instead of number of strings as a function of number of people. Rather

than shut down this oddball solution as they had before, Nadia asked C1 why she might

think that. When C1 responded (Segment 119), ‘‘Because it was 4 [people] and 6 [strings].

So maybe it could be…10 and then 12,’’ Nadia pressed for further clarification about what

the numbers 10 and 12 represented and Casey intervened to ask, ‘‘What is there 2 less of?’’

By seeking this clarification, they were attending to this wording issue and ensuring they

Phone Club Task
Your class made telephones out of strings and juice cans. Each group of students has to work 
together to make a phone club that connects every person to every other person.

Part I: If a group had 4 people, how many strings would 
be needed to connect every member of the group to every 
other member of the group? 

Part II: What if you used 28 strings, how many people 
would be in a group?

4 people: 1+2+3 = 6 strings
5 people: 1+2+3+4 = 10 strings
6 people: 1+2+3+….+5 = 15 strings
7 people: 1+2+3+….+6 = 21 strings
8 people: 1+2+3+….+7 = 28 strings

Fig. 7 Typical correct solution strategy for Phone Club Task
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could follow the student’s way of thinking (4 people need 6 strings, so 10 people need 12

strings). Though the student had an incorrect strategy, the PSTs were willing to take the

time to try to understand the reasoning behind it and, rather than correct her, they

encouraged testing her hypothesis. Both PSTs encouraged C1 to test the ‘‘2 less’’

hypothesis, which led to C1’s next unanticipated incorrect representation for 26 people and

28 strings (Segments 120, 121). Again, there was an added layer of complexity to her

solution: The idea that 28 strings connected 26 people was incorrect and accurately rep-

resenting this idea with a diagram as she planned would be overwhelming. The PSTs

allowed her to continue executing her plan until she said, ‘‘This is going to be confusing.’’

“I think it might be 2 less each time. 
(Segment 117)

“10 people and 12 strings and then keep on working up like that.”
(Segment 119)

“What I thought since there was 4 [people] and 6 [strings], I thought it would be 2 more 
for each answer. So I’m trying 26 [people] and 28 strings.”

(Segments 120, 121)

“maybe, …started to multiply… 6 and 4.”
(Segment 122)

5 people need 7 strings
“1 2 3 4 5 6 7.”

(Segments 123, 124, 125)

“I’m going to try it with 6 to see if—I was thinking you would add 4 to the strings each time 
and you would go up 1 with that. So I’m going to try 6 now.” 

(Segments 126, 127)

“So there was 5 [people] and 10 [strings] and then there was 10 [strings for 5 people] and 
15 [strings for 6 people].” 

(Segment 128)

Fig. 8 C1’s unanticipated incorrect representations to Phone Club Task
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Whereas in the past they might have curtailed C1’s work at this point, Kate asked the two

students to explain their strategies to one another. To further prompt C1 to reevaluate her

plan, Kate zeroed in on specific language C1 used, ‘‘You said it’s going to be really

confusing, why is it going to be really confusing?’’ When C1 stated it would produce a lot

of strings to keep track of, Nadia clarified that only one person was connected the other 25

and additional lines were needed to complete the representation.

C1 began to abandon this idea and seemed about to start a typical strategy of randomly

applying an operation to numbers in the task, in this instance 4 times 6 (Segment 122).

Kate ignored this suggestion and directed C1 back to her ‘‘2 less’’ hypothesis, asking her to

test whether 5 people could be connected with 7 strings. When C1 incorrectly drew her

diagram, she, by coincidence, happened to get the same answer her incorrect hypothesis

predicted (Segments 123–125). Nadia intervened to help her correct the diagram and, once

it was corrected, she offered a useful hint that moved C1’s work forward and prevented

compulsive recounting of lines: ‘‘What I do when I am counting is I make a little mark on

each line after I’ve counted it just to make sure you don’t count it twice.’’ Once C1

recognized that 5 people need 10 strings, not 7, she looked for another pattern suggesting,

that, ‘‘Maybe you add 4 each time?’’ In response to this unanticipated incorrect solution

(Segments 126, 127), the PSTs again asked the pair to share their solutions with each other

in the hope that C1 would adopt the more successful sum of counting numbers strategy of

her partner. Once she tried to test her ‘‘add 4 strategy,’’ C1 began to see the decreasing

pattern her partner noticed and produced a correct representation. She connected the first

person to the other five 5 people then added 4 lines to connect the second person to

everyone and paused; as before, her drawing was too complicated. Her pen started moving

in the air, drawing in imaginary lines for the third person. At this point, she began listing

numbers beside her picture and abandoned her drawn representation entirely. She recog-

nized that 6 people need 15 strings and then, continuing to look for a pattern as people

increased, noted, ‘‘There was 5 and 10 and then there was 10 and 15.’’ This unanticipated

solution needed clarification and Kate interjected to help her clarify:

the 10 and 15 were two different amounts of strings, right, but you were thinking

about—are you thinking in terms of people and strings or are you thinking about the

different number of strings as you add more people?

C1 went on to test for seven people and then identified a correct a pattern, the number of

strings added for each additional person was one more than what was added for the

previous number of people.

Cognitive demand only reached a doing mathematics level when the PSTs were

managing unanticipated student work (red dots of Segments 113, 116–122, 126, 128, 129

in Fig. 9). In the instances where anticipated student solutions cropped up, the cognitive

demand immediately dropped. Though at the end of the session, C1 could clearly describe

the pattern to the PSTs, they did not ask her to articulate why this pattern appeared and

missed the opportunity for her to justify this discovery fully and thus lowered the cognitive

demand for this portion of session. Examining the components of math talk, levels of

explaining mathematical thinking and responsibility for learning tracked closely to the

levels of cognitive demand (Fig. 10). This indicates that the way the PSTs maintained high

cognitive demand was by eliciting students’ explanations of strategies and justifications of

their ideas. Further, during most of the session, they pressed for full explanations and did

not just blindly accept any explanation that was offered. The PSTs also rarely evaluated

either student’s conjectures. Whereas in the past they had often given positive or negative

feedback on a student’s ideas, in this session they frequently asked students to test their
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conjectures and to draw their own conclusions from those tests. They were able to achieve

Level 2 for these components by asking students to explain their thinking to one another

and holding them responsible for determining the validity of one another’s ideas.

Fig. 9 Levels of cognitive demand of the segments of Phone Club Task. (Color figure online)

Fig. 10 Levels of cognitive demand and math-talk components of the segments of Phone Club Task. (Color
figure online)
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Discussion

Group H

There are some important differences between Group H’s Week 1 and Week 4 enactments.

In Week 4, the PSTs were able to maintain higher cognitive demand when presented with

unanticipated incorrect solutions than in Week 1. Yet in Week 4, they lowered the cog-

nitive demand when the student work was something they had anticipated and for which

they were prepared. In concert with this change in cognitive demand, the levels of math-

talk components improved when PSTs responded to unanticipated incorrect student

solutions and declined in response to anticipated solutions. Consistent with Henningsen

and Stein’s (1997) factors that influenced the cognitive demand of implementations, in my

study, PSTs maintained demand by using questioning to scaffold student work and pressing

for clear and complete explanations and justifications of ideas and they lowered demand by

having an answer-oriented approach that reduced challenging tasks to a series of small

questions. The PSTs were less likely to rely on student self-monitoring to maintain the

demand as PSTs often kept the authority for validating work and drawing conclusions with

themselves, not students.

For unanticipated incorrect student solutions, PSTs achieved doing mathematics level of

cognitive demand. Yet every time a student’s work took a turn that the PSTs had antici-

pated, they lowered the cognitive demand, at times, even to the memorization level. The

way PSTs responded to anticipated incorrect solutions in Week 4 paralleled the way they

responded to a student’s correct solutions: as something they could check off having

observed that meant they were ready to move to the next thing. They did not treat

anticipated solutions as objects of inquiry that required further questioning to be fully

understood. Their response to anticipated work was also similar to the way they responded

when correctly solving a mathematics task for themselves. Much in the way they were

satisfied to arrive at a correct solution, when a student did something a PST anticipated, it

may have served as confirmation that their planning was complete and correct. This was

the opposite of what was seen in the Week 1 results.

In responding to unanticipated incorrect student solutions, PSTs made improvements in

several aspects of attending to student thinking that align with the components of math-

talk. Even early in the study PSTs used questioning to elicit student strategies, and, as the

study progressed, they also asked follow-up questions to help students clarify their

thinking. In particular, when presented with unanticipated incorrect student work, they

attended carefully to students’ language, often embedding a student’s exact wording in

their questions to students. Early in the study when students’ presented unanticipated

incorrect solutions, the PSTs asked leading questions (‘‘What does sum that mean? It

means we’re adding, right?’’) or stated a correct approach or idea for the student to adopt

(‘‘So why don’t we start with writing down numbers that add up to 6?’’). With experience,

they learned to refrain from correcting students and instead asked them to test their own

conjectures and draw conclusions based on that work. They shifted the source of ideas and

responsibility for validating ideas to the students.

Another key difference from Week 1 to Week 4 was the use of two different tasks, each

with their own underlying concept (Clock 6s from the organized list tasks and Telephone

Club explaining and generalizing patterns tasks). Though it could be argued the

improvements reported here resulted in part from the change in task, I assert that the fact

that PSTs were able to improve particular pedagogical practices across two dissimilar tasks
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strengthens the claims that they improved in responding to unanticipated incorrect solu-

tions. Seeing improvement across multiple implementations of the same task (which also

occurred) can in part be explained by PSTs becoming more familiar with content and

potential solutions of a task. Improvement across the two dissimilar tasks shows that the

PSTs were able to transfer pedagogical skills across different mathematics content; they

were not confined by the task. Examining each task the first time it was implemented, when

unanticipated solutions were most likely to occur, ensured that PSTs were equally unfa-

miliar with the two tasks. The unanticipated incorrect solutions of Phone Club were more

complex (complicated drawings of the phone club as compared to relatively straightfor-

ward misconceptions about vocabulary, clocks, digits, and sums). A PST who had not

improved in responding to unanticipated solutions independent of task would have

struggled more in managing the unanticipated incorrect solutions to Phone Club than Clock

6s, not less. Extending their improvement to a new mathematical context shows the

improvement is not dependent on familiarity with the task.

Groups I and J

Similar to Group H, Group I maintained or raised the demand when responding to

unanticipated incorrect solutions and lowered the demand when responding to anticipated

solutions (correct or incorrect). Group J, on the other hand, presented a different group

dynamic. Despite the interventions in the study designed to help PSTs in responding to

students, one PST, Erica, consistently lowered the demand. The other two members of

Group J, Megan and Rene, responded in ways more consistent with existing research

(Smith and Stein 2011) and the premise of this study: They were better able to maintain or

raise the cognitive demand in response to anticipated solutions. Their responses to student

solutions they had not anticipated varied: At times, they were able to maintain the demand

by encouraging students to attend to one another’s work and pressing for justification. At

other times, they took responsibility for learning from their students by verifying and

correcting solutions and shifted the source of ideas away from students by using leading

questions and suggesting strategies.

Factors influencing PST responses

It is important to note that not all PSTs improved consistently in maintaining the cognitive

demand (Rene and Megan) or improved at all (Erica) in responding to unanticipated

incorrect solutions. Group J did not always agree on how to best respond to student

thinking (correct or not). Therefore, they spent part of their planning and reflection effort

debating how to respond, rather than hypothesizing and analyzing student thinking and

carefully crafting responses. The other two groups tended to have a common vision on

what responses were appropriate, even if they at times struggled to provide appropriate

responses in-the-moment. Though all three groups made strides in helping students explore

and explain their ideas, they all experienced difficulty in helping students question or

leverage an incorrect idea toward a more productive strategy. Group J in particular often

encouraged students with correct solutions to explain their ideas to students who had

incorrect solutions or inefficient strategies, thus limiting one student’s autonomy. The

struggles of all 3 groups in using student thinking to inform their next moves indicates that

PSTs did not treat student ideas as objects of inquiry.

The task dialogue was intended to help PSTs treat student ideas as objects to be

explored. The purpose of the task dialogue assignment was for PSTs to develop a
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hypothesis about what a student might be thinking and design a question that would test

that hypothesis. The problematic aspect of the task dialogue for the PSTs was to

hypothesize how a student might respond to the question in a way that refuted the PSTs’

hypothesis. Instead, PSTs often wrote their dialogues so that their hypothesis was always

correct. The assignment proved helpful in allowing prospective teachers to practice how to

elicit thinking, but it did not give them an opportunity to challenge or redirect thinking in

ways that maintained the cognitive demand. This may help explain why the PSTs struggled

with responding to unanticipated solutions.

As the study progressed, Groups I and H began to understand they were expected to

explore student thinking and seemed to be more comfortable doing so. When students

presented an incorrect idea that was familiar to the PSTs, they seemed to interpret this as

getting their planning ‘‘right.’’ In reflections, PSTs often expressed excitement when a

student did something they had planned for or did something they had seen another student

do. In such instances, they tended to use their planning documents as a script to funnel

students in a particular direction. The PSTs may have assumed they understood the

mathematical thinking underlying familiar solutions and hence were not motivated to

explore them. To some degree, they perceived anticipated student solutions as proof their

planning was accurate and unanticipated solutions as an opportunity to show they could try

to understand the student. The goal of the course and field work, repeatedly expressed to

PSTs as understanding children’s thinking, may have influenced their tendency to shut

down anticipated solutions. When presented unanticipated solutions, PSTs may have

viewed this as opportunity to learn something new about students’ thinking and, hence, be

worthy of further exploration. PSTs, in fact, may have treated plans as a list of potential

solutions to check off for having observed and their revisions to plans as collections of

novel student solutions.

I should also point out that PSTs in this study were purposefully selected for their strong

content knowledge. Given the importance of content knowledge to navigating uncertainties

of teaching (Ball and Bass 2000), it is reasonable to speculate that their strong content

knowledge may explain why some were able to become comfortable exploring students’

mathematics when it was unfamiliar. It is possible that, had PSTs with weaker content

knowledge been included in the study, results would have shown a higher demand when

solutions were anticipated and PSTs did not have the added stress of making in-the-

moment pedagogical decisions while also trying unpack their mathematical understandings

of tasks.

Implications for teacher education

A major premise of this study was that if PSTs could anticipate children’s thinking, they

could thoughtfully craft responses in advance which would be better than those developed

in-the-moment of teaching. Instead, I found that two of the three groups shut down student

solutions that they had anticipated (hence lowering the cognitive demand) and improved at

maintaining high demand when responding to incorrect solutions that they had not

anticipated. Though I tried to minimize instances of PSTs encountering student solutions

they had not anticipated, responding to unanticipated incorrect work thinking in-the-mo-

ment of teaching provided the PSTs opportunities to deepen their understanding of

responding to students and provided me with authentic opportunities to assess their

developing teaching skill. In these situations, they improved at eliciting student thinking,
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interpreting that thinking and, to a lesser extent, coordinating work between two students.

Analyzing PST responses to unanticipated incorrect student work can also provide insight

for mathematics teacher educators in supporting our PSTs in these situations.

Early in the study, PSTs used planning documents as a script and PSTs were more

comfortable engaging in students’ mathematics when the students’ activities fell within the

parameters of their plan. This trend continued for Group J throughout the study and

indicates the importance of planning for novices: to help them think through how to

respond to a student before having to do so under the pressure of real-time teaching.

However, as the study progressed, for some PSTs the plans took on a role of record keeper,

amassing a collection of strategies that PSTs understood. It may be that the role of planning

changes as teachers gain more experience with students’ mathematics. Thus, mathematics

teacher educators should give more attention to planning, not less. Following the ideas of

Ball and Bass (2000), it may be helpful to parse planning into more manageable com-

ponents, to provide specific targeted support in particular aspects of planning (Ding and

Carlson 2013), and to change the aspects of planning on which prospective teachers focus

over time as they gain more experience with student thinking and enacting high-demand

tasks. For example, as teachers become comfortable with how to elicit student explanations

(a relatively accessible task for novices in my study), they could then work on coordinating

participation between students or connecting and sequencing different student strategies,

tasks which proved more challenging for my PSTs.

This study provides an existence proof that prospective teachers can improve (and in a

relatively short time) at eliciting and responding to student thinking. However, it also

points out that prospective teachers need concentrated and targeted practice with repeated

opportunities to rehearse and refine this skill. The field experience in which these PSTs

engaged was carefully structured to support their learning. Every aspect of this field

experience (planning, reflection, and the work with students) and its university course

counterpart were targeted specifically on learning to facilitate discussions. It was also a

concentrated experience in that it eliminated distractors (e.g., classroom management,

conflicting K-12 school and university goals, the need to cover particular content) and

focused on several essential elements of supporting students in reasoning and making sense

of mathematics: implementing a high-demand task, questioning both correct and incorrect

student solutions and strategies, and eliciting student explanations and justifications.

Concluding remarks

It may seem that this study indicates that planning for facilitating a mathematics discussion

(being able to anticipate student approaches to a given task) actually led to PSTs shutting

down dialogue and lowering cognitive demand. Yet one should not come away from this

study thinking that engaging PSTs in planning activities is not useful for improving their

ability to respond to student thinking. Some PSTs did benefit from being able to anticipate

student solutions. Planning mandated all PSTs think carefully about the mathematics in the

tasks and students’ potential pitfalls. It may be that their careful attention to the mathe-

matics and ways students could potentially approach the tasks is part of what gave them the

confidence to explore solutions for which they were not prepared. Having a detailed and

thoughtful plan alone was necessary but insufficient to prepare PSTs for all aspects of

responding to student thinking. This study does suggest that more attention in teacher

education should be given to how PSTs make sense of and use planning and how teacher
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educators can support prospective teachers in preparing to respond to student thinking in

ways that maintain cognitive demand. It may also indicate a teacher skill that needs

attention in order to effectively press for meaning: knowing when (and how) to press

regardless of whether a teacher knows what students are thinking.
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Appendix 1: Focus tasks of each task set

Generalizing and explaining patterns

Task 1: Telephone club

Your class made telephones out of strings and juice cans. Each group of students has to

work together to make a phone club that connects every person to every other person. If a

group had four people, how many strings would be needed to connect every member of the

group to every other member of the group? What if you used 28 strings, how many people

would be in a group?

Task 2: 6 Numbers

Can you put the numbers 1–6 in the triangle shown so that each side adds up to the same

amount?

Making organized lists

Task 1: 12 Pennies

Place 12 pennies in 3 piles with no two piles having the same number of pennies.

Task 2: Clock 6s

How many times in a 12-hour period does the sum of the digits on a digital clock equal 6?

Working backward

Task 1: Crayons

Mary has some crayons. Doug had 3 times as many as Mary. But Doug gave 4 to the

teacher and now John has 2 more crayons that Doug. John has 7 crayons, how many does

Mary have?
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Task 2: Puppies

The pet store advertised that they had lots of new puppies on Monday. The owner took 1

puppy for his son. Then, on Tuesday he sold half of the rest of the puppies to a farmer with

lots of land. On Wednesday, a mom took a half of the puppies that were left for her

children. When you got to the pet store on Thursday, there were only 4 puppies left to

choose from. How many puppies were there on Monday?

Reasoning algebraically

Task 1: Cupcakes

A baker makes chocolate and vanilla cupcakes. He packages the vanilla ones in boxes of 4

and the chocolate ones in boxes of 6. He made 38 cupcakes and used 8 boxes. How many

boxes of vanilla and how many boxes of chocolate did he make? (alternate version: 58

cupcakes and 12 boxes).

Task 2: Tickets

Amy and Judy sold 19 play tickets altogether. Amy sold 5 more tickets than Judy. How

many tickets did each girl sell?

Reasoning deductively

Task 1: Castle

Twenty men need to guard the castle below. For the castle to be safe there should be 7 men

guarding each side. The men on the towers count as guards for both walls that connect to

the tower. How would you place the 20 men?

Task 2: Women at the table

Five women are seated around a circular table. Mrs. Osborne is sitting between Mrs. Lewis

and Mrs. Martin. Ellen is sitting between Cathy and Mrs. Norris. Mrs. Lewis is between

Ellen and Alice. Cathy and Doris are sisters. Betty is seated with Mrs. Parks on her left and

Mrs. Martin on her right. Match the ladies’ first names and last names.
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Appendix 2: Sample task dialogue assignment

Task set: Make organized lists

Task 2: How many times in a 12-hour period does the sum of the digits on a digital clock equal 6?

Dialogue 1 Rationale for teacher
moves

S: Things that add to six are 6 and 0, 1 and 5, 2 and 4, and 3 and 3. So to make
times I get 6:00, 3:30, 4:20, 5:10

T:

Dialogue 2 Rationale for teacher
moves

S: So 6:00, 3:30, switching the threes doesn’t change the time, 4:20, 2:40, I can’t
have 0 o’clock 5:10, 1:50

T:

Dialogue 3 Rationale for teacher
moves

S: So 6:00, if I put 6 anywhere else, it doesn’t make a time. 3:30, 3:03, I can’t put 0
in the hour place. 4:20, 4:02 2:40, 2:04. 5:10, 5:01, 1:50, 1:05

T:

Dialogue 4 Rationale for teacher
moves

S: Student has all the times with 0’s (6:00, 4:20, 4:02 2:40, 2:04. 5:10, 5:01, 1:50,
1:05). Then 4:11, 3:21, 2:22. ‘‘Oh and changing them around. If I rearrange these
too that should be all.’’

T:

Appendix 3: Example of one (of four) completed dialogues from a task
dialogue dssignments

Task set: Make organized lists

Task 2: How many times in a 12-hour period does the sum of the digits on a digital clock equal 6?

Dialogue 3 Rationale for teacher moves

S: So 6:00, if I put 6 anywhere else, it doesn’t make
a time. 3:30, 3:03, I can’t put 0 in the hour place.
4:20, 4:02 2:40, 2:04. 5:10, 5:01, 1:50, 1:05

T: How did you get those answers first of all?
Explain your thinking

/ Makes the student put words to their thought
processes so that the teacher can identify what
areas are needing help and what the child does
understand

S: Well I thought of ways to make 6 (0 and 6, 1 and
5, 2 and 4, & 3 and 3). Then I put them in order of
the numbers on a digital clock and put a zero in so
they would stay at just 6. Then I moved the
numbers around so that the numbers got a chance
to be in all the places

T: Ok I see. But can I ask you something? I’m
wondering if you can make 6 out of three numbers
instead of just pairs of numbers and a zero?

/ Leads the child to think about an option they
didn’t realize existed

S: You mean like 1 ? 2?3 is 6?

T: Yes! How can you put that into terms of time? / Ensures that the student understands the concept
of putting the numbers into a time frame
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S: It could be 1:23. Or 1:32! Or 2:13 or 2:31. And
there is also 3:12 or 3:21! Wow! I forgot about all
of those!

T: Great job! That is exactly what I meant. Are those
the only ones that were forgotten about or could
there be even more ways to do this? Why don’t
you work some more to figure it out? Is there a
way you can organize all of this information so
that it is neater and easier to see and understand?

/ Acknowledges that the student is on the right
track/encourages them. Then asks them to portray
this new knowledge by putting it to work for the
other numbers (being sure to give enough wait
time for the concept to better sink in and be
understood). Also, the last question gets the child
thinking deeper about how it would best be
organized so that no answers were skipped

Appendix 4: Revised math-talk framework (Hufferd-Ackles et al. 2004)

Questioning Explaining
thinking

Source of ideas Responsibility for learning

0
All activity is
teacher-
directed.
Students
passively
receive
information
and their only
input is to
provide
answers to
yes/no or basic
fact questions.

T asks many
short direct
questions and/
or yes/no
questions in a
series; S give
short answers

T does not elicit
S thinking, but
does elicit
answers; T
may answer
own questions

T shows how to
solve or tells
correct answers
or appropriate
strategies

T verifies and shows
correct solutions; T
shows out to carry out
most effective strategies

0.5
All activity is
still teacher-
directed, but
there is some
opportunity
for student
input, mostly
in the form of
factual recall.
When teacher
poses more
complex
questions,
students are
not prepared
to answer,
often because
teacher did
not provide
adequate time
for student
work.

T asks about
strategies
before S has
applied any
strategies

T elicits answers
about applying
a T-suggested
strategy

T suggests a
strategy via
questions for S to
apply, T elicits
her own strategy,
no re-voicing

T verifies correctness of
S’s answers as S carries
out T’s strategies or T
draws conclusions for
S’s based on S’s work
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Questioning Explaining
thinking

Source of ideas Responsibility for learning

1
Teacher shifts
her attention
to student
thinking, but
once student
ideas are
elicited she is
unsure how to
incorporate
them in the
discussion.
Discussion
still includes
more teacher
talk than
student talk.

T asks about S’s
strategies or
methods, but
does not
follow up

T elicits
strategies and
Ss give brief
descriptions of
how to find
solutions; T
does not push
for more
details; T may
fill in
explanation

T elicits S ideas but
does not explore
them; T may
revoice correct
and more
sophisticated
explanation than
is given by S

T gives feedback, but does
not verify correctness; T
encourages S to execute
S’s ideas that will lead to
correct solutions

1.5
Teacher elicits
student
thinking and
tries to follow
students’ ways
of reasoning,
though she
may not
always be
successful in
these attempts.
Talk is more
equally shared
between
teacher and
student.

T asks for S’s
strategies and
follows up
with open-
ended
questions; T
asks Ss to
justify ideas
and strategies

T elicits
explanation
about why
(part of)
strategy
works; T
begins pushing
for
clarification
though T may
still accept
confusing or
unclear
explanation; T
may seek
multiple
strategies

T elicits and
explore S ideas; T
helps S articulate
idea or reasoning
behind a
particular
strategy S
employs

T encourages S to execute
S’s ideas; T sets up for
Ss to evaluate their own
errors, though T does not
always explicitly follow
up on this; S’s draw their
own conclusions
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Questioning Explaining
thinking

Source of ideas Responsibility for learning

2
Teacher follows
student
thinking and
encourages
students to
listen to one
another. She
begins to
prompt
students to
interact,
though
students may
still direct
dialogue to the
teacher.
Teacher may
model
interaction by
speaking to
one student on
behalf of
another
student.

T prompts Ss to
ask questions
of each other,
T often
supplies the
exact question
to be asked or
asks it for the
student; Ss ask
questions of T
or asks T
about another
S’s work

T does not
accept poor
explanations;
T probes Ss
for elaboration
and looks for
multiple
strategies; T
prompts Ss to
explain to
each other
though Ss still
filter
explanation
through
teacher; T may
repeat one
student’s
explanation
for another

T describes one S’s
strategies or ideas
for another;
When asked to
compare/contrast
solutions or
strategies, Ss
check answers
against each other

T holds Ss accountable for
listening to others; T
asks Ss to make sense of
other’s ideas, though Ss
may struggle with this; T
is solely responsible for
ensuring ideas are
expressed clearly

2.5
Student-to-
student talk
occurs, and is
maintained
beyond initial
teacher
prompting.
Students
respond to one
another, no
longer using
teacher as
intermediary.

After initial T
prompting, Ss
ask each other
low-level
questions
without T
prompting, T
still guides
discussion
with questions
requiring
explanation
and
justification

T probes for
complete
explanation
and looks for
multiple
strategies; Ss
give detailed
descriptions of
how solved
and when
prompted by
teacher will
describe how
they solved to
another
student

When prompted by
T, Ss can discuss
similarities or
differences in
their strategies
and solutions; Ss
confer with one
another about
how to find
solutions

T asks Ss about each
other’s work, asks Ss to
evaluate each other’s
work (do they agree with
another’s ideas); Ss hold
each other
accountable for
expressing ideas clearly

3
High level
student
interaction
with minimal
teacher
prompting.
Discussion is
guided by
student ideas
and reasoning

Ss ask each
other
questions
without T
prompting; Ss
ask each other
to explain and
justify work; T
monitors S
questions and
may help
clarify Ss’
questions

T does not have
to probe for
complete
explanation;
Ss probe one
another; when
asked by T, Ss
can explain
one another’s
ideas; Ss
defend and
justify to each
other and T

Students can
generate ideas
together; Ss take
up apply one
another’s ideas; T
uses S ideas as
basis for
extension
problem

Ss take initiative for their
learning; Ss ask for
clarification/explanation
of another’s ideas; Ss
judge correctness of
others’ ideas using their
own reasoning; T is not
evaluator of idea; T
coordinates equitable S
participation
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Appendix 5: Guidelines for coding levels of cognitive demand

Cognitive demand level Indicators Example

0 Memorization Teacher reduces task to answering a
series of basic skill questions;
students answer questions using
only memorized facts and rules

T: Make a list of numbers that add
to 6

S: 1 and 5, 2 and 4, and 3 and 3

1 Procedures without
connections to
understanding,
meanings, or concepts

Teacher and students focus on
students finding solutions; Teacher
asks how student solved a problem
and may suggest strategies for
student to carry out

T: You could think of all the options
that started with 9

[S nods.]
T: Then what would you do?
S: Keep adding one to each, like it
would be 8 plus that plus that…

T: You want to try that? So you’d
make a list so you could keep it
organized

2 Procedures with
connections to
understanding,
meanings, or concepts

Students focus on finding solutions;
teachers focus on having students
explain observed patterns, how the
solutions were obtained, and why
students’ strategies worked

T: On the last problem we saw if
there’s 4 numbers you can arrange
them 6 different ways, remember?
Why can’t we arrange these 6
different ways?

S: I started with 2 and 4, but I can’t
start with a 0 cause there’s no time
like 0:40 or…

3 Doing mathematics Teacher encourages students to
make and test conjectures, apply
reasoning to situations, generalize
strategies across multiple similar
problems, justify conclusions

S1: ….I’m predicting there will be
12 strings

T: Why are you predicting 12?
S1: Each string has to go to 3 people
S2: [draws his solution] I think 6
T: Can you explain yours to S1?
S1: I think since you have to do 3
strings to each person you spin it 4
times, so 4 times 3 is 12

T: Why do you think there are 6
strings?

S2: There are four people and they
all have to connect to each other.
So that would mean this person
would need to connect to this
person and that person. Since
they’re already connected you
only have to draw two lines

Examples were edited for clarity and correct grammar
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