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Abstract This article is based on a project that investigated teachers’ knowledge in

teaching an important aspect of algebra in the middle years of schooling—functions,

relations and joint variation. As part of the project, 105 upper primary teachers were

surveyed during their participation in Contemporary Teaching and Learning of Mathe-

matics, a research project funded by the Catholic Education Office, Melbourne

(2008–2012). Analysis of the survey responses revealed that two-thirds of teachers dem-

onstrated content knowledge on a pattern generalisation task appropriate for upper primary

levels of schooling (8- to 12-year-old students), but less than half demonstrated reasonable

pedagogical content knowledge (PCK). On a paired variable (function machine) task, only

one quarter of teachers demonstrated appropriate PCK. Although two-thirds of the teachers

indicated that they currently taught content from the ‘‘Patterns and Algebra’’ strand of the

new Australian Curriculum, less than half were able to provide examples of appropriate

learning experiences for students. More than two-thirds of teachers expressed concern

about their ability to teach this area of mathematics. Implications for the professional

learning of teachers to improve their mathematics knowledge for developing students’

functional thinking are presented.

Keywords Teacher professional learning � Functional thinking � Content

knowledge � Pedagogical content knowledge � Algebra � Mathematics

education � Middle years of schooling

Traditionally, algebra has been viewed as a difficult abstract subject (e.g. Greenes et al.

2001; Lee and Freiman 2004) relegated to the secondary years of schooling—‘‘late, abrupt,

isolated and superficial’’ (Kaput 2008, p. 6). The practice of teaching arithmetic in the early

years of schooling and postponing algebra teaching can create significant obstacles to
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further learning in mathematics (Kieran 2004), particularly in those areas, such as Cal-

culus, where the ability to reason algebraically is important. The teaching and learning of

algebra is considered ‘‘a major policy concern around the world’’ (Hodgen et al. 2010).

Resistance to algebra in the secondary years of schooling might be reduced if arithmetic

and algebra were not misconceived as distinct or disjoint subjects and if students were able

to develop algebraic thinking at early levels of schooling (Cai and Moyer 2008; Carraher

et al. 2006).

Teaching algebra has often taken the form of symbol-manipulation techniques which

can promote a narrow and instrumental understanding of algebra, rather than algebraic

thinking which pervades all dimensions of mathematics. Yet, how do teachers, who

themselves were schooled via narrow procedural approaches to algebra, develop the ability

to ‘‘teach a more powerful and general mathematics for understanding’’? (Blanton and

Kaput 2008, p. 361) The challenge is to ‘‘create a body of knowledge that is learnable and

useable by teachers’’ (Stacey and Chick 2004, p. 18) which includes an understanding of

student conceptions and effective teaching strategies. Attention to teacher professional

learning is needed, both for beginning and experienced teachers (Lins and Kaput 2004).

The issues of teachers’ content knowledge and their awareness of students’ difficulties in

learning algebra are of increasing importance (Saul 2008). Ball et al. (2008) similarly refer

to aspects of ‘‘subject matter knowledge—in addition to pedagogical content knowledge

(PCK)—that needs to be uncovered, mapped, organised and included in mathematics

courses for teachers’’ (p. 398).

The aim of this project was to investigate teachers’ current knowledge in teaching an

important aspect of algebra in the middle years of schooling—functions, relations and joint

variation. Its purpose was to consider how to provide Australian upper primary school

teachers with targeted professional learning on developing their students’ functional

thinking. The need to consider strategies to achieve this arose in the context of the recent

introduction of a national curriculum in which the teaching of algebra is explicit right from

the early years of schooling, and pattern generalisation is a key focus for the upper primary

years (8- to 12-year-old students) (Australian Curriculum Assessment and Reporting

Authority 2009). A large-scale research and professional learning project provided the

means to focus on practising upper primary teachers and their knowledge of algebra for

these year levels. Called Contemporary Teaching and Learning Mathematics (CTLM), the

project was conducted by the Mathematics Teaching and Learning Research Centre at the

Australian Catholic University over 5 years (2008–2012) and funded by the Catholic

Education Office, Melbourne. It involved teachers from 82 Catholic primary schools in

Victoria who each participated for a 2-year period. The project’s major aim was to enhance

teacher PCK in mathematics. The study described here is a sub-project of CTLM that

focused on the knowledge of upper primary teachers in a specific domain of mathematics

(algebra). The central research question of this sub-project was what is the nature of

teachers’ current mathematics knowledge for teaching functions, relations and joint vari-

ation at upper primary levels of mathematics? It is intended that insights gained as a result

of this research will contribute to accessible strategies and resources that support teachers’

professional learning in algebra, address effective implementation of the content and

proficiency strands of the new Australian Curriculum for algebra and support students’

continued learning of algebra to prepare them effectively for learning at secondary levels

of schooling. Thus, implications of teachers’ current knowledge and suggestions for the

professional learning of functions, relations and joint variation will also be discussed.

The following section presents details on the context for the project by situating the

aspect of algebra that is the focus of the study—functions, relations and joint variation—
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and by providing an overview of the knowledge that the literature considers teachers ought

to have for teaching it, using a theoretical framework for different types of knowledge.

Context and background

Algebra is foundational to mathematics, and the development of algebraic thinking from

the early years of schooling has emerged as a central theme in contemporary mathematics

curriculum (Greenes et al. 2001). There are differing views on what algebra actually is and

what defines algebraic thinking (Kaput 2008; Kieran 2004), but generalisation is widely

accepted as the cornerstone, the building block of mathematical structure (Kruteskii 1976).

It is the ability of a mathematics learner to see the general in the particular (Mason 1996).

Generalisation is suggested as the route to ‘‘deep, long-term algebra reform’’ where stu-

dents learn with understanding and access the power of algebra, rather than memorise

symbol-manipulation procedures and (as has happened traditionally) learn to hate algebra

(Kaput 1999, p. 134).

The two core aspects of algebra are described as the expression of generalisations

using conventional symbol systems and the actions on generalisations (Kaput 2008).

Smith (2008) associated these two aspects with different types of thinking—‘‘repre-

sentational thinking’’ and ‘‘symbolic thinking’’, respectively (p. 133). These have been

embodied in three strands of algebra, one of which is the study of functions, relations

and joint variation (Kaput 1999). It involves a particular kind of generalising:

‘‘describing systematic variation of instances across some domain’’ (p. 13). Usiskin

(1988) described algebra as providing ‘‘the means by which to describe and analyse

relationships’’ (p. 18). He conceptualised one important aspect of school algebra as the

study of relationships among quantities and of variables as quantities that have vari-

ability (the original meaning of the term variable). Such exploration of systematic

variation and pattern generalisation can form the basis for later study of functions and

the use of variables as arguments (‘‘domain value of a function’’) or parameters (‘‘a

number on which other numbers depend’’). Formulas describing a pattern among

variables, e.g. y = 3x ? 5, lead to function notation, e.g. f(x) = 3x ? 5, where x is the

argument and f is the parameter (p. 14).

Smith (2008) defined functional thinking as a type of ‘‘representational thinking that

focuses on the relationship between two (or more) varying quantities, specifically the kinds

of thinking that lead from specific relationships (individual incidences) to generalisations

of that relationship across instances’’ (p. 143). Many real-world applications are modelled

as functions, and significant emphasis is placed on functional thinking in mathematics

courses in the later years of schooling. Calculus, to which an understanding of functions is

foundational, underlies innovation and economic success across many science and engi-

neering domains, and there is a need for expertise in this area of mathematics (e.g. Mullis

et al. 2004).

Since there is an ongoing need for such expertise in our society, researchers continue to

ask the fundamental question, ‘‘What do teachers need to know and be able to do to teach

algebra effectively?’’ To conceptualise the different types of knowledge it is believed that

upper primary teachers ought to have for developing their students’ functional thinking, a

theoretical framework by Hill et al. (2008) was chosen. It has been used in this article in

outlining the literature on teachers’ knowledge of algebra and in discussing the findings

from this study. It is briefly described in the following sub-section.
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A framework for conceptualising the different types of mathematics knowledge

for teaching

Shulman (1986) described a knowledge beyond content (subject matter) knowledge and

pedagogical knowledge that includes ‘‘the ways of representing and formulating the subject

that make it comprehensible to others’’, an understanding of the conceptions, preconcep-

tions and misconceptions of students of different ages and ‘‘knowledge of strategies most

likely to be fruitful in reorganising the understanding of learners’’ (p. 9). This knowledge

has been termed PCK and has become part of the research lexicon on teaching and teacher

education. In the domain of mathematics, it includes mathematical knowledge but of a

different kind to that used in everyday life by adults and to that used in other mathe-

matically intensive occupations (Ball and Bass 2000). Shulman (1986) additionally

highlighted the importance of curricular knowledge, familiarity with the full range of

programmes, instructional materials and tools available for teaching particular concepts at

different levels.

Hill et al. (2008) built on Shulman’s (1986) definitions of different types of knowledge

to develop more specified descriptions through ongoing efforts to conceptualise, develop

and test measures of teachers’ knowledge. In their model, they proposed three types of

content knowledge and three types of PCK:

CONTENT (SUBJECT MATTER) KNOWLEDGE

• Common Content Knowledge (CCK)

• Specialised Content Knowledge (SCK)

• Knowledge at the mathematical horizon

PEDAGOGICAL CONTENT KNOWLEDGE

• Knowledge of Content and Students (KCS)

• Knowledge of Content and Teaching (KCT)

• Knowledge of Curriculum (KC)

The four types of knowledge highlighted in bold are those which this study sought to

investigate in a survey of upper primary teachers about functional thinking: one type of

content knowledge and three types of PCK.

Common content knowledge (CCK) relates to the mathematical knowledge used in

everyday life by adults and ‘‘is used in the work of teaching in ways in common with how

it is used in many other professions or occupations that also use mathematics’’ (Hill et al.

2008, p. 377). Specialised content knowledge (SCK) is still conceptualised as a type of

content knowledge but is seen as specialised knowledge that enables teachers to ‘‘accu-

rately represent mathematical ideas, provide mathematical explanations for common rules

and procedures and examine and understand unusual solution methods to problems’’ (Hill

et al. 2008, p. 378). Both CCK and SCK, however, do not entail knowledge of students or

of teaching. In this study, SCK has been used to describe knowledge about pattern gen-

eralisation and functional thinking that implies a relational or conceptual understanding of

the mathematics rather than only an instrumental or procedural knowledge.

Pedagogical content knowledge in Hill et al.’s (2008) model is divided into three

categories. The first type knowledge of content and students (KCS) is defined as ‘‘content

knowledge intertwined with knowledge of how students think about, know, or learn this

particular content’’ (p. 375). Teachers with this type of knowledge are able to attend to how

students typically learn a concept and to mistakes and misconceptions that are common. It

implies an understanding of students’ thinking and what makes the learning of particular
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concepts easy or difficult, but does not include ‘‘knowledge of teaching moves’’ (p. 378)

which is conceptualised as a second type termed knowledge of content and teaching

(KCT). KCT entails knowledge about how to build on students’ thinking and how to

address student errors effectively. The third type of PCK is conceptualised as knowledge of

curriculum (KC) and relates to Shulman’s (1986) previously mentioned curricular

knowledge. Ball et al. (2005) additionally emphasised the importance of teachers not only

knowing the content of curriculum, but also judging how to utilise it to present, emphasise,

sequence and instruct. In this study, KC has been used to describe teachers’ self-perceived

comprehension of relevant content in the new Australian curriculum as well as their

knowledge of how to apply this curriculum content to appropriate learning activities for

students.

What teachers ought to know for teaching functional thinking?

The following four sub-sections review the literature about the types of knowledge con-

sidered as necessary for teaching functions, relations and co-variation in terms of the four

categories of knowledge used to frame this study (i.e. SCK, KCS, KCT and KC). This

provides a basis for interpreting these categories in relation to those areas of algebra that

are the focus of this study.

Specialised content knowledge (SCK)

Researchers assert that growing patterns ‘‘offer a powerful vehicle for understanding the

dependant relations among quantities that underlie mathematical functions’’ (Moss et al.

2008, p. 156). These are also known as geometric patterns or as Rivera (2010) preferred to

call them, ‘‘figural patterns’’ (p. 298). Early patterning activities are seen as necessary

precursors to other types of generalisation in algebra (Greenes et al. 2001). The devel-

opment of functional thinking is seen as starting with an understanding of linear functions,

which extends naturally from counting experiences involving repeated addition (Smith

2008). The Principles and Standards for School Mathematics stated that ‘‘systematic

experience with patterns can build up to an understanding of the idea of function’’

(National Council of Teachers of Mathematics (NCTM) 2000, p. 37). In the middle years

of schooling, it is considered important to know how to:

• ‘‘Describe, extend and make generalisations about geometric and numeric patterns’’;

• ‘‘Represent and analyse patterns and functions, using words, tables and graphs’’;

• ‘‘Represent, analyse and generalise a variety of patterns with tables, graphs, words and,

when possible, symbolic rules’’;

• ‘‘Relate and compare different forms of representation for a relationship’’;

• ‘‘Represent the idea of a variable as an unknown quantity using a letter or a symbol’’;

• ‘‘Express mathematical relationships using equations’’; and

• ‘‘Model problem situations with objects and use representations such as graphs, tables

and equations to draw conclusions’’ (NCTM 2000, p. 158, 222).

The literature describes a number of approaches to pattern generalisation. Stacey (1989)

referred to finding the next item in a growing pattern using step-by-step drawing or

counting as ‘‘near generalisation’’ and finding the general rule as ‘‘far generalisation’’

(p. 150). Confrey and Smith (1994) described these two ways of approaching functional

situations as co-variation and correspondence. Co-variation describes the relationship

between successive items in a pattern—also known as recursive generalisation or a local
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rule (Mason 1996)—whereas correspondence perceives the relationship between two

quantities or variables (the item/term position number in the pattern/sequence and a

quantifiable aspect of the item/term itself—also known as explicit generalisation or a

direct or closed or relational rule). It is this correspondence approach that enables the

description of relationships between variables and which Usiskin (1988) saw as an

important aspect of school algebra study. Figure 1 provides an example of co-variation and

correspondence solutions for generalising a linear growing pattern (the same example used

in this study’s teacher survey). Figure 2 represents the same growing pattern in a table of

ordered pairs.

Knowledge of content and students (KCS)

Despite significant research over the past few decades, algebra in the earlier years of

schooling is not considered to be a well-understood field; little is known about students’

generalising ability or use of algebraic notation (Carraher et al. 2006). Earlier studies found

that students struggled with moving beyond perceiving and describing patterns to gener-

alising them and finding function rules or algebraic representations (e.g. English and

Warren 1998; MacGregor and Stacey 1995; Stacey 1989). In the Australian context, stu-

dents in the early years typically learn about repeating patterns but little if anything about

growing patterns (Warren and Cooper 2008). Confrey and Smith (1994) found that students

preferred the co-variation approach since it was ‘‘easier and more intuitive’’ (p. 33) and

that moving from co-variation to correspondence approaches was a challenge. Warren

(2000) also found that students tended to focus on recursive (co-variational) rather than

relational (correspondence) strategies. Wright (1997) found that many students lacked

strategies for finding relationships between variables and had little awareness of how

algebraic symbols could represent such relationships. Kaput (2008) pointed out that one-

dimensional patterning activities obscure the variable on which the pattern depends (the

item number), thus keeping its structure as a function well-hidden and the students’ focus

on the relation between consecutive items (recursive thinking rather than relational

thinking). Students may even work correctly with a table of values—where the two

variables are in fact listed—without reference to the functional dependence between the

variables by merely extending each number pattern and still relying on recursive strategies

(Carraher et al. 2006).

Although researchers have found that encouraging students to look for a relationship

between quantifiable aspects of a geometric growing pattern supported their functional

thinking and their ability to write symbolic representations of a generalisation (e.g.

MacGregor and Stacey 1995; Markworth 2010; Warren and Cooper 2008), it is still

Fig. 1 Two approaches to understanding functional relationships in a growing pattern
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possible to merely follow a procedure that produces the equation but without necessarily

understanding its representation of the pattern’s visual structure. For a linear functional

relationship, such a procedure might typically involve creating a number sequence from

the quantifiable aspects of a geometric growing pattern, using the difference between

consecutive terms as the co-efficient of the independent variable (often x or n) and then

adding or subtracting a constant to create the full equation. It is also possible to use trial

and error to find the equation, particularly if the general form is known to be ‘‘some

number times the x plus or minus some other number’’. For students, learning to think

functionally rather than to follow procedures is considered important for later success in

algebra and Calculus.

Knowledge of content and teaching (KCT)

Several teaching approaches to developing students’ functional thinking are described in

the literature. Confrey and Smith (1994) proposed ‘‘the interaction of context, multiple

representational forms, and technological tools’’ as helping students develop functional

understanding (p. 32). Teachers help students to generate functional relationships within a

context, use multiple representations to create and represent solution processes and

therefore think about functions in diverse yet legitimate ways. Kaput (1999) also advocated

a multi-representational approach that involves providing students with meaningful

experience in familiar contexts and representing situations with diagrams, tables of values,

language, equations and graphs. Examples of familiar contexts include: heights of plants or

people, temperatures, numbers of people changing over time, and the cost of a product as a

function of the number bought. The idea of a function embodies multiple instances, all

collected within a single entity (e.g. a list, table, graph), a process that also involves

generalising—answering the question, ‘‘What is it that all these instances have in com-

mon?’’ (Kaput 1999, p. 146)

MacGregor and Stacey (1995) found that encouraging students to describe the features

of a geometric pattern verbally and to then express these algebraically was an important

step in learning to recognise a function. Warren and Cooper (2008) referred to the

effectiveness of concrete materials in teaching patterns and sequences, and of specific

questioning that makes explicit to students the relationship between an item in a pattern

and the item’s position number and assists them to reach generalisations about unknown

positions. Moss et al. (2008) studied Year 4 students and found that certain teaching

Fig. 2 Two approaches to generalising functional relationships using a table of ordered pairs (adapted from
Smith 2008, p. 147)
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strategies seemed to facilitate the students’ development of functional thinking and the

ability to find generalised rules for patterns and sequences. These included: the use of

function machines to explore relationships between variables; building geometric patterns

with pattern blocks and using position cards to highlight the item position number; and

using two colours for geometric growing patterns to represent the constant (the blocks that

‘‘stay the same’’) and the co-efficient (the blocks that increase by a set amount at suc-

cessive positions—the rate of change or gradient in a graphical representation). Friel and

Markworth (2009) provided examples of several types of geometric patterns of increasing

levels of complexity. These examples included ‘‘linear, direct variation relationship[s]’’ in

which the total number of blocks is a multiple of the item position number (y = mx), linear

functional relationships which involve the addition of a constant (y = mx ? c), and

nonlinear relationships (p. 30).

Knowledge of curriculum (KC)

The state curriculum prescribed for teachers in this research project was the Victorian

Essential Learning Standards (VELS). It referred to upper primary students constructing

and using ‘‘rules for sequences based on the previous term, recursion (for example, the next

term is three times the last term plus two), and by formula (for example, a term is three

times its position in the sequence plus two)’’. It also referred to students being able to

‘‘identify relationships between variables and describe them with language and words’’

(Victorian Curriculum and Assessment Authority 2007).

The introduction of a national curriculum has brought algebraic thinking to the attention

of teachers by referring to the content strand ‘‘Number and Algebra’’ and the proficiency

strand ‘‘Reasoning’’ right from Foundation to Year 10. At upper primary levels, explicit

reference was made in the sub-strand ‘‘Patterns and Algebra’’ to students being able to

describe, continue, and create patterns (Year 5) and sequences (Year 6), and to describe the

rule that creates a sequence (Australian Curriculum Assessment and Reporting Authority

2009). Teachers in this study were in a period of transition to the newly implemented

national curriculum.

Research on what teachers actually know for teaching functional thinking

This sub-section reviews the literature on research about teachers’ actual mathematics

knowledge for teaching algebra. Although there is substantial literature that considers the

knowledge teachers ought to have for teaching mathematics (e.g. Adler et al. 2005; Ball

and Bass 2000; Carpenter et al. 1989; Nathan and Koellner 2007) there seems to be far less

literature specifically on what knowledge teachers actually do have, and even less literature

on the specific domain of knowledge for teaching algebra in the middle years of schooling.

A few studies have investigated prospective teachers’ knowledge for teaching algebra.

Two large British studies (n = 154 and n = 201, respectively) of prospective primary

teachers researched their content knowledge of mathematics, including algebra. Items on

generalisation using words and symbolic notation were completed correctly by less than

half of participants (Goulding et al. 2002). Another study of 58 US elementary prospective

teachers researched their content knowledge in understanding algebraic generalisations and

linking symbolic equations to visual growing patterns. The most common difficulties were

found to be interpreting what the variables actually represented and identifying the pattern

(Rule and Hallagan 2007).
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Nathan and Petrosino (2003) researched 48 prospective secondary teachers’ content

knowledge and PCK of students’ likely difficulties in algebra. They found that prospective

teachers with higher levels of algebra content knowledge were more likely to believe that

worded story problems would be more difficult than symbolic equations to solve, the

opposite of what was found in empirical research of students’ learning in algebra. This has

been termed the symbol precedence view, as compared to the verbal precedence view. They

suggested that teachers with advanced content knowledge of algebra but who lack PCK on

how novices learn ‘‘tend towards views of student development that align more closely

with the organisation of the discipline than with the learning processes of students’’

(p. 906). It seems that content knowledge of algebra is not sufficient in itself for being able

to teach it effectively.

A recent large-scale international 6 years comparative study called the Teacher Edu-

cation and Development Study in Mathematics (TEDS–M) investigated the preparation of

primary and lower secondary teachers for teaching mathematics in 17 countries (Tatto

et al. 2012). The research investigated the content knowledge and PCK of prospective

teachers at the end of their teacher education in four sub-domains, one of which was

algebra and functions. Senk et al. (2012) reported on results related to the prospective

primary teachers who completed 74 content-knowledge items (29 % algebra) and 32

pedagogical content-knowledge items (multiple-choice and constructed-response formats).

They found that those participants who performed at a higher level demonstrated ‘‘some

familiarity with linear expressions and functions’’ yet ‘‘had limited success applying

algebra to geometric situations’’ (p. 8). Unsurprisingly, they found that prospective

teachers who had undertaken courses to become mathematics specialists performed at

higher levels on both content-knowledge and pedagogical content-knowledge items than

those preparing to become generalist teachers. A report of primary-level released items

from the study included two content-knowledge items related to functions, relations and

joint variation. Internationally, 77 % of prospective teachers were able to predict the

number of matchsticks in the 10th figure of a growing pattern, and 54 % were able to find

the rule for the number of people that could be seated around n tables. One pedagogical

content item that required the selection of an equation to match a growing pattern was

completed correctly by only 31 % of prospective teachers (Australian Council for Edu-

cational Research 2010).

A few studies researched practising secondary teachers’ knowledge for teaching alge-

bra. Menzel and Clarke (1999) conducted classroom research on secondary teachers’ PCK

of algebra and reported that it was difficult to find examples of such knowledge from the

data set. They noted that each of the teachers observed in the research encouraged rote

learning of algebraic procedures and were seldom able to identify specific algebraic

concepts with which students were most likely to struggle. They were more likely to refer

to ‘‘lack of readiness to learn abstract concepts, lack of attention, or lack of practice’’

(p. 371). The researchers speculated that such algebra teaching could be carried out with

minimal PCK and minimal reflection on reasons for students’ difficulties. Hadjidemetriou

and Williams (2002) compared 12 teachers’ PCK of teaching functions using graphical

representations with the actual results of their students (n = 425). Teachers were asked to

judge the difficulty of items, propose a learning sequence and diagnose likely errors and

misconceptions. They found that teachers’ lack of content knowledge interfered with their

judgements and that there was a mismatch between their perceptions of students’ diffi-

culties and the actual difficulties demonstrated by their students.

Hill et al. (2008) in their research on measuring teachers’ knowledge, focused on KCS.

Using multiple-choice items in the domains of Number and Algebra, they surveyed
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hundreds of US elementary teachers. Although their findings supported their conceptu-

alisation of this type of PCK as distinct from content or pedagogical knowledge, they

reported experiencing significant problems in measuring it. They related these difficulties

to the multi-dimensionality of ‘‘KCS’’ and to the limitations of multiple-choice items in the

survey. They believed that such questions may not distinguish between teachers’ use of

test-taking skills, mathematical reasoning (SCK), or KCS, in answering items correctly.

They suggested that open-ended response items may be more appropriate for researching

teachers’ PCK, even though considerably more expensive for large-scale studies. They

asserted that such topic-specific empirical research is important to further our under-

standing of mathematics knowledge for teaching.

Research design

Informed by empirically and theoretically grounded research described in the literature, the

overall project, of which this article describes a part, sought both to investigate and

improve teachers’ mathematics knowledge for teaching algebra to upper primary students

so as to develop their functional thinking. It aimed to ‘‘address both the pragmatic and

highly theoretical issues simultaneously’’ to achieve ‘‘reflexivity between theory and

practice’’ (Cobb 2000, p. 308). Since there was little research found in the literature on

practising teachers’ actual knowledge in teaching functional thinking, an initial survey of

105 upper primary teachers was undertaken as a precursor to an in-depth collective case

study of 10 teachers. The teachers who completed the survey were participating at that time

in the previously mentioned CTLM project. This included 10–12 full days of professional

learning (workshops, professional reading, and between-session tasks) over a 2-year per-

iod. At the beginning and end of each year, different cohorts of teachers (Prep to 2, Years

3/4, and Years 5/6) would complete a questionnaire of items developed by Roche and

Clarke (2011) during their attendance at the professional learning workshops. These sur-

veys aimed to assess teachers’ mathematics knowledge for teaching and to measure

changes over time.

Data collection

Early in 2012, 105 upper primary teachers completed a questionnaire on functional

thinking developed by the author, and provided data for the findings discussed in this

article. The survey explored different aspects of the teachers’ knowledge and practice for

teaching functions, relations and joint variation and for developing students’ functional

thinking. The questionnaire was pre-trialled with six upper primary teachers (who were not

participants in the CTLM project) to refine the structure and wording of items. The final

version used in the study is presented in the Appendix.

Informed by the previously mentioned recommendations of Hill et al. (2008) on

researching teachers’ knowledge, the questionnaire contained several open-ended response

items rather than multiple-choice questions. These items sought data about teachers’

understandings in four of the previously described knowledge domains conceptualised by

Hill et al. (2008) and are summarised below:
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Specialised content knowledge (SCK)

In order to investigate this knowledge relevant to functional thinking, the questionnaire

contained open-response items on generalising a geometric growing pattern in a variety of

ways, writing a functional relationship between variables using a symbolic equation, and

identifying co-variation and correspondence approaches to generalisation in a function

machine task. Teachers were asked to provide four possible correct student solutions to

questions from a growing pattern task (Appendix—Q3). These responses were intended to

give an indication of teachers’ ability to generalise growing patterns in a variety of ways.

Each solution was analysed and assigned a rubric score from a learning progression for

functional thinking (Table 1). Teachers were also asked to compare differently arranged

tables for the same function machine (Appendix—Q4) as an indication of their ability to

identify recursive and explicit generalisation strategies.

Knowledge of content and students (KCS)

This knowledge relevant to functional thinking included familiarity with the different types

and levels of sophistication of possible correct student responses to pattern generalisation,

and comprehension of a student’s mistake in pattern generalisation. For the caterpillar task,

teachers were asked to provide examples of (up to) four possible correct student responses.

Besides assessing the highest level of their responses as an indication of their SCK, these

four responses were further analysed to consider teachers’ knowledge of the range of

different types of possible student solutions, as an indication of their KCS: an awareness of

the different types of responses using recursive and explicit generalisation, and different

levels of sophistication of likely student responses.

Knowledge of content and teaching (KCT)

This knowledge relevant to functional thinking included addressing a student’s mistake in

pattern generalisation, and identifying appropriate teaching strategies for exploring func-

tional relationships. Teachers were given a student’s description of an incorrect solution for

Table 1 A learning progression framework of the development of functional thinking with growing pat-
terns (adapted from Markworth 2010, p. 253)

1. Extend a growing pattern by identifying its physical structure, features that change, and features that
remain the same (figural reasoning)

2. Identify quantifiable aspects of items that vary in a geometric growing pattern

3. Articulate the linear functional relationship between quantifiable aspects of a growing pattern by
identifying the change between successive items in the sequence (co-variation or recursive
generalisation)

4. Generalise the linear functional relationship between aspects of a growing pattern by:

4.1 Describing the relationship between a quantifiable aspect of an item and its position in the sequence
(correspondence or explicit generalisation)

4.2 Using symbols or letters to represent variables; or

4.3 Representing the generalisation of a linear function in a full, symbolic equation

5. Apply an understanding of linear functional relationships between variables to further pattern
analysis and multiple representations
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generalising the caterpillar growing pattern to find the number of stickers on caterpillar

#37:

Caterpillar #37 will have 37 times 4 spots for the top, bottom and sides of the caterpillar,

which is 148.

Teachers were asked to describe what they as a teacher might say or do in response to

the student. The student has used the four spots per caterpillar body part (also the dif-

ference between consecutive numbers in the sequence) but has not included the constant

(two spots on each end). To be able to address the student’s incorrect strategy, teachers

would need to be able to connect the student’s multiplication of the number of body parts

by 4 to the total stickers on each side of the caterpillar (4n) and to attend to the missing

constant (?2). Teachers’ written responses were categorised according to their recognition

of the response being incorrect (KCS) and to the level of understanding in effectively

addressing the student’s misconception (KCT), using a 4-level rubric (Table 2).

Three further items in the questionnaire investigated teachers’ knowledge of teaching

strategies for developing students’ functional thinking. Teachers were asked to indicate

from a list of language terms (relevant to functional thinking concepts) those they used

explicitly in their teaching, to suggest an appropriate activity involving the use of function

machines, and to explain how they might use different types of input/output tables in their

teaching to build on students’ thinking.

Knowledge of curriculum (KC)

This knowledge relevant to functional thinking included understanding and applying

curriculum content to appropriate types of learning experiences for students. Given the

recent introduction of the new Australian curriculum, it was considered important to

investigate teachers’ perceived comprehension of the relevant content on functions, rela-

tions and joint variation, and to compare this with their descriptions of how they would/do

apply the curriculum when providing learning experiences for their students. Teachers

were asked to respond to the wording of the Year 6 content description in the ‘‘Patterns and

Algebra’’ sub-strand of the Australian Curriculum: Mathematics (Australian Curriculum

Assessment and Reporting Authority 2009) using a Likert scale from 1 to 6 (‘‘easy to

understand’’ to ‘‘difficult to understand’’): ‘‘Continue and create sequences involving

whole numbers, fractions and decimals. Describe the rule used to create the

sequence (ACMNA133)’’.

In relation to the purpose of the overall project, the questionnaire also sought additional

data from teachers on their attitudes towards implementing relevant algebra content in the

new Australian curriculum, and on their suggestions for their professional learning. This

information was used to inform the subsequent design of an in-depth case study of 10

Table 2 A generic rubric for assessing the level of knowledge about the teaching or learning of functional
thinking (adapted from Downton et al. 2006)

1 Evidence of irrelevant response or incorrect understanding of teaching/learning of functions, relations
and joint variation

2 Evidence of partial but limited grasp of teaching/learning of functions, relations and joint variation

3 Evidence of understanding of teaching/learning of functions, relations and joint variation, but some key
ideas missing or not communicated clearly

4 Evidence of comprehensive understanding of teaching/learning of functions, relations and joint
variation, with reasoning clearly communicated
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teachers and their experience of a professional development programme over a 1-year

period (to be reported elsewhere). Only the data directly relevant to the teachers’ mathe-

matical knowledge for teaching functional thinking are considered in this article.

Data analysis

A ‘‘descriptive and interpretive’’ approach (O’Toole and Beckett 2010, p. 43) to data

analysis of the survey was implemented. Data were analysed using content analysis, with

the use of Excel spreadsheets for quantitative analysis and NVivo 9 qualitative analysis

software to support line-by-line coding of responses, the refinement of coding, and the

adaptation of themes (Creswell 2007). A process of check-scoring teachers’ responses to

assess their ability to generalise a growing pattern and to assess their knowledge of co-

variation and correspondence (function machine input/output tables) was undertaken by

pairs of researchers to increase the reliability of results. A cyclic process of scoring a set of

10 responses to Question 3a and discussing results to reach consensus was undertaken for

just over half of the 105 teachers’ responses. Development, testing and refinement of the

rubric for Question 4b and subsequent check-scoring of a selection of responses to reach

consensus were also undertaken by two researchers.

To analyse teachers’ responses to the questionnaire items, two different frameworks

were used as rubrics for assessing teachers’ levels of understanding in each of the four

knowledge domains. The first framework was based on research by Markworth (2010) who

developed an empirically-substantiated instruction theory on students’ development of

functional thinking with geometric (or figural) growing patterns. She used a design-based

research methodology with students in the sixth grade who were anticipated to have had

little prior experience with growing patterns or functional thinking. Markworth’s sub-

sequent learning trajectory was adapted to create the learning progression framework

presented in Table 1.

This learning progression was used as a rubric in the analysis of teachers’ written

responses when information was sought about teachers’ knowledge related to pattern

generalisation and representation of functional relationships. Detailed examples of teacher

responses and subsequent scoring using this framework are presented in relevant tables in

the Results section. Teachers’ responses to questions relating to their knowledge of the

teaching or learning of functional thinking were scored using a generic 4-point rubric,

presented in Table 2, which was adapted for each relevant item. Each of the tailored

rubrics is presented in relevant tables in the Results section.

Results

The results of the teachers’ knowledge are presented in terms of the four categories of

knowledge used to frame the study as previously discussed, that is, SCK, KCS, KCT, and

KC.

Teachers’ specialised content knowledge of functional thinking (SCK)

The findings of the teachers’ SCK of functional thinking in algebra are presented based on

their performance on the caterpillar task and the function machine task. The former focuses

on the teachers’ ability to generalise in relation to the highest level of understanding
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appropriate for upper primary grades and the latter on their ability to identify the two types

of generalisation (recursive and explicit).

Caterpillar task

Table 3 provides results of the teachers’ SCK of functional thinking based on their scores

for the caterpillar task. The scores represent the level of the teachers’ SCK based on the

learning progression framework (Table 1), that is, a score of 1 indicates low SCK and a

score of 4.3 indicates high SCK for functional thinking. Students at upper primary levels of

schooling are meant to be able to generalise recursively (earlier stage of understanding—

score of 2 or 3 on learning progression) and then also explicitly (later stage of under-

standing—score of 4.1/4.2/4.3). The score of 5 in Table 1 is not applicable for these grade

levels and in relation to the caterpillar task, so does not occur in Table 3. It is therefore

expected that an upper primary teacher with high SCK for functional thinking should be

able to achieve a score of 4.3, that is, in this case, be able to generalise a functional

relationship by writing a full, symbolic equation such as ‘‘y = 4x ? 2’’ for the caterpillar

growing pattern. Table 3 also includes descriptions of each score based on Table 1, the

percentage of teachers at each level of scores of the learning progression (i.e. their highest

level of SCK), and illustrative examples that are representative of their responses.

Based on Table 3, the teachers’ SCK ranged across all of the levels of the learning

progression with nearly three quarters scoring in the high range of 4.1–4.3. The distribution

and nature of the teachers’ approaches to the task consisted of the following (percentages

are rounded): 6 % of the teachers (score 1) added up the stickers; 10 % (score of 2) wrote

numeric sequences (caterpillar number, number of stickers), usually in a table format, and

used these to generalise recursively (co-variation); 72 % (score of 4.1, 4.2, or 4.3) were

able to generalise the linear functional relationship between the item number in the pattern

(the caterpillar number) and the item itself (the number of stickers on the caterpillar) using

explicit generalisation (correspondence); 31 % (score of 4.2) used a symbol (typically a

letter) to represent their generalisation in an expression, e.g. 4n ? 2, and 6 ? 4(n-1)

where n = caterpillar number; and 2 % (score of 4.3) wrote a full symbolic equation using

symbols for both variables, e.g. s = 4n ? 2 (s = number of stickers, n = caterpillar

number). Eight percent were unscored because the solutions were incorrect or inappro-

priate and 3 % made no response.

These findings indicate that 30 % of the teachers were not within expectations of SCK

for functional thinking and only 2 % achieved the highest level. Specifically, 6 % of

teachers demonstrated very low SCK (score of 1) and could only extend the geometric

pattern by drawing and adding up the stickers. A further 10 % of teachers who used

numerical reasoning to create a table of paired numbers or a number sequence also

demonstrated inadequate SCK (score of 2) since upper primary students need to be able to

generalise explicitly, not just recursively. Just over 70 % of teachers demonstrated at least

a reasonable level of SCK (score in the 4 range) which means they were able to make

explicit generalisation in some form (words, symbolic expression, or full equation).

Finally, 11 % of the teachers demonstrated a complete lack of SCK of functional thinking

based on this task and received no score on the learning progression.

Function machine task

The function machine task also sought to investigate teachers’ SCK about the two types of

generalisation—to see if they could identify recursive and explicit generalisation. The
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wording for the task was deliberately open-ended to see if teachers were familiar with and

able to describe the different representations of the functional relationship between vari-

ables (in this case, input and output numbers arranged consecutively and then non-con-

secutively). It was found that 17 % of the teachers attended to either approach in their

written response (mostly co-variation; only four teachers referred to correspondence), and

nearly 25 % attended to both approaches. Nearly one-third of teachers made a vague,

Table 3 Teachers’ levels of SCK (scores) for caterpillar task

Score on
learning
progression

Description Percentage
of teachers
(%)

Illustrative example

1 (low SCK) Extend pattern by drawing
or adding up stickers on caterpillar

5.7 ‘‘1 ? 4 ? 4 ? 4 ? 4 ? 4?
4 ? 4 ? 4 ? 4 ? 4 ? 4 ?
4 ? 4 ? 4 ? 4 ? 4 ? 4 ? 1’’

‘‘5 ? 4 ? 4 ? 4 ? 4 ? 4 ?
4 ? 4 ? 4 ? 4 ? 4 ? 4 ?
4 ? 4 ? 4 ? 4 ? 5’’

2 Create sequence or table of
quantifiable aspects of caterpillar

9.5 ‘‘Caterpillar # 1 2 3 4…

Stickers 6 10 14 18…’’

‘‘Adding up—skip counting 4 s.
6, 10, 14,…’’

3 Explain recursive generalisation by
referring to change in caterpillar
structure (co-variation)

1.9 ‘‘Start with 6 spots and add 4
more for each new caterpillar’’

‘‘Keep adding 4 for each
caterpillar’’

4.1 Explain explicit generalisation in words
or with a calculation (correspondence)

39.0 ‘‘Number of caterpillars
multiplied by 4 then add 2 for
each end’’

‘‘2 blocks on each end have 10
stickers. Take away those 2
blocks
from number of blocks then
multiply by 4’’

‘‘17 9 4 ? 2’’

4.2 Represent generalisation using
symbols/letters

31.4 ‘‘4 n ? 2’’

‘‘(5 9 2) ? (c - 2)
9 4 = answer’’

‘‘6 ? 4(n - 1)’’

4.3 (high
SCK)

Represent generalisation with full,
symbolic equation

1.9 ‘‘(a 9 4) ? 2 = b, where
a = no. of
blocks, b = no. of
stickers’’

‘‘4x ? 2 = y’’

Unscored
response

Incorrect or inappropriate student
response

7.6 ‘‘(6 9 17) - (2 9 17)’’

‘‘Look for the pattern and
develop an algebraic equation’’

No response 2.9

Teaching functional thinking in algebra 411

123



incorrect or irrelevant response, indicating a very low SCK for this type of task. A further

13 % made a response that could not be scored because it indicated a lack of understanding

of the task, and 12 % made no response at all. These findings indicate that only one-quarter

of the teachers demonstrated an expected level of SCK about the two types of general-

isation. It is likely that this perhaps more abstract type of representation of functional

relationships, although used widely in mathematics at secondary levels of schooling, relies

on a higher level of SCK to understand the different arrangements of the variables and how

they elicit different types of generalisation strategies. Some teachers may have only

experienced the use of such tables at secondary levels of schooling for graphing ordered

pairs of variables (x, y) rather than for generalising functional relationships.

Overall these results indicate that most teachers were able solve a simple linear growing

pattern generalisation using a correspondence approach but less than a third were able to

express this symbolically. Less than a quarter of the teachers attended to both co-variation

and correspondence approaches to generalising a functional relationship presented as a

table of pairs of variables (function machine or input/output table). This indicates perhaps

more familiarity with representing generalisations in words rather than with tables or

symbolic rules. Or it could be that the geometric growing pattern in the questionnaire was

conceptually easier to generalise than pairs of variables in a table of values.

Teachers’ knowledge of content and students for functional thinking (KCS)

Table 4 provides results of the teachers’ KCS for functional thinking based on the number

of possible correct student responses to the caterpillar task they were able to provide—the

teachers’ knowledge of the range of different types of possible student solutions, as an

indication of their KCS: an awareness of the different types of responses using recursive

and explicit generalisation, and different levels of sophistication of likely student

responses.

Approximately two-thirds of teachers provided two, three, or four solutions at different

levels of sophistication, which means that they were aware of different strategies students

might use when working with growing patterns. This indicates at least some KCS for

pattern generalisation, and yet only 18 % gave at least one example of recursive gener-

alisation (co-variation) and one example of explicit generalisation (correspondence). It was

more likely that teachers would give two solutions that used the same type of general-

isation approach, for example an extended picture and then a number sequence, or a rule in

words and then as a symbolic expression. This means that over 80 % of teachers did not

demonstrate an important aspect of KCS: familiarity with how students learn to generalise

patterns and the progression from continuing patterns to using recursive and explicit

strategies. Nearly 23 % could make only one correct student response, indicating

Table 4 Teachers’ number of
different types of student
responses for caterpillar task
(n = 105)

Number of different types of responses
(using learning progression levels)

Percentage of teachers (%)

One type 22.9

Two types 44.8

Three types 21.0

Four types 1.0

Unscored response 7.6

No response 2.9
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extremely low KCS, and only 1 % of the teachers presented four different correct student

responses to the task (high KCS). A further 3 % made no response.

For those teachers who demonstrated KCS about explicit generalisation, by far the most

common expression related to visualising the structure of the caterpillar was 4 stickers per

body segment plus 2 stickers for each end. It was interesting to find that five teachers (just

under 5 %) were able to show two different ways to visualise the structure of the caterpillar

and used each of these to find the rule, for example, 4 stickers for each block and 2 for the

ends (4n ? 2), and 5 stickers for each end block and 4 stickers for the blocks in between

[10 ? 4(n - 2)], or 6 stickers for each block take away the dots on the inside where the

blocks join together [6n - 2(n - 1)]. This high level of SCK about the different ways

students might visualise the structure of a growing pattern is crucial for interpreting various

student solutions.

Teachers were also asked to choose the most mathematically sophisticated of their

student response examples and to explain the reasons for their choice. Their responses were

analysed and assigned a score using the previously presented rubric (Table 2), as a way of

describing their KCS about the level of difficulty of the types of generalisation and stu-

dents’ likely learning progression from continuing patterns to recursive and explicit

strategies. The results and illustrative responses for each level are presented in Table 5.

It was found that less than 30 % of teachers appropriately referred to correspondence

concepts and/or to the use of variables or unknowns—key concepts for developing func-

tional thinking (rubric score of 3 or 4). One-fifth of teachers did not make a written

response at all to this particular question. Just over 13 % were unable to identify correctly

the most sophisticated response (i.e. lack of KCS). A further 7 % identified the correct

response but gave no justification. Nearly 8 % of responses could not be scored because

their solutions to the caterpillar task itself were incorrect. Overall, these findings indicate

that 70 % of the teachers were not within expectations of KCS for functional thinking and

only 6 % achieved the highest level.

Teachers were also asked to interpret a student’s incorrect response to the task, which is

another aspect of KCS, and then suggest an appropriate way to address it, which is

considered to be KCT. Although these two aspects are conceptualised by Hill et al. (2008)

as different types of knowledge, the focus of the task was intended to be on the teachers’

KCT and is discussed in the following sub-section.

Teachers’ knowledge of content and teaching of functional thinking (KCT)

Four items in the questionnaire investigated the teachers’ KCT, one item about the cat-

erpillar task, one item about terminology for teaching functional thinking, and two items

about teaching with function machines.

Caterpillar task

The first of these items asked teachers to make an effective response to a student’s error

with the caterpillar pattern task (but they were not told that the student response was in fact

incorrect). These results are presented in Table 6.

These results indicate that more than 25 % of the teachers were unable to clearly

recognise the student’s error and therefore were unable to demonstrate an effective

response to it. All of those teachers who did clearly identify that the student’s solution was

incorrect were able to demonstrate at least some KCT in responding to the student. Overall,

only 43 % of teachers described a clear and appropriate response to help the student relate
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the structure of the caterpillar to the missing number of dots (on the ends), which indicates

an appropriate level of KCT for functional thinking, but only about 10 % achieved the

highest level. A further 20 % of the teachers did not make any written response to the item

on the student’s error.

Terminology task

The teachers were asked to indicate from a list of terms (concepts) relevant to functions,

relations and joint variation, those which they used explicitly in their teaching practice.

This was intended to provide some insight into the teachers’ familiarity with terminology

and the use of related teaching strategies for developing functional thinking. It was found

that approximately one-third of teachers indicated that they used the term ‘‘function’’ in

their teaching. One-third indicated use of the term ‘‘variable’’ (used in the state curriculum)

but nearly 60 % indicated that they referred to ‘‘unknown amounts or quantities’’ in their

teaching. Nearly 80 % indicated use of the term ‘‘rule’’ (used in both state and national

curriculum) and nearly 93 % used the term ‘‘sequence’’ in their teaching, but only 43 %

used ‘‘growing pattern’’. Overall, more than half of teachers indicated a lack of familiarity

with the use of geometric growing patterns for teaching generalisation (low KCT) and

Table 5 Teachers’ explanations of the most sophisticated mathematical solution to the caterpillar task and
illustrative responses (n = 105)

Score on PCK
rubric

Description Percentage of
teachers (%)

Illustrative example

Incorrect choice 13.3

Correct choice but
no explanation

7.6

1 (low KCS) Vague, incorrect or
irrelevant explanation

6.7 ‘‘Probably the 1st or last
example because it
involves 2 operations’’

2 Reference to relevant
terms or concepts but
key ideas missing or not
communicated clearly

16.2 ‘‘4th Representation is
clear, making a pattern
more apparent’’

3 Reference to explicit
generalisation
(correspondence) e.g. to
rules, to efficiency, or
to variables/unknowns

21.9 ‘‘3rd—All the student
needs to do is change
the number of blocks
and will have an answer
every time. It is similar
to 4x ? 2’’

4 (high KCS) Reference to explicit
generalisation
(correspondence) and to
variables/unknowns)

5.7 ‘‘4n ? 2 involves
representing an
unknown number with a
letter/symbol i.e.
Algebra. Shows
understanding of pattern
and calculating any size
caterpillar’’

Unscored
response

Incorrect previous student
example

7.6

No response 21.0
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more familiarity with using number sequences to find the rule. As previously highlighted in

the literature review, a teaching approach that relies only on number sequences can lead to

students merely following procedures for finding a rule rather than developing functional

thinking.

Function machine task

Two further items investigated teachers’ KCT about the use of function machines. The

teachers were asked if they used function machines in their teaching and if so, to provide an

appropriate activity they might use in their teaching of upper primary students. Nearly

50 % of the teachers indicated that they taught with function machines, but only 16 % of

the activities they suggested for teaching these concepts were appropriate and demon-

strated reasonable KCT. These activities were related to the concepts of input and output,

Table 6 Teachers’ response to student misconception in the caterpillar task and illustrative responses
(n = 105)

Score on
PCK rubric

Description Percentage of
teachers (%)

Illustrative example

Not
recognised
as incorrect

N/A Interprets student
response as correct

1.9 ‘‘That it is correct’’

Unclear if
recognised
as incorrect

1 Vague, incorrect or
irrelevant explanation

18.1 ‘‘Can you prove it? Tell me
how you came to that
answer’’

2 (low KCT) Reference to relevant
terms or concepts but
key ideas missing or not
communicated clearly

7.6 ‘‘How could you prove to me
that your formula/answer is
correct? Without drawing
37 blocks? Could you try
your calculations for a
smaller number of blocks
and find out if they work?’’

Recognised
as incorrect

1 Vague, incorrect or
irrelevant explanation

0.0

2 (some
KCT)

Reference to relevant
terms or concepts but
key ideas missing or not
communicated clearly

9.5 ‘‘Maybe get them to visualise
and remember that the
blocks are connected so you
do not always count the
sides. Also ask how many
sides does a cube have?’’

3 Reference to the missing
end stickers

33.3 ‘‘I think you may have missed
the ones at the end’’

4 (high
KCT)

Reference to missing end
stickers and to
appropriate strategy for
student, e.g. look at
structure of caterpillar,
look at smaller
caterpillar to check

9.5 ‘‘Firstly, praise that they are
close, but need to get some
blocks to check. So get
connector blocks and join
37 or a small group such as
10 ? together, count how
many sides and then how
many spots. Hopefully from
the model they will see the
2 extra spots on the ends’’

No response 20.0
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and finding a function or rule for the relationship between them. For example, a response

deemed as appropriate was ‘‘Simple in and out functions, e.g. Put 2 in, machine adds 3—

outcome 5. Figure out the function if…’’ The following response was considered to be

ambiguous and did not demonstrate a clear understanding of the use of function machines:

‘‘Tune in activities—students use their mental calculations to begin the lesson thinking

about whole numbers, decimals or fractions (depending on the lesson focus).’’ Overall, the

result for this item indicates a low KCT for the majority of teachers.

Teachers were also given two examples of input/output tables from the same function

machine and asked to explain how and why a particular way of arranging variable pairs in a

table would support their teaching of functional thinking. Table A (Appendix—Q4b)

contained consecutive input numbers, highlighting co-variation whereas Table B contained

non-consecutive input numbers, encouraging correspondence approaches to finding the

relationship between input and output numbers. Both tables contained ordered pairs where

the input number is n and the output number is 2n ? 1. Table 7 presents data on the

scoring of teachers’ responses using the previously described adapted rubric (Table 2).

From the results for this item, it can be seen that only 25 % of the teachers demonstrated

at least some KCT by attending to both co-variation and correspondence concepts in their

responses. Less than 10 % were able were able to clearly relate the differences between the

arrangements of the two function machine tables and the concepts of co-variation

(recursive generalisation) and correspondence (explicit generalisation) to helping students

generalise the relationship between input and output numbers. Nearly one-third of the

teachers demonstrated very low or no KCT on this task by providing vague, incorrect or

irrelevant explanations. A further 25 % either made no response or wrote that they did not

understand the question.

Teachers’ knowledge of curriculum on functional thinking (KC)

Teachers were given an excerpt from the new national curriculum and asked to indicate

their perceived level of comprehension of the content on a scale from easy (1) to difficult

(6) to understand. They were also asked if they currently teach this kind of content. Table 6

presents the percentages of teachers who selected each level of comprehension of the

content description and who stated that they currently teach this kind of content. For

example, of the 105 teachers in total, just over 25 % gave a score of 1 (easy) for the content

description, and just over 80 % of these teachers also stated that they teach this type of

content. Nearly 4 % of the teachers found the content difficult to understand (score of 6)

and 50 % of these nevertheless indicated that they currently teach it.

The median score for the level of comprehension was 2, indicating that in general the

teachers found the description of the curriculum quite easy to understand, although from

the second column in Table 6, it can be seen that 20 % of teachers either gave a score of

5/6 (difficult to understand) or did not make a response at all (Table 8).

The accumulated totals showed that overall, two-thirds of the teachers reported that they

currently teach this kind of content. The content description used in the survey was from

the recently introduced Australian Curriculum but the prescribed curriculum for Victorian

schools over the past several years (VELS) contained similar (even more detailed)

descriptions and with examples of the two types of generalisation, so it is perhaps sur-

prising that a significant proportion of teachers have excluded these concepts from their

teaching programme, which are deemed as essential for upper primary students.

The teachers were also asked to give an example of an appropriate activity they might

use to teach this kind of content, which is an important aspect of KC—the ability to apply
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their understanding of curriculum to the development of learning experiences for students.

The results showed that just over 20 % of the teachers did not make a response to this item.

Of the nearly 80 % of teachers who did provide an example, only 48 % of their examples

were deemed as relevant to patterns and algebra. For example, the following response was

judged as relevant: ‘‘Create a growing pattern demonstrated visually and in a table and

have students continue the pattern and table of values. Extension is students will write a

Table 7 Teachers’ explanation of differences between co-variation and correspondence using function
machine tables and illustrative responses (n = 105)

Score on PCK
rubric

Description Percentage of
teachers (%)

Illustrative example

1 (low KCT) Vague, incorrect or
irrelevant explanation

32.4 Table A: ‘‘Result numbers
are smaller; therefore,
they are easier to work
with.’’ Table B: ‘‘Input
numbers are larger so
they give a more accurate
output/result. That is, the
sample is larger.’’

2 Attendance to either co-
variation (recursive
generalisation;
consecutive arrangement
of input numbers) or
correspondence (explicit
generalisation to find
rule)

17.1 Table A: ‘‘This table
perhaps would be helpful
in observing patterns in
which the input pattern
grows by one.’’ Table B:
left blank

Table A: ‘‘Shows function
of 2n ? 1. Origin of 1 so
it is better.’’ Table B:
‘‘Shows function of
2n ? 1.’’

3 Attendance to both co-
variation and
correspondence but
separately

16.2 Table A: ‘‘Benefits—you
can see the sequential
relationships. You can use
it to predict the next
number in the sequence.’’
Table B: ‘‘Benefits—you
can see that the rule is
consistent no matter what
your input number is.’’

4 (high KCT) Connection between
concepts of co-variation
and correspondence and
students’ learning

8.6 Table A: ‘‘Can see pattern
in output clearly (adding
2 each time) i.e. have 2nd
step of relationship.’’
Table B: ‘‘Greater range
of numbers and focuses
children to look at
relationship between
input and output rather
than between numbers in
just ip or op’’

Unscored
response

Written response indicating
lack of understanding of
question

13.3 ‘‘Not sure’’
‘‘No idea’’

No response 12.4
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rule to describe the growing pattern.’’ The response ‘‘Doubling/halving ingredients to cater

for different numbers of people’’ was not considered to be relevant. In other words, more

than 60 % of the teachers were unable to demonstrate the expected KC for teaching upper

primary students.

Discussion and implications

The effective teaching and learning of algebra is considered a priority internationally and

the recent introduction of a national curriculum in Australia has explicitly brought algebra

to the attention of teachers at primary levels of schooling. Although there is considerable

theoretically grounded research in the literature on the knowledge teachers ought to have

for teaching mathematics, there seems to be far less empirical research on what mathe-

matics knowledge teachers actually do have, and even less on teachers’ knowledge for

teaching algebra in particular. This study sought to investigate upper primary teachers’

actual knowledge of functions, relations and joint variation—an important area of algebra

that requires considerable conceptual development and algebraic reasoning particularly in

the middle years of schooling. The intent was to understand more about what teachers

might need specifically in their professional learning to help them teach algebra effec-

tively. This section summarises and discusses areas of strengths and weaknesses in the

teachers’ knowledge, relationships among the four types of knowledge investigated, and

implications for teacher professional development.

Teachers’ strengths and weaknesses

The findings indicate that, for the most part, the teachers’ knowledge of functional thinking

was below the level expected for teaching middle-school algebra. This provides further

evidence of teachers’ inadequate understanding of mathematics for teaching. More

importantly, it contributes to our understanding of the nature of the different types of

knowledge they hold in terms of their strengths and weaknesses that could inform middle-

school-teacher learning of algebra for teaching. Table 9 provides a summary of key

findings for each of the four types of knowledge investigated in this study and what a

majority of the teachers were able to do (i.e. strengths) and not able to do (i.e. weaknesses).

Table 8 Teachers’ scores for their understanding of ‘‘Patterns and Algebra’’ content and stated teaching
practice (n = 105)

Score on Likert scale
(1–6: easy to understand
to difficult to understand)

Percentage of teachers
who gave score at each
level (%)

Percentage of teachers
at each level who stated
they taught this type of
content (%)

1 (easy) 25.7 81.5

2 32.4 73.5

3 13.3 57.1

4 9.5 60.0

5 10.5 36.4

6 (difficult) 3.8 50.0

No score given 4.8 40.0

418 K. J. Wilkie

123



Just over two-thirds of the teachers were able to demonstrate a reasonable SCK by

completing a geometric growing pattern task suitable for upper primary students using

explicit generalisation (correspondence), with a majority expressing their generalisation in

words. This result is similar to or higher than figures reported in studies on prospective

teachers, in which less than half completed a generalisation task correctly (Goulding et al.

2002), or struggled to identify the visual pattern (Rule and Hallagan 2007). A recent

international study of prospective teachers found that 77 % used recursive generalisation

correctly, but only 54 % could generalise explicitly (Australian Council for Educational

Research 2010). One-third of the teachers could represent their generalisation with a

symbolic expression, but only 2 % used a full symbolic equation with both variables

included. Nearly two-thirds of them were able to demonstrate at least some KCS by

providing correct student responses at different levels of understanding for the growing

pattern task, but less than 20 % gave both a recursive example and an explicit example of

generalisation, which is of concern since upper primary students are expected to be able to

use both strategies. An underlying concern is that they may also be unfamiliar with the

likely learning progression for students and that explicit generalisation is considered to be

at a higher level of understanding than recursive generalisation. This implication relates to

a study of secondary teachers’ knowledge for teaching functions using graphical repre-

sentations which found that teachers had incorrect perceptions of an appropriate learning

sequence for students (Hadjidemetriou and Williams 2002).

Regarding KCT, although half of the teachers indicated that they used function

machines in their teaching practice, only one-quarter demonstrated at least some knowl-

edge of the use of consecutive and non-consecutive pairs of variables for teaching func-

tional relationships (KCT). These results are considerably lower than those for the

caterpillar task in the survey, suggesting that input/output tables as another way to rep-

resent a functional relationship may be unfamiliar or not well-understood by most of the

teachers. Driscoll (1999) highlighted the importance of understanding functional rela-

tionships using this type of representation. The limited number of language terms that

teachers indicated they used in their teaching (lack of KCT) also suggests that they may

have not had exposure to the variety of terminology and teaching strategies possible for

this aspect of algebra. The results regarding KCT indicate overall that few teachers may

Table 9 Strengths and weaknesses in teachers’ mathematical knowledge for teaching functional thinking

Knowledge
type

Strengths Weaknesses

SCK Identify and represent generalisation of
growing pattern in words or with a
calculation

Represent generalisation symbolically

KCS Provide possible correct student responses Provide recursive and explicit examples of
generalisation

Use appropriate algebraic terminology

Interpret students’ mistakes

KCT Provide appropriate response to a student’s
mistake

Use algebraic terminology in teaching

Use consecutive and non-consecutive pairs
of variables for teaching generalisation

KC Apply curriculum to appropriate activities
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have the necessary knowledge of how students develop functional thinking or the diffi-

culties students have in using correspondence approaches (KCS) to be able to make

effective use of tables of paired variables or function machines in their teaching (KCT),

which were highlighted by Moss et al. (2008) as valuable for middle primary students in

developing functional thinking.

Finally, regarding KC, the findings highlighted that a considerable proportion of the

teachers may not even be teaching algebra content related to functions, relations and joint

variation as described in state and national curriculum documents. Most of them believed

that they understood relevant content in the new curriculum, yet the majority could not

apply it to appropriate activities for teaching it (KC). This suggests that they may not

comprehend the actual content in the curriculum on algebra but without realising it and that

merely reading the prescribed documentation does not necessarily mean that teachers have

improved their KC.

With a majority of the teachers being able to generalise a growing pattern explicitly

themselves (SCK) and less than half able to interpret a student’s mistake on the same task

(KCS) and provide an appropriate response (KCT), it is possible many of them may have

employed algebraic procedures that enabled them to find the correct rule for a functional

relationship without understanding it conceptually, thus making it difficult for them to

diagnose and address student difficulties. Kuchemann (2010, p. 248) stated that ‘‘teachers

may not be in the habit of looking for mathematical structure and will thus need experience

of thinking in this way.’’ These findings highlight the difference between knowing how to

do the mathematics for oneself and knowing the why so as to be able to teach it effectively.

To teach students to develop functional thinking and a conceptual knowledge of algebra,

teachers need to have developed considerable SCK based on relational understanding

(Skemp 2002). The typical symbol-manipulation approach to learning algebra typically

experienced by teachers when they were at secondary school is unlikely to provide a solid

foundation on which to build their KCS and of content and teaching (KCT). This result

suggests the value of professional learning that encourages teachers to apply their SCK to

student work analysis and to become familiar with a variety of common student visual-

isation strategies and generalisation difficulties (such as inappropriate use of proportional

reasoning). Suitable teaching strategies to address these would also be important.

Relationships among knowledge

The findings of the study also suggest possible relationships among some of the different

types of knowledge that were inconsistent with what one might expect. For example, while

the teachers’ SCK was strong, their KCS was weak. This suggests that SCK does not

necessarily support KCS or vice versa, that is, there is not a direct relationship between the

two, or in terms of the framework of Hill et al. (2008), there is a difference between SCK

and KCS. Specifically, this finding indicates that teachers are more likely to be able to

solve the pattern generalisation task for themselves (i.e. indicating high SCK for it), but

without necessarily understanding students’ thinking or the process by which students learn

to generalise (i.e. weak or lack of KCS). It corresponds to the findings of Nathan and

Petrosino (2003) that prospective secondary teachers could apply their content knowledge

of algebra for themselves but without knowing the processes by which novices learn. In

their study of prospective and practising elementary teachers, Jacobs et al. (2010) found

that some teachers’ difficulties in interpreting students’ solutions may have been reflective

of a lack of familiarity with students’ strategies (KCS) or to a lack of their own content

knowledge (SCK). They explained, ‘‘To interpret children’s understandings, one must not
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only attend to children’s strategies, but also have sufficient understanding of the mathe-

matical landscape to connect how those strategies reflect understandings of mathematics

concepts’’ (p. 195). They did find that sustained and targeted professional development

supported the improvement of teachers’ expertise in noticing students’ mathematical

thinking.

Similarly, the teachers’ KCT was weak in relation to their SCK, again suggesting that

the latter does not necessarily support the former. While a majority of the teachers were

able to find the correct rule for the total number of dots for any number caterpillar (SCK),

less than half of them could not provide appropriate student response (KCT). The con-

siderably lower percentage of teachers who demonstrated an effective teaching response

seems to illustrate the difference between ‘‘doing’’ the mathematics for oneself (SCK) and

‘‘teaching’’ the mathematics effectively using relational understanding and functional

thinking (KCT). This indicates that in general, teachers may have a higher level of SCK

than KCT. The gap between 72 % of teachers with reasonable SCK and 43 % with rea-

sonable KCT about the same pattern generalisation task raises the issue of the difference

between their relational and instrumental understanding of mathematics (Skemp 2002). In

order to understand the students’ errors, teachers would need a relational understanding of

pattern generalisation rather than just the ability to use a procedure for finding the rule.1 It

is possible that some teachers may have used a procedure rather than the visual structure of

the caterpillar to generalise. This would still produce the correct rule but relies on

instrumental understanding—‘‘rules without reasons’’ (Skemp 2002, p. 2)—rather than on

relational understanding, in this case how the variables relate to the visual structure of the

caterpillar. Relying on such a procedure would subsequently make it difficult for teachers

to interpret a student’s mistake (KCS) and respond effectively to it (KCT), because they

would not have understood the pattern’s structure for themselves. They would therefore

demonstrate more SCK than KCT.

Implications for teacher professional development

The findings have highlighted some key issues worth considering when developing pro-

fessional learning for teachers in algebra based on the strengths and weaknesses high-

lighted in Table 8. The following presents some particular suggestions for improving the

different types of mathematics knowledge needed for teaching functions, relations and

joint variation.

The findings for SCK suggest professional learning that focuses on representing gen-

eralisations in a variety of ways so that teachers can connect their verbalised understanding

of the structure of growing patterns with ordered and un-ordered pairs of variables, with

graphs of variables and with the use of letters or symbols in an equation. For KCS, this

suggests professional learning that helps teachers to understand more about the process by

which students learn to generalise (e.g. the learning progression in Table 1), the variety of

responses students might make to generalisation tasks, likely difficulties and the teaching

strategies that encourage students to move from recursive to explicit generalisation as

conceptually appropriate. The definition and use of language terms to help teachers

understand and communicate their knowledge would also be valuable. These could include

1 Such a procedure might be as follows: ‘the ‘jump’ between consecutive numbers in the sequence is the
number that goes before the ‘n’ (4 for the caterpillar pattern) and then you add or take away another number
to adjust the ‘n’ term get the rule’ (‘?2’ in the case of the caterpillar pattern to get ‘4n ? 2’). The author has
seen this procedure outlined in secondary mathematics textbooks.
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terms such as unknown quantity, variable, constant, generalisation, correspondence

(explicit), co-variation (recursive), growing pattern, geometric or figural or numeric,

ordered pairs, function, functional relationship, rule, equation, input, output, sequence,

graphs and Cartesian plane.

Regarding KCT, the findings suggest the need to help teachers develop deeper under-

standing of the two types of generalisation (recursive and explicit) and effective teaching

approaches that provide students with opportunities to explore functional relationships in a

variety of contexts, such as geometric growing patterns, function machines with input/

output tables and number sequences. Regarding KC, it is worth considering the inclusion of

a greater range of curriculum documentation in professional learning programmes so that

teachers are able to develop a more comprehensive knowledge of content descriptions and

a larger repertoire of terminology and ideas for students’ learning experiences. Looking at

algebraic concepts in the early years of schooling and later middle (early secondary) years

might also contribute to upper primary teachers’ knowledge at the mathematical horizon

(Hill et al. 2008) so that they are able to support students at different levels of

understanding.

Finally, the study has implications for further research on teachers’ knowledge of

functional thinking. For example, the description of each type of knowledge and the rubrics

for analysing data can provide insights to researchers about these constructs and tools.

Other topics in algebra also need to be explored in addition to participants in other con-

texts, such as lower secondary mathematics teachers, to get a wider scope of teachers’

knowledge for teaching algebra in middle school.

Conclusion

This study contributes to an under-represented area in the research literature for an

important area of mathematics education and mathematics teacher education. In general, it

suggests that it would be worthwhile, when considering the professional learning of upper

primary teachers, to pay attention to their SCK of functions, relations and joint variation so

that they develop a relational understanding for themselves and their own ability to use

functional thinking rather than simply follow learnt procedures without necessarily

understanding them. This would then provide a solid foundation on which to build

teachers’ knowledge of how students learn and effective teaching strategies they can use.

The use of a wider range of curriculum documentation in their professional learning would

contribute to a greater familiarity with key concepts and terminology and a larger reper-

toire of learning experiences and teaching strategies appropriate for algebra. In order to add

further depth to this work, the author is engaging in ongoing research using data from an

in-depth collective case study of 10 teachers and their classes to continue to investigate

ways to address upper primary teachers’ professional learning needs in this important area

of mathematics.
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