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Abstract Representations are often used in instruction to highlight key mathematical

ideas and support student learning. Despite their centrality in scaffolding teaching and

learning, most of our understanding about the tasks involved with using representations in

instruction and the knowledge requirements imposed on teachers when using these aids is

theoretical. In this study, we examine the task and knowledge demands for teaching integer

operations with representations by analyzing teaching practice. Teaching integer opera-

tions is used as an intensity case, as integer operations are challenging for students, and

teachers are often required to employ several representations to teach this topic. Following

a practice-based approach while also taking prior literature into consideration, we first

generate a list of tasks entailed in teaching with representations and then discuss the

knowledge demands imposed on teachers to successfully undertake this work. We high-

light these tasks and knowledge demands by analyzing and discussing an integer addition

and an integer subtraction episode for each of two teachers, Bonita and Karen. Based on

our analysis, we organize the generated knowledge components using the Mathematical

Knowledge for Teaching framework. We conclude by drawing implications for teacher

educators and curriculum developers.
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Introduction

Since Shulman proposed the idea of pedagogical content knowledge (1986), researchers

have attempted to understand the knowledge needed to teach mathematics (Ball et al.

2001). Researchers have mapped such knowledge, both at large (e.g., Ball et al. 2008;

Rowland et al. 2009) and smaller grain sizes (e.g., Charalambous et al. 2011; Sleep 2012).

Consistent with this line of research, this article explores the tasks and knowledge demands

required for teachers to successfully teach with representations. We selected this topic

because most mathematics K-8 curricula include numerous representations, and repre-

sentations are considered a central teaching aid for supporting student learning (cf.

National Council of Teachers of Mathematics [NCTM] 2000). To further focus this work,

we consider the topic of integer addition and subtraction as an intensity case: one which

strongly manifests the teaching practice under investigation (Patton 2002), as integer

operations are well known for their difficulty to understand and teach (Gregg and Gregg

2007; Schwarz et al. 1993/4). The work reported here is expected to contribute toward the

development of a framework for analyzing and understanding teaching, much needed in

teacher education (Grossman and McDonald 2008).

To sketch the knowledge needed to teach integer addition and subtraction with repre-

sentations, we follow a top-down and a bottom-up approach. We first consider what prior

research has uncovered regarding representation use and the knowledge demands required

for this work. Next, we present and analyze four teaching episodes, identifying tasks and

knowledge demands needed to successfully use representations in instruction. Finally, we

summarize the knowledge demands entailed in teaching with representations and offer

implications for teacher educators and curriculum developers.

Theoretical considerations

Conceptualized as entities that symbolize or stand for other entities (Duval 2006; Goldin

and Kaput 1996), representations can refer to the internal organization of knowledge

through cognitive processes (Izsák 2003) or the external means of modeling various mental

processes (Janvier 1987), such as real-world contexts, manipulatable models, pictures or

diagrams, spoken languages, and written symbols (Lesh et al. 1987). Here, we focus on

teachers’ use of three types of external representations: the real-world, money context; the

diagram-based, number line; and the manipulatable chips, each intended to help students

make sense of integer addition and subtraction. In what follows, we first consider the

affordances and limitations of external representations more generally; we then discuss the

particular representations appearing in the episodes. Finally, we consider potential

knowledge demands for teaching with representations as implied by the literature.

Affordances and challenges of representation use

Researchers see multiple benefits to using representations. First, representations can sup-

port students in making sense of and reasoning about mathematical tasks and concepts.

They can also facilitate student learning. Pirie and Kieren, drawing on their model of eight

nested layers of mathematical understanding, explain that, when challenged, the learner

can ‘‘fold back’’ from an outer level of understanding to an inner level (see Martin 2008).

Representations can support this ‘‘folding back,’’ by both triggering this shift (i.e.,
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challenging students’ incomplete understanding) and offering a platform to ‘‘fold back,’’

namely providing a reference point in students’ future attempts to construct more advanced

understanding. Representations can also assist students with organizing/sharing their

thinking and constructing mental models of mathematical ideas (Dufour-Janvier et al.

1987; Schwartz et al. 1993/94). Additionally, representations can make abstract mathe-

matical concepts more accessible (Flores 2002) and foster connection-making between

procedures and concepts or between various strategies (NCTM 2000). Further, represen-

tations can be ‘‘used to ‘define’ operations, explain properties and algorithms, and provide

a structure of problems which are solved by the use of operations’’ (Vest 1976,

pp. 395–396).

Despite these benefits, the use of representations is not without challenges. One chal-

lenge relates to using representations without building mathematical meaning. This might

happen when students are forced to imitate procedures without the opportunity to reflect on

their actions or the guidance to make connections between representations and underlying

mathematical ideas (Clements and McMillen 1996; Stein and Bovalino 2001). Addition-

ally, learning a representation, with its own rules, symbols, and language, could result in a

proliferation of abstract mathematical rules (Gregg and Gregg 2007), and ultimately detract

from learning the mathematical idea itself (Dufour-Janvier et al. 1987). Representations

can even reinforce student misconceptions when they offer an incomplete treatment of the

mathematics or are too far removed from student initial knowledge or too inauthentic to

their experience (Hiebert and Carpenter 1992; Solomon 1989). Teachers may also take for

granted that students will become easily initiated to the representations’ structure or that

representations will ‘‘by default’’ illuminate underlying mathematical ideas. However,

representations are not inherently transparent; rather transparency resides in the very

process of using them, since representations, like other artifacts, are symbolic devices with

cultural significance (Meira 1998). Thus, ‘‘successful development of mathematical

meaning-making via representations requires opportunities for interaction and time’’ on the

part of students (Meira 1998, p. 125).

Integer operations offer particular challenges for representation use, because unlike

natural numbers, students cannot construct the meaning of integer operations by mere

abstraction from real objects (Stephan and Akyuz 2011). Moreover, some of the properties

of integers contradict intuitions from natural numbers (Linchevski and Williams 1999).

Further, there is no single representation that can naturally convey the underlying ideas of

negative numbers and their operations (Stephan and Akyuz 2011), rendering representa-

tions often counterintuitive in use. It is especially difficult to find a representation that

helps students discriminate between the multiple meanings of the ‘‘-’’ sign—as an

operation (take away), a value (negative), and as ‘‘the opposite of’’ (Lamb et al. 2012)—a

critical component of instruction on this topic (Kinach 2002). Because of these limitations

with existing representations, most research in this area describes attempts to develop new

or modify existing representations for integer operations, although some mathematicians

even recommend that none be used (cf. Linchevski and Williams 1999).

Perhaps because of disagreements about which external representations, if any, to use

when teaching integer operations, and perhaps because of the importance of using multiple

representations as a means to forge student understanding (Hitt 2002), reform-oriented

curricula currently include various representations to support student understanding.

Below, we focus on three particular representations, then consider the theoretically based

knowledge demands entailed in teaching with such representations.
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Three commonly used external representations for integer operations

The three representations under consideration—number line, chips, and money contexts—

are each governed by certain conventions and used to give meaning to mathematical ideas

in different ways.

Number line

In the number line, operations can be treated as movement, with the plus/minus operation

sign typically indicating directionality of movement, and the positive/negative symbol

indicating which way the traveling object should face (Lamb et al. 2012). For example, for

an addition problem, like 5 ? -3, one could start at 5, then turn to face left (because of the

negative symbol), and finally travel forward 3 steps (because of addition). For a subtraction

problem, like 5 - (-3), one starts at 5, then switches direction to face left (because of the

negative symbol) and moves backwards 3 (because of subtraction). The number line is also

well-suited for the comparison approach to subtraction.

Another, less commonly taught, way to perform integer operations using the number

line is the vector-based approach. For example, for addition 5 ? -3, the first addend (5) is

represented as a right-facing vector with end point at zero. To this arrow tip, we add a left-

facing vector with magnitude of 3, which gets us back to ?2 (see Fig. 1a). For subtraction

5 - (-3), the minuend (5) is represented as above. Then, we want to remove a left-facing

vector with magnitude of 3, which is impossible. However, one can represent 5 as the sum

of the vectors 5, 3 and -3, then remove the vector -3, leaving 8 (see Fig. 1b).

Despite the number line’s power for supporting student thinking (cf. Gravemeijer and

Stephan 2002), the meanings of the ‘‘-’’ sign as both facing backwards and moving

backwards (Hativa and Cohen 1995) might confuse students. These artificial rules can

create difficulties for teachers as well (Kinach 2002).

Chips

The chips1 are one example of a neutralization representation (Stephan and Akyuz 2011). It

provides a simple rule for integer addition in which pairs of negative (red) and positive

(a)

(b)

Fig. 1 a Vector-based, number line representation of 5 ? (-3); b vector-based, number line representations
of 5 - (-3)

1 See http://connectedmath.msu.edu/CD/Grade7/Chip/index.html for more information.
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(black) chips are removed (because -1 ? ?1 = 0, according to the additive inverse

property), leaving the sum. For example, representing 5 ? -3 with chips would involve

placing five black chips and three red chips on a mat, pairing up 3 black with 3 red chips, and

removing these pairs, which leaves two unmatched black chips—thus, the answer of ?2.

Similar to the vector interpretation of the number line, to subtract using this repre-

sentation, students often have to artificially add pairs of positive/negative chips (which sum

to zero and preserve the value of the minuend), a move that is not intuitive. For example,

for 5 - -3, a student has to create the minuend (5) with chips; given that subtraction

corresponds to ‘‘taking away’’ and there are no negative chips to remove, the student must

add at least 3 pairs of positive/negative chips so that 3 negative chips may be removed.

Limitations of this representation include that positive and negative numbers are dif-

ferentiated only by chip color. Also, students may become confused by the idea of neu-

tralization, seeing 3 black chips and 3 red chips as 6 chips without understanding that a

quantity of chips can represent zero (Steiner 2009).

Money

In the money context, the positive sign refers to assets, while the negative sign corresponds

to debt. Addition may be performed similarly to the chips model with a positive value

(asset) canceling out a negative one (debt). For example, 5 ? -3 means that someone has

an asset of $5 and a debt of $3. Three of the $5 in assets cancel out the debt, leaving $2 in

assets. Subtraction, on the other hand, is usually defined as taking away either an asset or

debt. Translating a problem like 5 - -3 into a money context is complicated, and the

mathematical problems posed to signify the subtraction of a negative are often artificial.

For example, curricula often represent 5 - -3 as taking away $3 in debt (-3) from $5 in

assets, which is considered to be the same as increasing one’s net worth. However, the

answer to the problem I have $5 in my piggybank, my father decided to strike the $3 I owed

him. How much money do I have? is actually $5 (i.e., the money I already have), not $8.

Thus, the idea of subtracting a negative is often portrayed in inauthentic ways (Schwartz

et al. 1993/4), making it challenging for the teacher to present and for students to

conceptualize.

In summary, the terrain of representations for teaching integer operations is challenging

for students and teachers. There exist different representations, each with its own rules,

affordances, and limitations. Teachers must skillfully help students use these representa-

tions and, more critically, connect them to the more abstract, procedural symbolic repre-

sentation. What it takes to successfully undertake this work is the point to which we now

turn.

Knowledge demands when teaching integer operations with representations

During the last decade, various theoretical frameworks have been advanced to capture the

knowledge needed to teach mathematics (because of space limitations, here we omit ref-

erence to older but also important works (e.g., Thompson and Thompson 1996)), such as

the Mathematical Knowledge for Teaching (MKT) (Ball et al. 2008), the Knowledge

Quartet (Rowland et al. 2009), and the Mathematics for Teaching (Davis and Simmt 2006).

All these frameworks recognize the ability to teach with representations as a critical

component of teaching mathematics well.

For example, Ball et al. (2008) consider knowing ‘‘how to choose, make, and use

mathematical representations effectively’’ a sub-component of specialized content
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knowledge (p. 400). This includes ‘‘recognizing what is involved in using a particular

representation’’ and ‘‘linking representations to underlying ideas and to other representa-

tions’’ (p. 400). They also identify the ability to ‘‘evaluate the instructional advantages and

disadvantages of representations used to teach a specific idea’’ as a sub-component of

knowledge of content and teaching (p. 401).

Similarly, including representations in the ‘‘transformation’’ component of their

Quartet, Rowland et al. (2009) acknowledge the value of choosing representations to

explain and give meaning to mathematical concepts, procedures, or vocabulary, and to

confront and resolve common misconceptions. Likewise, Davis and Simmt (2006) artic-

ulate the importance of familiarity of various representations to support student under-

standing of the interconnections that constitute a mathematical concept.

Despite recognizing the importance of representation use in instruction and offering

knowledge components related to this work, the above-mentioned frameworks do not

provide a detailed account of the tasks and knowledge demands of teaching with repre-

sentations. This article aims to begin addressing this gap by identifying tasks entailed in

teaching with representations, inferring the teacher knowledge needed to successfully

engage in this work, and organizing these knowledge components along one particular

framework, MKT. As explained in the last section, other works could also be used to

taxonomize the knowledge demands needed for teaching with representations, once the

tasks involved in this work and their knowledge requirements are identified.

Isolated (often indirect) mentions of components of the work entailed in using repre-

sentations and the knowledge demands that this work requires can also be found in the

literature. Most of these, however, speculate about the knowledge required to teach with

representations without necessarily corroborating these speculations with empirical evi-

dence. The few studies that utilize empirical evidence (e.g., Kinach 2002) are not based on

analysis of classroom practice. We briefly review these studies for their suggestions about

possible knowledge components required when teaching with representations.

Discussion of the ‘‘rules’’ underlying various representations suggests that teachers must

understand the representations’ conventions, affordances, and limitations before teaching

with them (Kinach 2002; Solomon 1989). Research also recommends that teachers

understand the connections between representations and underlying mathematical ideas

(Kaput 1985) and be able to structure representation use, so that these connections are

highlighted. Given that representations for integer operations do not accurately or com-

pletely embody the underlying mathematical ideas (Linchevski and Williams 1999),

teachers should be familiar with multiple representations and the connections between

them and capable of helping students flexibly move between representations.

Finally, knowledge of students’ understanding, where they typically struggle (Ball

1992), which representations are more accessible to them, and how to justify the integer

operations procedures using representations, seems to be a critical component of teacher

knowledge. Teachers must carefully select which representations to use, as student learning

is influenced by the representations to which they are exposed and some representations

reinforce misconceptions. Teachers should also understand that students neither conceive

of the material as adults do nor easily make the links between visual representations and

analytic thought (Meira 1998; Sacristán Rock 2002; Solomon 1989).

The theoretically based arguments just reviewed point to the need for generating a more

systematic list of the task and knowledge components involved in teaching with repre-

sentations through careful analysis of classroom practice. In what follows, we describe the

methods used to begin generating such a list.
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Methods

Data collection and procedure for analyzing teachers’ use of representations

Following the lead of Shulman, Ball, Rowland, and others, we pursued a two-pronged

process (Ball and Bass 2003; Thames 2009), which involves first identifying and naming

tasks entailed in teaching and then contemplating the mathematical resources required to

successfully carry out these tasks. We first began with the entirety of datasets from two

larger projects, one focusing on 10 elementary teachers in two US districts and another

including 24 middle-school teachers in a third district. Data in these projects were collected

in 2003–2004 (elementary) and 2008 (middle school) by videotaping lessons, conducting

interviews, and gathering curriculum materials. Nine videotaped lessons were collected for

each elementary-school teacher and six for each middle-school teacher. The videos focused

primarily on teachers’ moves, limiting our ability to discern student activity. After each

lesson, teachers were debriefed using a standardized ‘‘post-lesson interview’’ which

gathered information on their perceptions of the lesson and student learning (see Hill

et al. 2012).

We watched all lessons on integer operations (n = 17) several times. While watching,

each author wrote detailed analytic memos (Patton 2002) about the instructional features of

each lesson. From these memos, we then identified tasks involved in teaching with rep-

resentations. To do so, following other scholars’ practice-based approach (Ball et al. 2008;

Rowland et al. 2009), we asked, ‘‘What do teachers do as they teach with representations?

How do teachers and students interact with representations? How does this interaction help

(or not help) surface and communicate important mathematical ideas?’’ We also looked for

similarities and differences in instruction across teachers, as these helped us attend to the

tasks being displayed or potentially absent.

While pursuing such a practice-based approach, we did not adhere to a completely

grounded-theory scheme (Corbin and Strauss 2008), since we were also mindful of what

prior research has suggested. This bottom-up and top-down approach—what Grbich (2007)

describes as theory directing and theory generating—helped develop a list of preliminary

codes that represented entailments involved in teaching with representations. We then

compared and refined our codes, merging those that seemed to be describing the same idea.

Organizing these codes, we developed a set of broader categories representing instructional

features pertaining to teaching with representations. The categories and their sub-codes are

presented in the Appendix.

Once we identified tasks entailed in teaching with representations, we inferred the

knowledge demands of this work, using Ball et al.’s (2008) question: ‘‘What mathematical

knowledge, skills, and sensibilities are required to manage these tasks?’’ (p. 395). As

customary in analyzing records of teaching practice (Ball and Forzani 2009), we did not

seek to evaluate teachers’ work, but attempted to understand the resources needed to do

this work.

Selection of case studies

Because presenting the volume of data and themes generated from the above work would

be impossible, we sampled two teachers—Bonita and Karen (pseudonyms)—whose

instruction exemplified the categories resulting from the analysis of the broader corpus of

data. Bonita’s case provides insight into a teacher thoughtfully struggling with using

money, number lines, and chips to represent the mathematical ideas in her lessons. Karen’s
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case serves as a contrast; in her lessons, she largely displayed accurate use of represen-

tations and, unlike any other teacher in the larger sample, she attempted to help students

generalize the mathematical procedures and ideas involved in integer operations. Because

Bonita and Karen help highlight a wide range of tasks and knowledge demands, to some

degree, they represent a maximum variation sample (Patton 2002).

At the beginning of the project, Bonita had taught for 10 years. Data collection occurred

during the first year she used the Connected Mathematics Project (CMP2) curriculum (2nd

edition) in the 7th grade. During her initial interview, she reported feeling overwhelmed by

having to ‘‘learn [this curriculum], process it, and then take ownership of it, and then teach

it.’’ Bonita’s school enrolled predominantly low-income, Spanish-speaking students. At the

time of data collection, Karen had 37 years of teaching experience, and she was teaching

5th grade. Her curriculum was the more traditional Hartcourt Brace text. Karen’s school

enrolled students of low/middle socioeconomic class.

Below, we use the two cases to illustrate core demands of teaching integer operations

with representations, as noted in our observations of the entire data corpus. We highlight

one key episode regarding addition and one regarding subtraction for each teacher. While

using these episodes to point to and discuss the categories (and their codes) generated from

our analysis, we also consider the knowledge required for successfully using representa-

tions in instruction.

Results

Bonita: episode 1, integer addition

This lesson comes from Investigation 1.4 (Accentuate the Negative) in CMP2 (Lappan

et al. 2006). After clarifying that red chips represent negative numbers and black chips

represent positive numbers, Bonita begins with the following example: ‘‘Linda owes her

sister 6 dollars for her help cutting the grass. She earned $4 delivering papers with her

brother. Is she in the red or the black?’’ Students disagree about the answer, and, to bring

consensus, Bonita projects 6 red chips and 4 blue (in lieu of black) chips via document

camera and asks again whether Linda will be in the red or the black. Students unanimously

call out ‘‘red,’’ and one explains that Linda is in the red ‘‘because she’s spending more

money than what she received.’’ Bonita represents this problem by placing 4 blue chips

over 4 red chips, noting that these pairs of chips cancel out. These matched pairs are left

visible while Bonita points to the two red chips left over to reveal the answer. A student

then reads from the textbook: ‘‘Julia uses red and black chips to model income and

expenses. Each black chip represents ?1 dollar of income. Each red chip represents -1

dollar of income (expenses).’’ Bonita elicits students’ ideas as to why the answer is two, to

which a student responds, ‘‘Because you take away six minus four that you won and there

are going to be two left that you owe,’’ while another adds that the two red chips left

represent debt.

This initial segment shows some of the basic task demands involved in using repre-

sentations for integer addition. First, Bonita must process and act upon two separate

representations: the money context and the chips. Bonita successfully uses one represen-

tation to inform the other by setting up the chips, then asking students whether Linda is in

the red or black; in this way, students have a concrete representation of the money context

and a method for solving similar problems. Second, absent from Bonita’s enactment of the

chips representation is any reference to a pivotal mathematical idea: that the sum of a
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positive and a negative number is equal to zero. Highlighting this idea would have given

more mathematical credence to the chips manipulations and would have set up the work

considered in subsequent tasks, including those on integer subtraction.

Third, underlying a student’s contribution in this segment could be a misconception

which ought to be addressed: a student comments that ‘‘you take away six’’ chips, an

utterance which conveys the idea of subtraction of chips rather than addition. Even though

combining red and blue chips eventually results in removing red/blue chips, Bonita could

have emphasized the action of pairing up (i.e., adding) chips than that of taking away chips,

since the latter is associated with integer subtraction.

This analysis of tasks helps clarify aspects of the knowledge used in teaching integers

with representations. First, the teacher needs to know the conventions of each represen-

tation, as described above. Besides these conventions, however, the teacher should also

know what mathematical ideas to emphasize (e.g., adding a positive and a negative number

yields a zero) and how these could be communicated to students when using representa-

tions. Additionally, the teacher ought to be aware of certain student misconceptions

implicated in using representations (e.g., the idea of ‘‘taking away’’ in the context of

addition). Being aware of such misconceptions, the teacher can help students distinguish

between the combining and ‘‘neutralizing’’ act from the act of ‘‘taking away,’’ which is

associated with subtraction. As we shall see in the episodes on integer subtraction, this

distinction becomes critical.

Next, the class moves to the main task from Investigation 1.4 (see Fig. 2). This activity

presents different situations in which students begin with a set of chips and add or subtract

a given amount/type of chips. Bonita first reminds students that red chips represent

expenses/losses and blue chips represent gains and then circulates to pass out the chips. She

next reads the first sub-task and immediately begins to represent it by placing three red

chips on the document camera, without asking students to manipulate their own chips.

Soliciting a student idea about how much to add, she then places 5 blue chips as well, and

asks: ‘‘What am I going to end up? What would my result be?’’ Some students reply 2;

others say 8. A student explains her answer of 8 (‘‘there are 3 red ones and 5 blue ones’’),

apparently thinking about the total number of chips. To remediate this error, Bonita

switches to the money context: ‘‘You’re going to the store and you buy something for 3

dollars; you pay with 5 dollars, and they’re going to give 8 dollars back to you?’’—to

which students answer, ‘‘No.’’

In this task, students must find what is missing and write the corresponding number 

sentence.

Start with Then End with

Three red chips Add five black chips ?

One black and two red 

chips

Subtract three red chips ?

Fig. 2 Restated version of CMP2 Investigation 1.4 task
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After disproving the proposed answer of eight, Bonita has two girls come to the doc-

ument camera to demonstrate the answer with chips. While the students are coming up,

Bonita circulates to see whether each group has represented the problem with chips,

observing that some have done so, while others are still getting started. Once the student

pair at the document camera successfully shows their solution with chips (3 red covered by

3 blue with 2 blue left over) and a number sentence (-3 ? 5 = 2), Bonita extends this

example to the number line—a representation employed in previous lessons.

First, another pair of students draws a number line extending from -3 to 5 and,

prompted by Bonita, marks -3 as ‘‘the starting point.’’ Next, the students put another point

on 2, but again prompted by Bonita, they revise their work and place the second point on 5

to represent the ‘‘end point.’’ Bonita then attempts to show how the number line yields an

answer of 2, by first simultaneously pointing to both -3 and 3 on number line to ‘‘cancel’’

these numbers, then following suit with -2 and 2, and finally -1 and 1. She concludes that

the answer is 2 because the numbers 4 and 5 have not been eliminated. Another student

suggests starting at -3 and moving five hops to the right, to land on 2. The student

demonstrates her solution, but Bonita does not take up this promising idea. Instead, she

asks the class if the proposed approach works, and, once the class agrees that it does, she

concludes, ‘‘There are many ways to show this.’’

We pause here to again identify tasks involved in teaching with representations. We first

note the importance of using accurate language and notation when employing certain

representations. Inquiring about the end result, instead of about the value of the chips on

the overhead, may have prompted some students to talk about the total number of chips.

This lack of precision surfaces again when Bonita accepts the mathematical sentence
-3 ? 5 = 2, without commenting on a subtle, yet, important, point: that the ‘‘?’’ sign

represents the act of addition, and that a more accurate sentence would also involve the

symbol denoting that the blue chips are positive (i.e., -3 ? ?5 = ?2).

This episode also speaks to the importance of drawing clear and accurate connections

when using more than one representation. We see two manifestations of such connections:

in the first case, such connections are legitimate and support student understanding; in the

second, they are inaccurate and cause confusion. When recognizing students’ difficulty

with determining the answer, Bonita resorts to the money context to remediate the mis-

conception, a move that seems to have supported student learning. However, Bonita’s use

of the number line was unsuccessful, as she attempted to use two representations in exactly

the same manner by canceling out numbers on the number line as if they were chips.

Bonita’s facilitation of student work in this segment also helps highlight what is

involved in supporting students when using representations. Two such pieces become

evident here largely because of their absence. The first relates to the importance of giving

students sufficient time and opportunities to manipulate the materials and explore how they

can be used to re-present mathematical ideas. As Meira (1998) reminds us, these repre-

sentations might be transparent to the teachers who are initiated to them, but they are not

equally transparent to students (e.g., chips are typically counted, not canceled out). The

second component pertains to carefully listening to students and unpacking their contri-

butions. This unpacking is necessary, so that teachers understand how students themselves

are making sense of these representations and ultimately of the mathematics itself.

What knowledge resources would a teacher need to successfully undertake the tasks

outlined above? First, this segment reemphasizes the importance of knowing and com-

municating the representations’ conventions by using appropriate language and notation.

For instance, in the chips representation, a teacher needs to clearly distinguish between

actions on chips (‘‘?’’ and ‘‘-’’ correspond to adding ‘‘-’’ and subtracting chips) and the
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chips value (‘‘?’’ for positive numbers/blue chips and ‘‘-’’ for negative numbers/red chips).

More than that, the teacher should be aware of the conventions governing the use of

different representations: ‘‘canceling out’’ might be appropriate for chips, but it is

unfounded when it comes to number lines, unless, potentially, when using a vector-based

approach (see Fig. 1b).

With regards to employing different representations, this segment also points to the

importance of knowing how each representation can help students overcome certain

misconceptions. When Bonita employed the money context to convince students that the

final answer could not be eight, she was drawing on her knowledge that this representation

could make mathematics more accessible to students—an idea she articulated during the

post-lesson interview [‘‘it is easier (for students) with the money’’ because ‘‘they can see it

more clearly’’]. Her recourse to this representation also suggests knowledge of the affor-

dances of different representations and of how one representation can be used to remediate

student misunderstandings when employing another representation. Additionally, the

struggles Bonita faced when working on the chips and the number line suggest that flexibly

working across representations requires an understanding of connections between these

representations and an awareness of how these representations in isolation and in tandem

can be used to surface and discuss important mathematical ideas. Finally, as already

mentioned, the teacher needs to remember that representations are not transparent in and of

themselves, to give students sufficient time for exploration around representations, and to

closely hear student productions for what these might suggest about student learning/

struggles. Those components are more apparent in Karen’s work discussed next.

Karen, episode 1: integer addition

At the beginning of the lesson, Karen reviews absolute values and opposites of integers.

She then sets up the lesson by telling students they will be using positives and negatives

(plastic ? and - symbols, possessing the same conventions as chips), along with the

number line they used the previous day. She begins by asking, ‘‘If I had a positive 1 and a

negative 1, what would I have?’’ and eliciting answers from different students. As there is

some debate over whether they would have 1 or 0, Karen asks students to start at ?1 on

their number line and then to move -1. She asks what moving -1 means, and a student

replies that it is the same as moving backwards 1. She then has them note the ending

location, which is zero, before summarizing, ‘‘Does everybody believe me when I tell you

that a positive 1 and a negative 1 are the same as 0?’’ After this, she asks students to

represent ?1 ? -1, and then ?3 ? -3, with the chips, pairing up positives and negative to

make zeros.

Having established that a number and its opposite add to zero and having represented

this with chips, Karen asks students to represent ?1 ? -3 with their chips, as she does on

the overhead (see Fig. 3, below), asking what the circled amount is worth (0), then what is

left (-2). With this sample problem, as with those above, the students represent exactly

what Karen does with the chips. Karen also has students do this same problem on the

number line, telling them to put their fingers on ?1, then move them 3 to the left, to show

the result is identical for both representations.

We pause here to think about the tasks evident in Karen’s use of representations. For

one, Karen acts upon both the chips and number line representations in accordance with

their conventions. For example, unlike Bonita in the previous episode, Karen meticulously

links the first addend to the starting value on the number line, the second addend to moving

on the number line, and the result to the end point on the number line, while also clarifying
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what moving -1 means. Additionally, we see Karen employing and connecting two rep-

resentations by verifying the conventions for using chips via the number line. Importantly,

she also communicates the mathematical idea underlying the integer addition and sub-

traction algorithms: that ?1 ? -1 sums to zero. Karen also generally uses mathematical

notation precisely, as suggested by the fact that she uses different symbols for the operation

and for the signs of the two addends.

Karen’s work in this segment surfaces another task involved in using representations:

carefully choosing and sequencing examples to highlight key ideas, making them more

transparent to students as they interact with each representation, and gradually building

mathematical complexity. Karen starts with ?1 ? -1 to ensure that students understand an

important mathematical idea just discussed. Before assigning a more challenging example

(?1 ? -3), she selects ?3 ? -3, to reinforce and solidify the idea that several pairs of

negative and positive chips still yield zero. Additionally, Karen’s concurrent use of both

representations could help students gradually detach integer operations from certain rep-

resentations, thus facilitating students’ shift to a more abstract level, as we shall see below.

Karen also skillfully scaffolds student work with each representation—important, as these

representations are not intuitive.

To successfully engage in the tasks outlined above, several pieces of knowledge are

required. First, this portion of instruction, like the previous episode, highlights that

teachers’ work requires knowledge of each representation’s conventions. Also needed is

knowledge of the mathematical ideas to be emphasized and how these ideas can be sur-

faced and communicated to students using one or more representations. Karen’s use of

examples reflects not only mathematical knowledge, but also knowledge of choosing and

sequencing examples to illuminate the underlying mathematical ideas (i.e., knowing the

mathematical importance of ?1 ? -1 = 0, that ?3 ? -3 is a more generalized version of

this idea, and that ?1 ? -3 uses this idea with chips remaining, making it slightly more

complex).

After providing some more integer addition practice problems (-2 ? -3, ?4 ? -3) and

having students imitate her solution process, Karen asks students to solve about 15

problems and prompts them to look for patterns. While they work, Karen circulates to

remind them of the chip procedure. She also requires that students use their representations

to explain their answers to the problems. For example, Sam (all student names are

pseudonyms) knows the answer to a given problem (-3 ? ?2), but cannot show it with the

chips. Karen insists that he does so to ‘‘explain why his answer is negative one.’’ Also,

during this segment, we see one student quickly solving problems without chips, while

most students replicate Karen’s use of chips to carry out all given problems.

After this time for student practice, Karen writes the mathematical expression
?n ? -n = on the overhead and asks, ‘‘If I add two numbers that are positive, positive

n plus positive n, am I going to get a positive or negative for my answer?’’ Students reply,

‘‘positive.’’ She then asks about adding two negatives (-n?-n= ), and students declare the

Fig. 3 Karen’s overhead chips
work
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answer will be negative. Finally, Karen asks what happens if she adds a positive and a

negative number (?n?-n= ). She calls on a student to share her thinking, who argues that

‘‘If it’s the negative one that’s higher, then it will be a negative. And if the positive number

is higher, then it’ll be positive.’’ After having another student repeat this, Karen restates

that, ‘‘whichever one is higher that’s the one we’re going to use the sign of,’’ giving an

example of positive 7 plus negative 4, followed by negative 7 plus positive 4. In the

remainder of the lesson, students are given time to practice these rules, but to also link

them back to the two representations they have been using.

The teaching task described here relates to generalizing a mathematical procedure so

that students eventually function autonomously and independently of the representations

used (cf. Ball 1992; Goldin 2003). Despite its centrality, this work was not observed in any

of the lessons in our larger dataset. To facilitate this work, Karen first affords students the

opportunity to work on different problems representing all possible situations: adding two

positives, adding two negatives, and adding a positive and a negative that yield either a

positive or a negative sum. When eliciting the generalizations from students, we again see

skillful sequencing, in that Karen begins with the two simpler conditions (adding two

numbers with like signs) and ending with the more complicated unlike-signs condition. We

also note the careful sequencing of examples (?7 ? -4 and -7 ? ?4), which allows

students to see how the sign differences influence the sum; of course, considering all four

variations (?7 ? ?4, -7 ? -4, -7 ? ?4, ?7 ? -4) might have better supported student

understanding.

At this point, however, her work also surfaces the importance of using precise language,

something that Karen has not systematically done in this lesson. While likely compre-

hensible to students, the expression ‘‘higher number’’ was not mathematically precise.

Karen could have instead used the idea of absolute value reviewed at the beginning of the

lesson to increase the precision of the generalization she co-constructed with students. The

opportunity that Karen gave students to apply the generalizations and connect them back to

the representations, however, likely solidified the generalizations developed in the lesson.

Turning to the knowledge demands that the tasks of generalizing and language precision

impose on teachers, we note that a teacher must first be aware of the importance of

scaffolding students to gradually detach their thinking from representational aids to

develop more abstract understanding. The teacher must also know what it means to gen-

eralize to develop an algorithm—something that our analysis suggested was unclear to

some of the teachers in our larger sample. For example, to generalize, a teacher must assign

multiple problems of each type to properly attend to patterns. The teacher must also know

how to phrase a generalization so that it clearly captures a mathematical operation in a

manner both comprehensible to students and mathematically valid. If this generalization is

co-constructed while interacting with students, the teacher additionally needs to know how

to revoice students’ ill-formed generalizations to render them more mathematically

appropriate. Doing so requires not only knowledge and use of precise language, but also

the ability to see across and connect different lesson activities (e.g., connecting this work to

the review of absolute values), so that they form a coherent mathematical story.

Although we are not sure whether Karen took notice of different patterns in students’

interactions with representations, the video footage suggests that the teacher also needs an

awareness of the fact that students reach this abstract thinking at different paces: some

might need several opportunities to work on representations; for others, representations

might become more quickly transparent and move to abstraction more rapidly. Equally

important is the teacher sensitivity and inclination to check whether students are making

meaning when using representations or if they are simply imitating the steps shown by the
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teacher. In Karen’s work, this inclination was evident by her constantly pushing students to

explain why their answer to a given problem made sense.

The next two episodes consider Bonita’s, then Karen’s, work with integer subtraction.

Teaching integer subtraction with representations is significantly more demanding than

integer addition. Consequently, the episodes recounted below lend themselves to illumi-

nating additional tasks and knowledge demands imposed on teachers when using

representations.

Bonita, episode 2: integer subtraction

After working on the first activity shown in Fig. 2, the class moves to the second problem:

starting with two red chips and one blue chip and subtracting three red chips (-1 - -3).

Bonita models this task on the document camera by laying out the chips representing both

the minuend and the subtrahend and writing a subtraction sign between them (see Fig. 4).

She then challenges students to solve it.

Working in groups, the students determine a variety of answers for this problem (-1,
?2, ?5). Perhaps because students disagree on the answer, Bonita returns to the money

context and asks, ‘‘I have a dollar in my purse and I tell my mom, look, ‘I want to buy

something … that’s going to cost me […] two dollars.’ How much am I going to owe

mom?’’ She then continues: ‘‘A dollar, right? And then I see another thing and I say, ‘Oh

man, I want to buy this and it costs three dollars.’ How much am I going to owe mom?’’

Students offer various answers (4, 5, -4). Bonita calls a student named Jenny to the

document camera to explain the most popular answer, negative 4. Using the representation

shown on the document camera (Fig. 4), Jenny matches a blue and a red chip, which leaves

four red chips unmatched. Prompted by the teacher to write a number sentence to represent

this problem, Jenny writes -2 ? ?1 ? -3 = -4 to represent the whole transaction.

Here, we see some of the tasks entailed in representing integer subtraction with chips.

To appropriately use the chips to model the ‘‘take-away’’ interpretation of subtraction, a

teacher would need to abide by the representation’s conventions. At the same time, she

would need to clearly discuss the mathematical challenge which calls for re-representing

the minuend by adding pairs of blue/red chips, emphasizing that this does not change the

starting value of -2—thus conveying another key mathematical idea: the preservation of

the minuend. Clearly, Bonita’s setup of the problem eliminates any opportunities for

recording and communicating this key mathematical idea—an integral task in effective

representation use.

Her setup also suggests that Bonita was not familiar with the conventions of this

representation when it comes to integer subtraction. This lack of familiarity is illustrated in

at least two respects: instead of performing the act of taking away chips, Bonita depicted

this act by simply putting the subtraction symbol between the two sets of chips. Related to

that, instead of representing only the minuend, as the ‘‘take-away’’ meaning of subtraction

dictates, she represented both the minuend and the subtrahend, something that calls for the

comparison notion of subtraction. Both these features of Bonita’s work point to another

key element in using representations successfully: that representations should be employed

as tools for re-presenting operations rather than as means for simply presenting symbol

manipulations and depicting final answers.

Fig. 4 Bonita’s modeling of the
second task with chips
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Jenny’s work at the end of the segment offered Bonita the opportunity to reconsider the

chips’ conventions. Although leading to an incorrect solution, Jenny correctly utilized the

conventions she had been taught and wrote a correct mathematical sentence that repre-

sented the scenario suggested by the chips as placed on the document camera. To correctly

assess this student’s work, Bonita would have needed to examine whether the student

adhered to the representation’s conventions and whether her mathematical sentence was

consistent with how she manipulated the chips—a critical component of scaffolding stu-

dent work with representations. Had Bonita engaged in this work, she might have realized

that the flaw did not lie within Jenny’s work, but actually within the original modeling of

the problem.

Bonita’s recourse to the second representation could have offered a solution out of this

deadlock and had the money context easily lent itself to representing integer subtraction;

unfortunately, this was not so. While the first part of Bonita’s story does correspond to the

minuend (owing mom a dollar), asking mother for another three dollars corresponds to

adding instead of subtracting a negative 3. This prevented Bonita from using the money

representation effectively and flexibly moving between representations to support student

understanding, a task she successfully undertook when teaching integer addition.

Bonita’s struggles in this segment reinforce the importance of knowing the represen-

tations’ conventions as discussed in earlier episodes. Additionally, Bonita would have

needed to know the affordances and limitations of each representation, so that she chose

and used these representations more successfully. For example, the chips representation

lends itself better to distinguishing between two seemingly similar, yet significantly dis-

tinct symbols: the ‘‘-’’ symbol as an operation and the ‘‘-’’ symbol as the value of a

number. Similarly, the money context might be particularly useful when discussing integer

addition, but, as discussed, it becomes convoluted when applied to integer subtraction.

Paraphrasing Diezmann and English (2001), Bonita needed to have developed represen-

tational literacy: knowledge of which representation is most appropriate in a given situ-

ation, knowledge of why it can be used to illuminate certain mathematical ideas, and

knowledge of how it can be used to this end. This representational literacy would have also

enabled Bonita to closely attend to and unpack Jenny’s work, identifying that Jenny was, in

fact, abiding by the chips’ conventions.

After Jenny’s contribution, another student points out that subtraction is not modeled,

and Bonita admits confusion. Consulting the teacher’s guide, she discovers that the correct

answer is ?2, and abandoning the chips, she correctly demonstrates how to solve the

problem using the standard algorithm (i.e., ‘‘a negative times a negative gives a positive’’).

Finally, she asks the students to determine how to use the chips to represent the solution.

While it is hard to see what the students are doing, most of them seem to be either

‘‘canceling out’’ the red and blue chips as before or looking completely stuck.

Overall, the episode recounted above exemplifies how lack of understanding of the

conventions and the rules governing certain representations can lead the class to unpro-

ductive paths. In the episode that follows, we see how a more robust teacher understanding

of representations and their conventions can better support students’ grasp of integer

operations.

Karen, episode 2: integer subtraction

Like Bonita, in this episode, we see Karen using chips to represent and solve integer

subtractions such as 5 - -4. Unlike Bonita, she uses this work to start generalizing the

procedure. To begin, Karen tells students they are starting with positive five, and they want
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to subtract negative four. Students already have chips in front of them to use, though most

seem to be watching the overhead and not touching the chips. She places 5 positives on the

overhead and asks a volunteer, Chris, to come forward and perform the subtraction. Chris

takes 4 positives away. Karen asks the class, ‘‘What did Chris just take away?’’ A student

answers, ‘‘4’’. Karen then replies, ‘‘He took away positive 4. I said take away negative 4,’’

and elicits other students’ ideas.

After several minutes of unsuccessful student suggestions, Karen reminds students that

a pair of positive/negative chips is worth zero. Adding such a pair on the overhead, she

then clarifies that this move does not change the initial value. Next, pretending to be

‘‘Chris’ bank of zeros,’’ Karen places three more ‘‘zeros’’ on the overhead and helps Chris

decide to take away four negative chips, by carefully pointing to the correspondences

between Chris’ manipulations on chips and the mathematical symbols. For example, when

after re-representing the starting value with 5 positives and pairs of zeros Chris attempts to

remove 4 pairs of chips instead of 4 negative chips, Karen reminds him that he has to take

away four negatives, not zeros. Eventually, Chris successfully removes -4 chips, and the

class concludes that the answer is ?9.

Two main tasks are evident here. The first is what Zopf (2010) describes as ‘‘provoking

the stumble’’—designing a problem that elicits common student confusion. Karen possibly

had predicted that Chris would take 4 positives away, a hypothesis supported by the fact

that she has selected numbers for which there are sufficient chips in quantity, but not in

value (i.e., color), to remove. In other words, Chris can remove 4 chips from the 5, just not

4 negative ones. With an example like ?5 - -6, students might immediately see that there

are insufficient chips to remove 6, not making this particular mistake. This seemingly

purposeful selection of examples was a teaching move we observed in other teachers in our

larger dataset (Charalambous et al. 2012) and was critical for surfacing and addressing a

common student misconception. The second task relates to the fact that the setup of the

problem created a space for emphasizing and reinforcing two fundamental mathematical

ideas: that a positive/negative pair is equal to zero and that adding such pairs does not alter

the starting value.

We argue that to successfully engage in the work sketched above, the teacher has to

know the mathematical ideas that undergird the chips manipulation and, equally important,

be able to communicate these ideas to students in a comprehensible manner. She also needs

to know how students might struggle with these ideas, and how to skillfully select

examples that provoke the stumble for students. Karen’s interactions with Chris also

surface the importance of the teacher’s capacity to carefully follow students’ chip

manipulations and connect them to their mathematical underpinnings. Successfully

engaging in these interactions also requires knowledge of the representation and its con-

ventions and capacity to steer discussion toward important mathematical ideas that the

representation can illuminate.

Turning again to the episode, we observe Karen challenging students by asking, ‘‘How

could [Chris’] answer be 9 if he started with 5 and he’s taking away?’’ A student, James,

responds, ‘‘subtracting a negative is basically adding a positive, because in algebra, a

double negative is a positive.’’ Karen initially leaves James’ comment aside, offering

practice problems for students to work through (e.g., ?6 ? -4; ?6 - -4), before returning

to ask students whether they believe James’ thinking. To support a more grounded answer,

Karen then asks students to work on several more practice problems, including both
-4 - -4 and -4 - ?4; she eventually, revisits James’ claim to emphasize that mathe-

maticians need to understand, otherwise if they forget, they ‘‘couldn’t prove it’’ to

themselves.
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Because some students have difficulties with integer subtraction, some of the practice

problems are done with the teacher manipulating chips on the overhead and students

manipulating chips at their desks (e.g., ‘‘make -3, now subtract 4, do you have enough,

what do you need to add, now can you take away, what is left?’’), others are given as

independent work. During independent work time, one can see a couple of students using

the number line; most students are using the chips and imitating the teacher’s exact

procedure, with the teacher providing hints for those who are stuck.

In this segment, we see Karen posing a question to trigger and immediately remediate a

common student misconception. By asking how, while performing a subtraction, Chris

ended up with more positive chips than those with which he started, Karen ensures that

even students who are not alert to a seemingly controversial fact are confronted with it:

when performing a subtraction, one could end up with more chips than the starting ones.

To remediate this misconception, Karen again engages in the task of skillfully selecting

and sequencing examples by asking students to consider both an addition and subtraction

with exactly the same numbers. She apparently selects these examples to help students see

the difference between adding and subtracting (?6 ? -4 and ?6 - -4). This judicious

selection of examples is also shown when she picks -4 - -4 and -4 - ?4 to direct

students’ attention to instances with and without sufficient chips to remove. We also see

that Karen, unlike Bonita, made sure students were familiar with the chips’ conventions

before releasing them to interact with the representations independently. Upon circulating

the room, she seemingly assessed each student’s level of understanding and provided

pointed questions to assist those who seemed confused.

Perhaps more importantly, this segment (alongside others considered thus far) dem-

onstrates an important function of the work around representations: unpacking and

decompressing mathematical procedures to help students see their underlying concepts,

before these procedures are eventually condensed and later turned into what Sfard (1991)

calls ‘‘reified objects’’—mathematical entities that are detached from the processes which

led to their development. This is clearly captured in Karen’s interaction with James. James’

statement is a generalization at which students are ultimately expected to arrive. Yet,

Karen does not directly venture into this generalization. She wants students to sit with

James’ promising production, and she revisits it only after the class has considered several

supportive examples. In the post-lesson interview, Karen explains that not immediately

providing the rules for integer operations, but rather having students try practice problems

to inductively generate these rules was a deliberate move on her part; she contended that

anchoring these rules by the manipulation of representations and their underlying mathe-

matical ideas supports student understanding and recalling.

Karen’s whole-class or individual interactions with students also point to the importance

of skillfully scaffolding students’ manipulations of representations, especially when the

latter become less transparent. Adding chips—in order to then enable subtraction—

appeared to be counterintuitive to several students who struggled with such practice

problems. To support student work, the teacher might need to give students time to interact

with the representations and pose pointed questions that will guide students’ manipulation

of representations, just like we saw Karen doing in this segment, but also listen to the ways

students are making sense of the representations and the mathematics and consider ways to

challenge student misconceptions.

Strong and deep knowledge is required to help students understand mathematical

procedures and their underlying mathematical ideas, but also to gradually steer students to

an abstract mathematical generalization. As we have seen in other segments discussed

above, it requires knowledge of selecting and wisely sequencing examples, which, as
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Rowland (2008) reminds us, should be suitable for and compatible with the representation

at hand (e.g., the money context might overburden students’ memory with the additional

contextual information if used to develop generalizations). Apart from selecting these

examples, it also requires knowledge of students’ common struggles—especially when

representations become less transparent for students—and of how to trigger them, should

such misconceptions not arise while interacting with students. Additionally, this work

requires knowledge of how long students should be afforded the opportunity to practice

with representations before they eventually move to a generalization—or in Ball’s (1992)

thinking, before they remove the training wheels and cycle autonomously on their math-

ematical bicycles. But above all, it requires an understanding of why representations are

used, an idea eloquently captured in Karen’s meta-level talk: to support understanding and

help students prove ideas and procedures that, in the long run, will be condensed and

automated.

The preceding four episodes help illuminate from different, yet complementary, angles

the task and knowledge demands entailed in teaching integer operations with representa-

tions. In the next section, we summarize and organize these demands, while also sug-

gesting implications for teacher educators and curriculum developers.

Discussion and conclusions

We combined results from prior research with a practice-based approach based on ana-

lyzing instruction to generate a list of tasks entailed in teaching with representations. Using

these tasks, we then described the knowledge required by teachers when using represen-

tations in teaching integer operations. Because integer operations are challenging to teach

with representations and no representation can satisfactorily capture the mathematical

ideas inherent in integer operations, this topic offered a magnifying lens for examining the

tasks and knowledge demands imposed on teachers when engaged in this practice. It is in

these two areas—identifying the tasks entailed in and the knowledge components required

for teaching integer operations with representations—that we see the main contribution of

the work reported here.

The Appendix shows the results of this work; this task compilation is likely neither

exhaustive nor comprehensive. It captures, however, a significant portion of the work

required when teaching with representations. Even without being comprehensive, this list

is, we believe, helpful if we are to start developing a framework for analyzing, under-

standing, and ultimately improving, instruction (cf. Grossman and McDonald 2008;

Lampert 2010).

The second contribution of the article lies in identifying knowledge components con-

ducive for successfully teaching with representations. Several scholars (e.g., Flores 2002;

Kinach 2002; Linchevski and Williams 1999; Solomon 1989) have explicitly or more

implicitly suggested elements of such knowledge across many different articles; yet these

elements had not been combined and codified into a formal record. Further, the original

work in this field rarely reflected insights into empirically grounded evidence. To offer a

more coherent structuring of these components than what already exists, we next use MKT

as an organizing framework to synthesize our and others’ findings. Other works, such as

the Knowledge Quartet (Rowland et al. 2005), and the Knowledge of Teaching Mathe-

matics (Tatto et al. 2008) or combinations thereof (e.g., Clivaz 2013) could also be

employed. We opted, however, to use the MKT framework with which we are more

familiar. Hence, what follows could be seen as an exercise of using and elaborating a

54 R. Mitchell et al.

123



teacher-knowledge conceptualization with respect to a certain teaching practice—that of

using representations—through close scrutiny of actual instruction.

In their work on mathematical knowledge for teaching, Ball et al. (2008) list aspects of

teaching with representations under Specialized Content Knowledge (SCK) and Knowledge

of Content and Teaching (KCT). To this, we add aspects of teaching with representations to

Knowledge of Content and Students (KCS); we also point to other sensibilities that a teacher

ought to have when using representations. We describe each in turn.

SCK

Much of the literature, including the MKT work of Ball et al. (2008), suggests the

importance of understanding the conventions of each representation. This is also dem-

onstrated by Bonita’s struggle with the number line for addition and chips for subtraction.

Knowledge of the important mathematical ideas that govern the use of each representation

and which should be communicate to students while using representations in instruction is

also mentioned in reports of research on teaching with representations. Karen’s use of the

chips and number line to validate the additive inverse property serves as an example of the

presence of this knowledge. Additionally, our work points to the knowledge of the con-

nections that can be made between and among representations to forge students’ learning

of important mathematical ideas; this piece of knowledge is clearly manifested in Bonita’s

use of money to reinforce the chips’ work for integer addition, but is absent in her attempt

to do so with integer subtraction. Absent in the instruction of most of the sampled teachers

were also two knowledge components: knowledge of how to gradually decompose and

unpack the mathematical rules and operations through the use of representations and

knowledge of how to use representations to develop generalizations and gradually help

students move to a more abstract level of thinking and operating on mathematical symbols.

If the goal of using concrete representations is to build toward more abstract, symbolic

representations, as Karen begins to do, this knowledge component—which, incidentally,

seems to be absent from the literature—is critical.

KCT

The developers of the MKT framework identify the ability to ‘‘evaluate the instructional

advantages and disadvantages of representations used to teach a specific idea’’ as a sub-

component of knowledge of content and teaching (Ball et al. 2008, p. 401). We have

distilled this further into knowledge of the instructional and mathematical affordances and

limitations of representations which supports the knowledge to determine which repre-

sentation(s) is/are more appropriate for illuminating certain mathematical ideas and for

developing generalizations, when used alone or in tandem. Another knowledge compo-

nent, seen in Karen’s instruction relates to the knowledge of selecting and using appro-

priate examples when using certain representations to lead instruction to a main

mathematical point, which also suggests an understanding of the main mathematical

purpose of using representations.

KCS

Under this category, we noted that both our empirical work and other existing research

mentioned knowledge of key student ideas that can be surfaced and remediated while
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working with representations. Another knowledge component relates to knowledge of

common errors that students can make when working on representations and how these

errors can be used to help students ascribe meaning to representation manipulations. Both

these components appear in Karen’s use of 5 - -4 with the chips, as she surfaces the

common misunderstanding of the chips’ conventions for integer subtraction. Two other

components that our work helped surfaced and which have not been identified in prior

research relate to an awareness of the suitability of the language/notation used when

working on representations for a specific student population and knowledge of how long

and in what ways to work on a representation before helping students move to a more

abstract level. For instance, Karen’s students worked on seemingly sufficient amount and

variety of addition problems before shifting to the more abstract rules for integer

operations.

Other sensibilities

In Ball et al. (2008) conceptualization, MKT is not defined in a strictly utilitarian way, but

also includes ‘‘perspective and habits of mind … that matte[r] for effective teaching of the

discipline’’ (p. 399). Our analyses of teachers’ work, alongside prior works, point to a set of

sensibilities that teachers ought to have when working with students on representations.

These include an (a) awareness of the fact that representations are not transparent in and

of their own, and therefore, teachers need to afford students ample time and space to

experiment on representations and make meaning for themselves; (b) a proclivity to inquire

into students’ making-meaning, for students might be simply imitating the representation

manipulations displayed by the teacher; and (c) a propensity to provide differentiated

scaffolding, since students march at different paces when shifting from concrete manip-

ulations to abstraction.

Although discussed in the context of two teachers’ lessons, the knowledge components

considered above were also visible or made visible by their absence in the lessons of our

larger dataset. While our findings were robust across teachers, there may be more

knowledge components that this work has not uncovered. Future studies could therefore

build on the mapping of the terrain of knowledge needed to teach with representations

attempted in this article by examining teaching with representations with regard to other

topics and/or different grade levels.

From a more practice-oriented perspective, our evidence suggests that it is challenging

for teachers to use (multiple) representations to teach integer operations. To us, this begs

the question: If we think representations are important for supporting student under-

standing, how do we better scaffold teachers’ use of representations?

While this question suggests areas for further research, the knowledge components

identified above could also inform in-service and pre-service teacher training programs.

For example, teacher education could better support teachers to understand the conventions

governing the use of each representation and the mathematical ideas that underlie these

conventions, alongside ways to build toward generalizations via representations. Teachers

also need to learn the important mathematics ideas to which certain representations lend

themselves and how to manipulate/use them to highlight these ideas. Helping teachers

become more efficient in ‘‘translating’’ between multiple representations should also be on

the agenda of pre-service and in-service teacher education. Discussions of the affordances

and limitations of each representation and of how to build from the representation work to

the mathematical procedures the representations are intended to illuminate also seem

critical, including attention to skillful sequencing of examples. In addition, teachers need to
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be made aware of the lack of transparency of these representations for students and

consider ways to allow students to productively work with these representations.

As this work suggests, teaching integer addition and subtraction might serve as a

particularly rich topic for a unit on teaching with representations, for it covers many of the

major tasks with representations. Of course, we recognize that pre-service and in-service

programs are often constrained in how much they can involve, largely due to time limi-

tations. Therefore, we suggest this work be complemented by curriculum materials. In

previous work (Charalambous et al. 2012), we have shown that sufficiently supportive

materials can scaffold teachers’ work with representations, by detailing the conventions of

each representation, helping teachers see the connections between representations and the

mathematical ideas their use is purported to highlight, and providing detailed examples of

representation use. Our findings here further underscore this necessity, if representations

are to be used successfully in instruction to meet the purpose for which they have been

developed: support student learning. Based on the work reported in this article, the

potential of representations for meeting this goal is more likely to be unlocked by teachers

who possess the knowledge components and sensibilities sketched above. Otherwise,

representation use may do more pedagogical harm than good.

Appendix: Tasks entailed in teaching with representations

(A.) Representing and solving problems/carrying out mathematical operations

• Recognizing and abiding by the representations’ conventions

• Using representations as a means to illuminate certain mathematical ideas

involved in a procedure

• Employing appropriate language and notation when using representations

• Decomposing and unpacking mathematical rules and operations through careful

use of representations

• Selecting representations that lend themselves to explaining a mathematical

procedure

(B.) Creating a context for connecting multiple representations

• Identifying similarities and differences between representations

• Using one representation to help students make sense of another

(C.) Creating a context for generalizing procedures

• Using representations to build generalizations and help students move to a more

abstract level

• Selecting and sequencing examples to support student ability to generalize

• Using multiple representations to help students make sense of the underlying

meaning of a mathematical procedure

(D.) Scaffolding student work on representations and the mathematics

• Using representations to surface student misconceptions and emphasize impor-

tant mathematical ideas

• Using representations to trigger and remediate student misconceptions

• Flexibly moving between representations to support student understanding
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• Providing a balance between explaining the representation conventions and

allowing students the space and time to make meaning of the representations and

the mathematical ideas they are intended to illuminate

• Examining whether students correctly follow the representations’ conventions

and ascribe meaning to the representations’ manipulations

• Pressing students to articulate the mathematical meaning they are making out of

using representations

• Listening to students and unpacking their (promising) productions around using

representations

• Differentiating the scaffolding provided to students depending on (a) the

anticipated level of transparency of a given representation and (b) students’

differential needs and their progress toward abstracting the underlying mathe-

matical ideas the representations are intended to illuminate.

References

Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator,
16(2), 14–18., 46–47.

Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowledge for teaching. In
B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annual meeting of the Canadian Mathematics
Education Study Group (pp. 3–14). Edmonton, Alberta, Canada: Canadian Mathematics Education
Study Group.

Ball, D. L., & Forzani, F. (2009). The work of teaching and the challenge for teacher education. Journal of
Teacher Education, 60, 497–511.

Ball, D. L., Lubienski, S., & Mewborn, D. (2001). Research on teaching mathematics: The unsolved
problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on
teaching (4th ed.). New York: Macmillan.

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special?
Journal of Teacher Education, 59(5), 389–407.

Clements, D. H., & McMillen, S. (1996). Rethinking concrete manipulatives. Teaching Children Mathe-
matics, 2(5), 270–279.

Charalambous, C. Y., Hill, H. C., & Ball, D. (2011). Prospective teachers’ learning to provide instructional
explanations: How does it look and what might it take? Journal of Mathematics Teacher Education, 14
(6), 441–461.

Charalambous, C. Y., Hill, H. C., & Mitchell, R. (2012). Two negatives don’t always make a positive:
Exploring how limitations in teacher knowledge and curriculum materials affect the quality of
instruction. Journal of Curriculum Studies, 44(4), 489–513.

Clivaz, S. (2013, February). Mathematical knowledge for teaching and teaching multidigit multiplication.
Paper presented at the Eighth Congress of European Research in Mathematics Education. Antalya,
Turkey.

Corbin, J., & Strauss, A. (2008). Basics of qualitative research (3rd ed.). Thousand Oaks, CA: Sage.
Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that

teachers (need to) know. Educational Studies in Mathematics, 61(3), 293–319.
Diezmann, C. M., & English, L. D. (2001). Promoting the use of diagrams as tools for thinking. In A.

A. Cuoco & F. R. Curcio (Eds.), The roles of representation in school mathematics-2001 NCTM
yearbook (pp. 77–89). Reston, VA: NCTM.

Dufour-Janvier, B., Bednarz, N., & Belanger, M. (1987). Pedagogical considerations regarding the problem
of representation. In C. Janvier (Ed.), Problems of representation in the teaching and learning of
mathematics (pp. 109–122). Hillside, NJ: Erlbaum.

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Edu-
cational Studies in Mathematics, 61, 103–131.

Flores, A. (2002). Geometric representations in the transition from arithmetic to algebra. In F. Hitt (Ed.),
Representations and mathematics visualization (pp. 9–29). Mexico: North American Chapter or IG-
PME, Cinvestav-IPN.

58 R. Mitchell et al.

123



Goldin, G. (2003). Representation in school mathematics: A unifying perspective. In J. Kilpatrick, W.
G. Martin, & D. Shifter (Eds.), A research companion to principles and standards for school math-
ematics (pp. 275–285). Reston, VI: NCTM.

Goldin, G. A., & Kaput, J. (1996). A joint perspective on the idea of representation in learning and doing
mathematics. In L. P. Steffe, P. Nesher, P. Cobb, G. A. Golding, & J. Greer (Eds.), Theories of
mathematical learning (pp. 397–430). Hillside, NJ: Lawrence Erlbaum Associates Inc.

Gravemeijer, K., & Stephan, M. (2002). Emergent models as an instructional design heuristic. In K.
Gravemeijer, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in
mathematics education (pp. 145–169). Dordrecht: Kluwer Academic Publishers.

Grbich, C. (2007). Qualitative data analysis: An introduction. Thousand Oaks, CA: Sage.
Gregg, J., & Gregg, D. U. (2007). A context for integer computation. Mathematics Teaching in the Middle

School, 13(1), 46–50.
Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher

education. American Educational Research Journal, 45(1), 184–205.
Hativa, N., & Cohen, D. (1995). Self learning of negative number concepts by lower division elementary

students through solving computer-provided numerical problems. Educational Studies in Mathematics,
28(4), 401–431.

Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.),
Handbook of research in on mathematics teaching and learning: A project of the National Council of
Teachers of Mathematics (pp. 65–97). New York: Macmillan.

Hill, H. C., Umland, K., Litke, E., & Kapitula, L. R. (2012). Teacher quality and quality teaching:
Examining the relationship of a teacher assessment to practice. American Journal of Education, 118(4),
489–519.

Hitt, F. (2002). Construction of mathematical concepts and cognitive frames. In F. Hitt (Ed.), Representation
and mathematics visualization (pp. 241–262). Mexico: Departamento de Matemática Educativa.
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