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Abstract There is a growing effort to make proof central to all students’ mathematical

experiences across all grades. Success in this goal depends highly on teachers’ knowledge

of proof, but limited research has examined this knowledge. This paper contributes to this

domain of research by investigating preservice elementary and secondary school mathe-

matics teachers’ knowledge of proof by mathematical induction. This research can inform

the knowledge about preservice teachers that mathematics teacher educators need in order

to effectively teach proof to preservice teachers. Our analysis is based on written responses

of 95 participants to specially developed tasks and on semi-structured interviews with 11 of

them. The findings show that preservice teachers from both groups have difficulties that

center around: (1) the essence of the base step of the induction method; (2) the meaning

associated with the inductive step in proving the implication P(k) ) P(k + 1) for an

arbitrary k in the domain of discourse of P(n); and (3) the possibility of the truth set of a

sentence in a statement proved by mathematical induction to include values outside its

domain of discourse. The difficulties about the base and inductive steps are more salient

among preservice elementary than secondary school teachers, but the difficulties about

whether proofs by induction should be as encompassing as they could be are equally

important for both groups. Implications for mathematics teacher education and future

research are discussed in light of these findings.
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Introduction

There is a growing appreciation of the idea that proof should become central to all stu-

dents’ mathematical experiences as early as the elementary grades (e.g., NCTM, 2000;

Schoenfeld, 1994). There are three main reasons for this increased emphasis on proof.

First, proof is essential for deep learning in mathematics (e.g., Hanna, 2000) and within the

conceptual reach of even young children in supporting classroom environments (e.g.,

Maher and Martino, 1996). Second, students’ proficiency in proof can improve their

mathematical proficiency more broadly, because proof is ‘‘involved in all situations where

conclusions are to be reached and decisions to be made’’ (Fawcett, 1938, p. 120). Third,

the difficulties that many high school and university students face with proof have been

attributed, at least in part, to students’ abrupt introduction to proof in high school (e.g.,

Marrades and Gutiérrez, 2000; Sowder and Harel, 1998), so it is important that students be

offered appropriate experiences with proof earlier in their schooling.

A prerequisite in the effort to make proof central to school mathematics is that teachers

of all levels have solid knowledge of proof, that is, sturdy knowledge that withstands

attempts to inject contradictions into it. If teachers’ knowledge of proof is fragile, that is, it

is shaky and yields to attempts to inject contradictions into it (Steiner, 1989; see also

Brousseau and Otte, 1991; Movshovitz-Hadar, 1993), it is likely that teachers will teach

proof poorly or will not teach proof at all. As a result, the current vision in mathematics

education to provide all students with rich opportunities to develop proficiency in proof

will be undermined and the difficulties that many students face with proof (e.g., Fischbein,

1982; Healy and Hoyles, 2000) will probably persist.

The above remarks highlight the necessity for studies that will illuminate common

strengths and weaknesses in preservice teachers’ knowledge of proof, thus creating a

research base for use by mathematics teacher educators in teacher preparation programs.

This research base can inform the knowledge about preservice teachers that mathematics

teacher educators need in order to teach proof effectively to preservice teachers. The

knowledge about preservice teachers can be seen as an important component of the ped-
agogical content knowledge (Shulman, 1986) that is useful for mathematics teacher edu-

cators. Although many parallels have been drawn between the work of mathematics

teacher educators in teaching preservice teachers and the work of mathematics teachers in

teaching students (e.g., Cooney, 1994), the idea that mathematics teacher educators need to

develop kinds of knowledge that are isomorphic to those that mathematics teachers need to

develop has received significantly less attention. In science education, however, the notion

of ‘pedagogical content knowledge for science teacher educators’ has been widely elab-

orated (e.g., Magnusson, 1996; Smith, 2000).

Despite the need for a research base of preservice teachers’ knowledge of proof, little

work has been done in this domain (Harel, 2002; Knuth, 2002; Martin and Harel, 1989;

Movshovitz-Hadar, 1993; Simon and Blume, 1996; Stylianides, Stylianides, and Philippou,

2004). Most of the available studies have focused on secondary teachers and few have

focused on specific methods of proof, such as proof by mathematical induction. This paper

contributes to this research area by reporting on an empirical inquiry into preservice

elementary and secondary mathematics teachers’ knowledge of proof by mathematical

induction. Our analysis also provides useful insight into preservice teachers’ knowledge of

proof more generally.

As background for the paper, we present the mathematical structure of proof by

mathematical induction, elaborate on why this proof method warrants attention in teacher
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preparation programs, and summarize research findings about adults’ knowledge of it.

Then, we define the specific scope of our paper, stating clearly our research goals.

Background

Mathematical structure of proof by mathematical induction

The proof method of mathematical induction is important for proving propositions of the

form ‘8n 2 D; PðnÞ’, where P(n) is an open sentence asserting a relation among the

elements of the set D ¼ fnjn 2 N; n � n0g, the domain of discourse.1 The method pro-

ceeds in two steps: the base step, which establishes P(n) for an initial value n = n0, and the

inductive step, which proves the implication P(k) ) P(k + 1) for an arbitrary k in D.

Finally, by appeal to the Principle of Mathematical Induction (Peano’s fifth postulate for

the foundation of natural numbers) one can conclude that P(n) holds for all n in D. The

Principle of Mathematical Induction permits the application of modus ponens to establish

the truth of an infinite set of propositions P(n), one for each n in D. Below is a formal

representation of proof by mathematical induction:

½Pðn0Þ ^ 8k 2 D;PðkÞ ) Pðk þ 1Þ� ) 8n 2 D;PðnÞ:

Why proof by mathematical induction warrants attention in teacher preparation

programs

Apart from its mathematical significance, mathematical induction warrants attention in

teacher education programs for at least four other reasons. The first two reasons relate to

both elementary and secondary teachers, the third relates to secondary teachers, and the

fourth relates to elementary teachers.

First, preservice teachers’ engagement with any proof method offers them insight into

what it means to do mathematics. It is part of the role of teacher education programs to

help preservice teachers to appreciate the process of establishing new knowledge as well as

other processes that are central in the discipline. Sullivan (2003) criticizes the fact that

preservice mathematics and science teachers have limited knowledge of the breadth of

their disciplines and the nature of disciplinary thinking, because he considers this limita-

tion in preservice teachers’ knowledge to be a key influence on the way they will teach.

Also, he argues that this limitation is most likely a product of the way university courses

are taught and assessed.

Second, mathematical induction can provide a context within which preservice teachers

can improve their conceptions of proof and enhance their ability for logical thinking. Harel

(2002) examined the effect of a novel instructional approach on students’ conceptions of

proof with a group of preservice secondary school mathematics teachers. He found that an

approach based on the premise that students should develop the principle of mathematical

induction through problems they can understand and appreciate improved students’ ability

to think logically.

1 Mathematical induction can be used more broadly to prove statements about the elements of sets that can
be placed in one-to-one correspondence with N (the set of positive integers).
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Third, in many countries, secondary school mathematics teachers are expected to teach

mathematical induction (e.g., NCTM, 2000, p. 345), so they need to have solid knowledge

of this proof method in order to avoid fragile teaching of proof (Movshovitz-Hadar, 1993).

One could argue further that, because secondary school students are expected to understand

mathematical induction, elementary school teachers need to know this proof method in

order to build the foundations for their students’ future learning.

Fourth, although elementary school teachers are not expected to teach explicitly

mathematical induction, solid knowledge of mathematical induction can enhance their

ability to: (1) handle certain mathematical issues that may arise in the classroom, and (2)

recognize rudimentary versions of mathematical induction in their students’ arguments and

promote students’ understanding of these arguments. Regarding (1), the report ‘Goals for

mathematical education of elementary school teachers’ (Cambridge Conference on Tea-

cher Training, 1967) offers specific examples of how mathematical induction can be useful

for elementary teachers:

With [mathematical] induction we can prove theorems such as the fundamental

theorem of arithmetic, the division algorithm, and the Euclidean algorithm; then we

can point out for what kinds of integral domain the proofs hold. But there are other

reasons for introducing a prospective K-6 teacher to mathematical induction. A

teacher is very likely to be asked two specific questions by children ‘Is there a

biggest number?’ and ‘Is 1/0 equal to infinity?’ (p. 64).

Solid knowledge of mathematical induction will help elementary teachers to reason about

questions like those in the quotation and to figure out appropriate ways to communicate

this reasoning to their students. Regarding (2), existing evidence from elementary class-

rooms shows that young children can produce rudimentary arguments by mathematical

induction and engage in relevant activities (Maher and Martino, 1996; Reid, 2002). For

example, Maher and Martino (1996) report an episode with a 9-year-old child who ex-

tended an earlier argument by cases to an argument by mathematical induction. Solid

knowledge of mathematical induction would allow the teacher of the class to appreciate the

mathematical value of this argument and design instruction so that the other students in the

class would make sense of it.

Summary of research findings on adults’ knowledge of proof by mathematical

induction

Although proof by mathematical induction is central to the university mathematics

curriculum, many undergraduate students lack understanding of this proof method,

showing an indication of fragile knowledge. A number of studies (Dubinsky, 1986, 1990;

Dubinsky and Lewin, 1986; Harel, 2002; Knuth, 2002; Movshovitz-Hadar, 1993) offer

insights into university students’ and other adults’ knowledge of proof by mathematical

induction.2

Movshovitz-Hadar (1993) presents evidence of knowledge fragility in connection with

mathematical induction, as observed during her work with preservice secondary school

teachers on an invalid proof that involved a statement with a complicated set of hypoth-

eses. The cognitively demanding task, coupled with students’ limited understanding of the

2 The main goal of many of these studies has been the development of novel approaches to teaching proof
by mathematical induction and not so much the examination of adults’ knowledge of this proof method.
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underlying principles of mathematical induction, made apparent the fragility of their

knowledge about whether the proving process is circular. In a study with 22 mathematics

majors, Dubinsky and Lewin (1986) found that students had difficulties in encapsulating

modus ponens and in coordinating it with the structure of implication-valued function. In a

different study with sophomore students (mainly computer science and engineering ma-

jors), Dubinsky (1986, 1990) identified two main student difficulties. The first relates to the

character of the implication as a total entity: instead of trying to prove the inductive step

P(k)) P(k + 1), several students tried to prove P(k + 1). The second relates to the essence

of the base step, which was viewed by some students as a procedure without any real

meaning.

Harel (2002), in his analysis of undergraduate students’ proof schemes of mathematical

induction, identified similar difficulties around the essence of the base step and also three

other difficulties: (1) Students consider mathematical induction as a case of circular rea-

soning because they believe that the proof assumes that P(n) is true for all positive integers;

(2) Students believe that mathematical induction is a technique in which the drawing of a

general argument is derived from a number of particular cases; and (3) Students follow the

rule prescribed by the principle of mathematical induction without understanding what

they are doing.

Finally, Knuth (2002) examined 16 in-service secondary school teachers’ conceptions

of proof, including proof by mathematical induction. Some of the subjects accepted an

argument by mathematical induction as a proof to a given statement not because they

understood the method, but because they heard of the method before and they knew that it

offered a valid way to prove mathematical statements.

The scope of the paper

This paper aims to inform the knowledge about preservice teachers that mathematics

teacher educators need in order to teach proof effectively in teacher preparation programs,

by testing and extending what is currently known about preservice teachers’ knowledge of

proof by mathematical induction. We focus on three ideas important for the development

of solid, as opposed to fragile, knowledge of proof by mathematical induction, and we

explore the extent to and ways in which these ideas cause preservice teachers difficulties.

Our operational definitions for ‘solid’ and ‘fragile’ knowledge are that these terms

determine the endpoints of a continuum; the more difficulties preservice teachers have in

these three ideas the more fragile their knowledge is.

1. The necessity of the base step in applying the induction method to prove a proposition

of the form ‘8n 2 D; PðnÞ’, where D ¼ fnjn 2 N; n � n0g (focal idea 1);

2. The meaning associated with the inductive step in proving the implication P(k) )
P(k + 1) for an arbitrary k in the domain of discourse D (focal idea 2); and

3. The relation between the domain of discourse D of the open sentence P(n) and its truth

set U when the former is a proper subset of the latter, and how this relation is mediated

by a proof that purports to show that the sentence is true in D (focal idea 3).

The first two focal ideas have been identified by existing studies as two primary sources

of undergraduate students’ difficulties in proof by mathematical induction. However, as we

noted earlier, few of these studies have included preservice secondary teachers in their

samples, and none, as far as we know, has included preservice elementary teachers. Do
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preservice elementary and secondary school teachers have similar difficulties in these focal

ideas? In this paper, we will address this question. The third focal idea seems to have

attracted no research attention thus far. Anecdotal evidence suggests that students’ normal

experiences with mathematical induction are in the context of proofs that are ‘universal’

(i.e., D ¼ U) or proofs where the base step is always verifiable. In this paper, we will study

possible issues of knowledge fragility by exposing preservice teachers to proofs that fall

outside these normative patterns.

Method

Participants

The participants were senior undergraduate students of the University of Cyprus: 70

education majors (EMs) and 25 mathematics majors (MMs). These students participated in

a larger study that examined the knowledge of different methods of proof held by the

seniors of the respective Departments. The EMs constituted the 50% of the 2000-01 seniors

of the Department of Education; all of them were taking a particular class during the Fall

2000 semester to which they were allocated randomly. The MMs were all the 2000–01

seniors of the Department of Mathematics.

With only few exceptions, those graduating from the Department of Education become

elementary school teachers (grades K-6) and most of the graduates of the Department of

Mathematics become secondary school mathematics teachers (grades 7–12). Therefore,

EMs can be considered as preservice elementary school teachers and MMs as preservice

secondary school mathematics teachers.

The program of study at the Department of Education includes several mathematics

courses that emphasize logical thinking and ask for proofs. Specifically, it requires that all

EMs take the following courses relevant to mathematics: (1) Two courses on foundations

and fundamental concepts of mathematics;3 (2) One introductory course on statistical

methods and probability; and (3) One course on mathematics teaching and learning. These

courses provide a fair amount of knowledge about different methods of proof, including

proof by mathematical induction. Proof has a prominent place in the program of study at

the Department of Mathematics that focuses on advanced mathematical content and logical

thinking.

It is also worth noting that, contrary to what happens in some other countries, entry to

the Department of Education has been highly competitive; guaranteed employment, high

salary, and fringe benefits have influenced students to want to major in education.

3 These two courses constitute an introduction to the development of fundamental mathematical ideas from
ancient to modern times. The aim is to help preservice teachers see elementary mathematics from an
advanced standpoint, but also to get a sense of contemporary mathematical thinking. The following topics
are discussed: number systems; proofs of the Pythagorean theorem and properties of schematic numbers; the
axiomatic foundation of geometry by Euclid, irrational numbers and Archimedes’s method to find p;
Ptolemy’s theorem and the birth of trigonometry; a selection of Pappus’s, Heron’s, and Diofantus’s works;
the Fibonacci sequence; the discovery of calculus and some applications; Euclid’s fifth postulate and
elements of non-Euclidean geometries; non-commutative algebras (including elements of matrix algebra);
set theory (including Cartesian products, binary relations, and functions), logical propositions (elements of
algebra of propositions); Boolean algebra (logic gates and circuits).
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Data and procedure

All 95 participants responded to a specially designed test that included items on different

methods of proof, such as proof by counterexample, contradiction, contraposition, and

mathematical induction. The data from the test were supplemented by interviews with

eight EMs and three MMs.

Figures 1 and 2 show the two test items on which we report in this paper.4 The first item

(Task 1) proposes a proof for a given statement that has some of the characteristics of proof

by mathematical induction: the inductive step is applied correctly but the base step is

missing. The students are asked to evaluate the validity of the proof and explain their

thinking. The proposed proof is invalid; the best response to Part A of the task is choice 1.

The truth set of the equation marked with (*) in the statement to be proved is the empty set.

The purpose for including this item was threefold. First, we wanted to examine whether

students would realize that the base step of the induction method is missing (assuming that

they would have already noticed the attempt to prove the statement by using this proof

method). Second, we aimed to see whether students who would notice the omission of the

base step would be in a position to explain why this step was so important (focal idea 1).

Third, we intended to investigate the students’ ability to assign meaning to the correct

Consider the following statement: 

For every n ∈ N the following is true: 1 + 3 + 5 + ... + (2n – 1) = n2 + 3  (*) 

Study carefully the following proof for the above statement and answer the questions. 

Proof:

I assume that (*) is true for n = k:

1 + 3 + 5 + ... + (2k –1) = k2 + 3 

I check whether (*) is true for n = k + 1: 

1 + 3 + 5 + ... + (2k –1) + (2k + 1) = (k2 + 3) + (2k + 1) = (k2 + 2 k + 1) + 3 = (k + 1)2 + 3                  

True. 

Therefore (*) is true for every n ∈ N.

(A) Choose the best response for the above proof:  

1. The proof is invalid. 

2. The proof shows that the statement is always true. 

3. The proof shows that the statement is true in some cases. 

4. I have no opinion. 

(B) Use the space below to explain your thinking. 

…………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………… 

Fig. 1 The first test item (Task 1)

4 The original test items and the student responses we present in the next section were in Greek.
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application of the inductive step in the absence of the base step (focal idea 2). What does

the proposed proof show? For example, does it show that there is a natural number after

which the equation (*) holds?

The second item (Task 2) has, in part, similar structure to the first: it includes a

statement and a proposed proof for that statement, and is asking the students to evaluate the

validity of the proof and explain their thinking. The proposed proof is valid (the best

response to Part A of the task is choice 2), thus offering us the opportunity to examine the

students’ ability to recognize a correct application of proof by mathematical induction. The

students are additionally asked to state whether the inequality marked with (**) in the

statement to be proved is true or false in four particular cases: n = 3, 4, 6, and 10 (Part C).

Consider the following statement: 

For every natural number n ≥ 5 the following is true: 1 • 2 • ... • (n – 1) • n > 2n  (**) 

Study carefully the following proof for the above statement and answer the questions. 

Proof:

I check whether (**) is true for n = 5:    

1 • 2 • 3 • 4 • 5 = 120 > 25 = 32.                                         True. 

I assume that (**) is true for n = k:   1 • 2 • ... • (k – 1) • k > 2k    (***) 

I check whether (**) is true for n = k + 1: 

1 • 2 • ... • (k – 1) • k • (k + 1) > 2k • (k + 1)                       (using (***)) 

                                    > 2k • 2                               (since k + 1 > 2) 

                                    = 2k+1                                  True.     

Therefore (**) is true for every n ≥ 5.         

(A) Choose the best response for the above proof:  

1. The proof is invalid. 

2. The proof shows that the statement is always true. 

3. The proof shows that the statement is true in some cases. 

4. I have no opinion. 

(B) Use the space below to explain your thinking. 

…………………………………………………………………………………………………………………………

………………………………………………………………………………………………………………………… 

(C) State what happens in the special cases where: 

n = 3                                 A. The inequality is true.                      B. The inequality is not true.   

n = 4                                 A. The inequality is true.                      B. The inequality is not true. 

n = 6                                 A. The inequality is true.                      B. The inequality is not true. 

n = 10                               A. The inequality is true.                      B. The inequality is not true. 

Fig. 2 The second test item (Task 2)
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The truth set U of the inequality is fnjn 2 N; n � 4g, but the domain of discourse D does

not include n = 4.5

We deliberately set up Task 2 in this way in order to create a rich context for examining

further students’ knowledge of proof by mathematical induction. In light of different

possible responses to the two multiple-choice parts of Task 2 (Parts A and C), we could

draw inferences about students’ knowledge. In this paper, we focus on four possible

student responses (summarized in Table 1) that help us examine student difficulties related

to focal idea 3.

Interviews

The interviews were conducted with a purposeful sample (Patton, 1990) of 11 students

whose responses in the test were of special interest to the research questions of the larger

study. Special interest was defined in terms of exploring further common student

responses, eliciting explanations to items where students did not provide one, and clari-

Table 1 Possible student responses to the two multiple-choice parts of Task 2 and possible student
difficulties in relation to focal idea 3

Possible
Response

Description of Possible Student Response Description of Possible Student Difficulty
Associated with Each Response

Part A of Task 2 Part C of Task 2

1 The proof shows that
the statement is
always true.

The inequality is true for
all special cases (n = 3,
4, 6, and 10).

The proof showed the truth of the
inequality outside its domain of
discourse, possibly all natural numbers.

2 The proof shows that
the statement is
always true.

The inequality is false for
n = 3 and 4, and true for
n = 6 and 10.

The truth set of the inequality cannot
include natural numbers outside its
domain of discourse.

3 The proof is invalid. The inequality is false for
all special cases (n = 3,
4, 6, and 10).

Because the proof ‘failed’ to prove the
statement, the truth set of the inequality
is the empty set.

4 The proof shows that
the statement is true
in some cases.

The inequality is false for
n = 3, and true for
n = 4, 6, and 10.

The domain of discourse of the inequality
should coincide with its truth set.

5 The statements to be proved in Tasks 1 and 2 are closed sentences and, as such, are either true or false.
Therefore, from a strictly mathematical standpoint, the adverb ‘always’ in choice 2 of Part A in each task is
redundant. However, had we eliminated the word ‘always’ from the phrasing of choice 2, this would
possibly make unclear to students the distinction between choices 2 and 3. Choice 3 was clearly a wrong
choice for both tasks, but we considered it important to include it because of its potential to uncover
knowledge fragility. Also, despite our effort to state clearly what we intended to be taken as the ‘statement’
under consideration in Task 2, some students might have missed the difference between the instruction,
‘‘Consider the following statement: For every natural number n � 5 the following is true: 1 • 2 • ... • (n � 1)
• n > 2n (**),’’ and the sentence ‘‘1 • 2 •... • (n � 1) • n > 2n (**)’’ within that statement. If they took the
latter to be the statement under consideration, then they might consider it true for only some values, which it
is. Yet, the actual statement includes the quantifier ‘‘For every natural number n � 5’’ that makes it a closed
sentence. The examination of the different ways students interpreted the various choices was part of our
goals in this paper. Therefore, we not only asked students to select the best choice but also to explain their
thinking. The results we obtained provide a lot of insight into how students interpreted each choice. For
example, students who selected choice 3 in Task 2 seemed to face difficulties related to focal idea 3.
Students who selected choice 2 seemed to have seen the choice as equivalent to saying ‘the proof shows that
the statement is true,’ as we intended.
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fying infrequent student responses. The interviews, which were conducted jointly by the

first two authors, lasted approximately 35 minutes each and were audio taped and fully

transcribed.

Before each interview session, the interviewers would note aspects of students’ written

responses that were of special interest and prepare two to five questions with relevant

probes for use as necessary. Issues of interest to our research goals that emerged from the

discussion were examined further. To preserve space for such examinations, the interviews

had a semi-structured character. A typical interview session would begin with the inter-

viewers probing the interviewee to elaborate on a particular response in his or her test.

Analysis

We obtained frequencies and percentages of students’ responses to the multiple-choice

questions in each task by whether they were to major in education or mathematics. These

frequencies and percentages offered a general picture of students’ thinking about proof by

mathematical induction. We did not pursue any inferential statistics to explore possible

relationships between the students’ major and their performance in the tasks, for such

analysis would not serve our research goal to gain insight into students’ thinking. The

descriptive statistics were supplemented by qualitative analysis of both the interview data

and the students’ written explanations in the test. The selection of student responses to be

presented in the following section was guided by two criteria: (1) illumination of student

thinking, and (2) illustration of a variety of student thinking strategies. To avoid improper

generalizations, we do not report percentages of types of student explanations that exhibit

particular characteristics; a number of students did not provide written explanations or

provided cryptic explanations. Nevertheless, we note patterns (or the absence of patterns)

in students’ available explanations wherever this is informative.

Limitations

We acknowledge four limitations of this study that readers may take into account in

appraising its outcomes and in designing future studies. The first concerns the small number

of mathematics majors who participated in the study, even though they were all the seniors

in the program that specific academic year. The second concerns the relatively small number

of interviews we conducted, though they allow significant insight into the questions raised.

The third, which might not allow generalization, relates to the characteristics of the par-

ticipants and their programs of study (especially that of EMs). Nevertheless, because the

two subgroups in our sample had different experiences with mathematical induction (in

terms of breadth and depth), the common difficulties we found are likely to overlap with

difficulties of students from the same or different programs of study in other countries. In

this sense, our findings can be useful for mathematics teacher educators in other countries

and also university instructors of mathematics more generally. The fourth limitation relates

to our omission in Task 2 of the test to ask students to explain their responses in the four

particular cases. Although we investigated this issue to some extent in the interviews, it

would be useful to know, for example, how many of the students who recognized the

validity of the proposed proof did the calculations to test the two cases that were within the

domain of discourse (n = 6 and n = 10). Research shows that students often do not

understand that a valid proof makes further checks superfluous (Fischbein, 1982).
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Results

The results are organized in three parts. In the first two, we report separately findings

related to Tasks 1 and 2. In the third, we focus on how our results inform the issue of

student difficulties with regard to the three focal ideas.

Task 1

Table 2 summarizes the student responses to Part A of Task 1. The vast majority of the

MMs and almost a quarter of the EMs considered correctly the proof to be invalid. The

written explanations of these students were mostly limited to saying that the proof did not

check for n = 1. For example, students EM23 (education major #23) and EM38 wrote:

EM23: The proof is invalid because its first step is missing.

EM38: The proof is invalid because it begins by checking for n = k, whereas it should

check for n = 1.

We interviewed both of these students and none of them took the extra step to check the

base step; this suggests a focus on the form (i.e., the appearance) of the presented

argument. Some of the other students who considered that the proof was invalid also

checked the base step. However, even in these cases the students had difficulty explaining

the essence of the base step. The interview excerpt with student MM19 (mathematics major

#19) is indicative.

MM19: Here we use the induction method but we don’t check for n = 1. When we

check for n = 1 we see that the equation doesn’t hold.

I (interviewers): Why is it necessary to check for n = 1?

MM19: We are supposed to check for n = 1 because the induction method states that a

sentence is true for all natural numbers, from 1 up to ... for all n. If we don’t check for

n = 1 and we begin by setting n = k then we begin from something arbitrary that we

don’t know whether it is true. Therefore, the induction hypothesis that the equation

holds for n = k is false and we cannot proceed any further to prove the equation for

n = k + 1. Had the equation been true for n = 1, one would be able to make the

induction hypothesis and say that, if it is true for n = 1 and n = k, and is proved to be

true for n = k + 1, then the equation is true in general.

Table 2 Percentages of student responses to Part A of Task 1 by major

Response Option Major

Educationa Mathematicsb

The proof is invalidc 24 88

The proof shows that the statement is always true 53 0

The proof shows that the statement is true in some cases 17 12

I have no opinion 6 0

Total 100 100

Note. The values represent percentages (rounded to the nearest integer) within major.
an = 70. bn = 25. c Best response option for Part A of Task 1.
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From the above excerpt, it seems that the student MM19 does not have a solid

knowledge of the inductive step either. He considers invalid the proof of the implication ‘if

it holds for k then it holds for k + 1’ because the truth of the equation has not been checked

for n = 1. As it is illustrated further in the following excerpt, he does not appear to

understand the meaning of the hypothesis ‘if it holds for k’:

I: Is there a natural number for which the equation is true?

MM19: There may be such a natural number, but the method is supposed to show the

truth of the equation for all the natural numbers. Therefore it is false.

I: The fact that if it holds for k then we can prove that it also holds for k + 1...

MM19: This is also false.

I: What is false?

MM19: It is false to say that ‘if it holds for k we can prove that it also holds for k + 1’

because the equation is not true for k = 1.

The student’s fragile knowledge of the induction method was further revealed in the

subsequent exchange:

I: If the equation were verified for a natural number x = 1, would you say that it

holds for all natural numbers greater than or equal to x?

MM19: I don’t know. This may or may not happen. I know that for the method to be

correct and for the equation to be true for all n, one needs to begin the induction as

follows: check for n = 1 and then prove that if it is true for n = k it is true for n = k + 1.

One needs to check cases [to be sure]. I haven’t checked any cases.

The inductive step caused a different difficulty to student EM23. As we mentioned

above, in her test, EM23 (like MM19) considered the proposed proof as invalid. In the

interview session, she said that the proof of the implication P(k)) P(k + 1) guaranteed the

existence of a natural number x for which the statement is true. She then used the ‘exis-

tence’ of x and modus ponens to explain that one could deduce that the statement is true for

all natural numbers greater than or equal to x.

I: Are you saying that it is possible to find a number for which the equation is true?

EM23: Yes, I believe that one such number can be found.... I believe that there is a

number for which the equation is true.

I: What makes you so certain about the existence of a number for which the equation

is true?

EM23: Basically I believe that because I can prove that it holds for k + 1 by assuming

that it holds for k, where k can be any number. This means that if this number is 1

then the equation also holds for 2 and we continue this way by adding 1 each time to

get 3 and any other number we want.

Some other students who considered invalid the presented proof faced a different dif-

ficulty. Although they showed solid knowledge of the role of the base step in the induction

method, they did not appear to be clear about the idea that the inductive step did not

actually prove the equation for n = k + 1. For example, student EM56 seems to believe that

the proposed proof showed P(k + 1) rather than P(k)) P(k + 1), but it is unclear what she

actually means by saying that the equation was proved to hold for n = k + 1.

EM56: The equation holds neither for n = 1 nor for n = 2. We may have proved that

the equation holds for n = k + 1, but this doesn’t mean anything because we didn’t

find a specific number for which the equation is true. The equation is definitely not
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true for every n that belongs to N. It may be true for some number and beyond,

assuming that we manage to find such a number.

Turning now to the EMs who said that the proposed proof shows that the statement is

always true, we observe that many of them thought that the proof of the inductive step

implies the truth of the equation for all natural numbers. These students did not seem to

understand the function of the base step.

EM1: Since the equation holds for both n = k and n = k + 1 then it is always true.

EM32: The proposed proof uses the method of mathematical induction. According to

this method, when an equation holds for n = k and we prove that it also holds for

n = k + 1, then we conclude that the equation is always true.

EM54: By checking the equation for n = k + 1 we check the truth of the equation for

all numbers.

Some other students, who also supported the validity of the proof, based their responses

on the ‘observed pattern’ (EM51) or on the ‘examination of some numbers’ (EM14). Yet, it

is unclear what these students took as a pattern or which numbers they tested, given that

there is no natural number that satisfies the equality in the task. It is possible, though, that

they were referring to the inductive step.

EM51: The statement is always true as it represents a pattern. Because of the pattern

the statement holds for every n 2 N.

EM14: The proposed proof shows that the statement is always true, because the

equation was tested for some natural numbers.

A considerable number of students, both EM and MM majors, claimed that the proposed

proof showed that the statement is true in some cases. Analyzing their written responses to

the task, we observed several variations of the idea that the equality is true for all natural

numbers greater than or equal to a natural number x = 1. Some students said that the

statement holds for every n 2 N� f1g (EM4), others for all n � k (MM4) or for all n �
k + 1 (EM16), and others for all natural numbers greater than a specific number that needs

to be found (MM9).

EM4: We assumed that the statement holds for a random number n = k. If we manage

to prove that the statement also holds for the subsequent number, then we can

conclude that the statement holds for all n 2 N. I check for n = 1. The statement

doesn’t hold for n = 1. Therefore, the statement holds for every n 2 N� f1g.
MM4: The proposed proof shows that the statement holds for some cases, because it

holds for all n � k and not for every n 2 N.

EM16: The proposed proof didn’t check the statement for n = k�1 or for values

< k�1 ... The proposed proof shows that the statement holds only for n � k + 1.

MM9: The proposed proof shows that the statement holds for some cases. I

assume that the statement holds for n = k and, based on this assumption, I prove

that the statement also holds for n = k + 1. For example, if the statement holds

for n = 2 then it holds for n = 3. If it holds for n = 3 then it holds for n = 4. If

we prove that the statement holds, let’s say for n = 5, then it will hold Vn � 5

but not necessarily for n = 1, ..., 4.

Moreover, some students (EM58) thought that for the proof to be complete it would also

need to ‘check’ for n = k + 2, n = k + 3, etc.
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EM58: The fact the statement was checked for n = k + 1 doesn’t mean that it’s true for

all cases; it just means that it holds for some cases. To make sure that the statement is

always true we need to also test it for n = k + 2, n = k + 3, ..., n = k + n.

Task 2

Table 3 summarizes the student responses to Part A of Task 2 by major. The vast

majority of MMs and more than half of the EMs said that the proposed proof showed

that the statement is always true. Some EMs who supported the validity of the proof

faced difficulties in formulating a mathematically accurate explanation. The responses

of the students EM24 and EM50 illustrate these difficulties and raise additionally the

issue of whether the students’ belief about the validity of the proof was grounded on

reason.

EM24: The proof shows that the statement is always true. Most of the possible cases

have been checked and, therefore, we can conclude that the statement is true in

general.

EM50: The statement holds. However, the way mathematical induction is applied

isn’t the best possible, because it doesn’t prove that the statement is also true for n = 6

(since 6 is greater than 5) before proceeding with n = k.

On the other hand, many MMs could explain their choice in Part A of the task in a

sufficient way. The explanation of student MM10 is indicative.

MM10: You used the method of mathematical induction. You checked all the steps of

the method and you concluded that they are applied correctly. Therefore, we can

conclude that the statement always holds. By saying ‘always’ we mean ‘always’ as it

is indicated in the context of the statement, that is, for n � 5.

This comment about the meaning of the word ‘always’ with regard to the domain of

discourse of the statement in Task 2 is at the heart of focal idea 3 we aimed to investigate.

The data suggest that many EMs considered that the proposed proof showed the statement

to be true in some cases, because they thought that a valid proof should show that: (1) the

sentence in the statement is true for all natural numbers, or (2) the sentence is true for all

natural numbers that belong to its truth set (in this particular case, fnjn 2 N; n � 4g).

Table 3 Percentages of student responses to Part A of Task 2 by major

Response Option Major

Educationa Mathematicsb

The proof is invalid 13 8

The proof shows that the statement is always truec 54 92

The proof shows that the statement is true in some cases 29 0

I have no opinion 4 0

Total 100 100

Note. The values represent percentages (rounded to the nearest integer) within major.
an = 70. bn = 25. c Best response option for Part A of Task 2.
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EM51: The proof shows that the statement is true in some cases, because if we check

some other numbers, e.g., 3, the statement is false.

EM9: The proof shows that the statement is true in some cases. The statement is always

true for n � 5. I don’t know whether it’s true for n < 5.

The same thinking that led some students to conclude that the proposed proof showed

that the statement is true in some cases, led others to consider the proposed proof as

invalid.6

EM20: The proof is invalid. The testing of cases should begin from the first natural

numbers: 1, 2, 3, 4. The statement is also true for n = 4.

EM49: The proof is invalid because the statement is true for n � 4.

EM52: The proof is invalid because the statement is false for n = 4.

Student EM20 seems to believe that the validity of a proof by mathematical induction

depends on whether the proof establishes the truth of the mathematical relationship under

consideration on the entire set of natural numbers rather than on its domain of discourse.

Students EM49 and EM52 rejected the validity of the proposed proof for opposite reasons.

EM49 rejected the proof because he found a value for n (= 4) outside the domain of

discourse for which the inequality is satisfied. He seemed to believe that the proof is

invalid because it is not as encompassing as it could be. EM52 failed to see that the

inequality is satisfied for n = 4 and considered that this violated the assertion ‘the proof

shows that the statement is always true.’ He therefore appears to think that a valid proof

would show the truth of the inequality over a broader set than its domain of discourse,

possibly all natural numbers.

Data from Part C of Task 2 offer further insight into students’ understanding of the

relation between the domain of discourse of the inequality that was proved and its truth set.

Table 4 summarizes the percentages of correct student responses to each of the special

cases by major. The highlight of the table is the failure of many students from both majors

to realize that the inequality is true for n = 4. Given the simplicity of the calculations

required to check for n = 4, it is plausible to assume that the students reached their

conclusion based on an erroneous thinking. This thinking was probably associated with the

fact that number 4 is not included in the domain of discourse of the inequality. The

difference in the percentages of success between the special cases n = 3 and n = 4 may be

attributed to the fact that the latter belongs to the truth set of the inequality whereas the

former does not. A student who believed that the inequality could not hold for values

outside its domain of discourse would inadvertently get n = 3 right and n = 4 wrong. The

Table 4 Percentages of correct student responses to Part C of Task 2 by major

Major Part C of Task 2

n = 3 n = 4 n = 6 n = 10

Educationa 83 56 87 91

Mathematicsb 96 64 100 96

Note. The values represent percentages (rounded to the nearest integer) within major.
an = 70. bn = 25.

6 The MMs who considered invalid the proposed proof in Task 2 did not provide a written explanation for
their selection and, therefore, we cannot examine further their thinking.
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higher percentages of success for the cases n = 6 and n = 10 were expected, given that these

cases belong to the domain of discourse and that the majority of the students accepted the

validity of the proposed proof. Also, the calculations were easy for the students who chose

to do them.

Table 5 presents a detailed analysis of the results obtained from Parts A and C of Task

2; it provides five response types, each corresponding to a different combination of re-

sponses to the two parts. Response Type 0 represents the correct responses to both parts of

the task. Response Types 1 through 4 correspond, respectively, to Possible Responses 1

through 4 described in Table 1.

A significant number of students from both majors, 38 EMs and 23 MMs, recognized

the validity of the presented proof, thus responding correctly to Part A of Task 2. From

these students, only 15 EMs and 13 MMs responded correctly to all four special cases of

Part C (Response Type 0), while three EMs and one MM said that the inequality is true for

all special cases (Response Type 1). The latter response type suggests a belief that the

proof showed the truth of the inequality for values outside its domain of discourse (pos-

sibly all natural numbers). Almost all other students who responded correctly to Part A of

Task 2 (18 EMs and eight MMs) said that the inequality is false for n = 3 and n = 4, and

true for the other two special cases (Response Type 2). This response type is most likely

associated with the misconception that the truth set cannot include elements outside the

domain of discourse.

The remaining two response types are associated only with EMs. From the nine EMs

who considered the presented proof as invalid, two said that the inequality is false for all

special cases (Response Type 3). These students probably believed that, because the proof

‘failed’ to prove the statement, the truth set of the inequality is the empty set. Finally, from

the 20 EMs who said that the presented proof shows that the statement is true in some

cases, eight said that the inequality is false for n = 3 and true for the other three special

cases (Response Type 4). These students most probably thought that the domain of dis-

course of the inequality should coincide with its truth set.

Table 5 Frequencies of selected student responses to Parts A and C of Task 2 by major

Response
Type

Description of Response Types and Frequencies by Major

Part A of Task 2a Part C of Task 2b

0 The proof shows that the statement is always
true. (38, 23)

The inequality is false for n = 3 and true for n
= 4, 6, and 10. (15, 13)

1 The proof shows that the statement is always
true. (38, 23)

The inequality is true for all special cases (n
= 3, 4, 6, and 10). (3, 1)

2 The proof shows that the statement is always
true. (38, 23)

The inequality is false for n = 3 and 4, and
true for n = 6 and 10. (18, 8)

3 The proof is invalid. (9, 2) The inequality is false for all special cases (n
= 3, 4, 6, and 10). (2, 0)

4 The proof shows that the statement is true in
some cases. (20, 0)

The inequality is false for n = 3, and true for
n = 4, 6, and 10. (8, 0)

a The first number in each parenthesis in this column represents the number of EMs who responded the
specified way in Part A of Task 2; the second represents the corresponding number of MMs.
b The numbers in each parenthesis in this column represent the numbers of students who responded the
specified way in Parts A and C of Task 2. The first represents the number of EMs and the second the number
of MMs.
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Some of the interviews shed further light on students’ thinking with regard to the special

cases. For example, student EM38, whose written responses fit in Response Type 0, had

difficulty understanding the ‘mismatch’ between the domain of discourse of the inequality

and its truth set. However, after some probing from the interviewers, EM38 appeared to

have grasped the relation between these two sets in the context of the given proof.

I: Do you find problematic the fact that the statement says that the inequality holds

for all n � 5, but you said here [pointing to his test] that the inequality also holds

for n = 4?

EM38: ... I believe that there is a problem here. Perhaps the source of the problem is

that the proof doesn’t specify the value of k. I assumed that k is greater than or equal

to 5, and this might have been the reason I said that the statement is always true.

I: Now that you have the opportunity to think about this problem again, which of the

multiple-choice options [referring to Part A of Task 2] would you choose?

EM38: I wouldn’t choose this option [he refers to choice 1 of Part A] because the

statement holds for n � 5. The issue here is whether the statement also holds for some

values smaller than 5.

I: Are you saying that proving the inequality for n � 5 excludes the possibility that

the inequality also holds for smaller values of n?

EM38: Oh! The statement doesn’t say ‘only for n � 5’! Therefore, it leaves open the

possibility for other values. Therefore, the statement is true.

Three Focal Ideas

Below we summarize how the results inform the issue of student difficulties (indicative of

knowledge fragility) with regard to the three focal ideas. Because focal ideas 1 and 2 (FI 1

and FI 2) were both investigated in the context of Task 1, we discuss them together. The

discussion of focal idea 3 (FI 3) is based on findings from Task 2.

The necessity of the base step in applying the induction method (FI 1), and the meaning
associated with the inductive step in proving the implication P(k) ) P(k + 1) for an
arbitrary k in the domain of discourse of the open sentence P(n) (FI 2). A considerable

percentage of EMs did not realize the essence of the base step in the application of the

induction method in Task 1, thus saying that the proposed proof shows that the statement is

true for all n in N. It seems that many of these students applied intuitively the false

implication rule: ½8k 2 N;PðkÞ ) Pðk þ 1Þ� ) 8n 2 N;PðnÞ. Although the vast majority

of MMs recognized that the omission of the base step constitutes an incomplete application

of the induction method in Task 1, some of them could not articulate clearly the importance

of this step. A notable percentage of students of both majors believed that the proposed

proof shows that the statement is true in some cases. The inference rule that seemed to have

guided their thinking was the following: ½8k 2 N;PðkÞ ) Pðk þ 1Þ� ) 8n 2 S;PðnÞ,
where S is a proper subset of N of the form fnjn � m[1; n;m 2 Ng. In other words, they

seemed to think that the proof of the implication P(k) ) P(k + 1) for an arbitrary k in N
guarantees the existence of a natural number m = 1 such that P(m) holds. In turn, the

existence of such a number enables application of modus ponens, thereby establishing the

truth of the proposition P(n) for all n � m. Finally, a considerable number of EMs thought

that the inductive step shows that the equality is true for n = k + 1, which suggests again

their difficulty to grasp the meaning of the implication P(k) ) P(k + 1).
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The relation between the domain of discourse D of the open sentence P(n) and its truth
set U when the former is a proper subset of the latter, and how this relation is mediated by
a proof that purports to show that the sentence is true in D (FI 3). The analysis of student

responses in Task 2, where D ¼ fnjn 2 N; n � 5g and U ¼ fnjn 2 N; n � 4g, suggests that

a significant percentage of students of both majors who recognized correctly the validity of

the proposed proof thought that it is impossible for the truth set of the inequality to include

a number outside its domain of discourse. These students considered that the inequality is

false for n = 3 and n = 4, and said that the inequality is true only for the two values that

belong to D. The responses of a considerable number of EMs that the presented proof

shows that the statement is true in some cases seemed to have been influenced by the belief

that the domain of discourse D of the inequality in the statement to be proved should

coincide with its truth set U in order for the statement to be always true. These students’

observation that 4 2 U and their knowledge of the fact that 4 62 D presumably affected the

way they evaluated the validity of the proposed proof. The participants did not particularly

show any other difficulties associated with FI 3.

Discussion

In this paper, we have investigated preservice teachers’ knowledge of proof by mathe-

matical induction in order to: (1) extend the existing research base of preservice teachers’

knowledge of methods of proof, and (2) inform the knowledge about preservice teachers

that mathematics teacher educators need to teach proof effectively in teacher preparation

programs. Our findings showed that preservice secondary teachers were more successful in

obtaining correct answers than preservice elementary teachers. However, students from

both groups faced three common difficulties in explaining the induction method. The

difficulties centered around: the essence of the base step (Difficulty 1 [D1]); the meaning

associated with the inductive step in proving the implication P(k) ) P(k + 1) and the

inferences that can be drawn from this proof about the existence of a natural number m
such that P(m) holds (D2); and the possibility of the truth set of a sentence to include

values outside its domain of discourse (D3). D1 and D2 were more salient among pre-

service elementary than secondary teachers, but D3 seemed to be equally important in the

two groups.

The findings regarding D1 and D2 are aligned with findings of earlier studies with

preservice secondary mathematics teachers or other undergraduate students. Dubinsky and

Lewin (1986) report that mathematics majors faced difficulties in encapsulating modus

ponens and in coordinating it with the structure of implication-valued function. In our

study, students did not understand that it takes both the base and the inductive steps to

deduce by modus ponens the truth of an infinite set of propositions. In addition, some

students thought that the inductive step in itself ensures the truth of a statement for all

natural numbers greater than a specific number that needs to be found. This result extends

the field’s understanding of students’ knowledge of the meaning of the inductive step.

Dubinsky (1986, 1990) reports two difficulties that are also consonant with D1 and D2. The

first relates to the character of the implication as an object; similar to what we found, many

sophomores in Dubinsky’s study tried to prove P(k + 1) rather than P(k)) P(k + 1). The

second relates to the essence of the base step; Harel (2002) reports that undergraduate

students tend to view the base step as meaningless or non-essential.

In sum, our findings regarding D1 and D2 support and extend existing findings about

undergraduate students’ difficulties in proof by mathematical induction, and provide
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evidence in support of the hypothesis that preservice elementary and secondary school

teachers face similar difficulties when they engage with this proof method.

The findings associated with D3 deserve special attention, for the investigation of

possible student difficulties in proofs that are not as encompassing as they could be seems

to have attracted no research attention thus far. Our investigation in this area complements

Fischbein’s (1982) investigation, which showed that many students have difficulties

understanding the logical equivalence of the following two affirmations in the context of a

proposed (valid) proof for a theorem: (1) to agree with the validity of the proof, and (2) to

agree that the (accepted) proof guarantees the truth of the theorem for all elements in its

domain of discourse. In our investigation of D3, we essentially examined whether students

understood that the following two affirmations are not logically equivalent: (1) to agree

with the validity of the proof, and (2) to agree that the (accepted) proof guarantees that the

theorem cannot be more general. A significant number of preservice teachers from both

groups who recognized the validity of the proof in Task 2 thought that it was impossible for

the truth set of the open sentence to include a number outside the set covered by the proof.

Future research needs to triangulate these findings with other student populations and in the

context of test items that will examine: (1) students’ understanding of the logical equiv-

alence or non-equivalence of all the different affirmations mentioned earlier, and (2)

manifold proof methods. For example, a test item can focus on the following open sentence

whose truth set is the real numbers (De Moivre’s theorem):

ðcosAþ i sinAÞn ¼ cosðnAÞ þ i sinðnAÞ:

The item can begin by proposing a valid proof by mathematical induction that demon-

strates the truth of this sentence for all natural numbers and then ask the students who will

recognize the validity of the proof to explain: (1) whether the sentence is true for specific

natural numbers (Does one need to check them to be sure?), and (2) whether the sentence is

true for specific non-integer real numbers that are relatively easy to verify with the use of

trigonometric identities (Does one need to check them to be able to answer the question, or

does one know for sure that the sentence is true/false?). This item is interesting because,

given the use of mathematical induction, the mismatch between the truth set and the set

covered by the proof is unavoidable: mathematical induction cannot be used to prove

sentences over the entire set of real numbers. Accordingly, students will be exposed to a

situation where a specific proof method cannot cover the entire truth set of an open

sentence.

We turn now to what might have caused preservice teachers’ fragile knowledge in D1,

D2, and D3. This issue requires further research, but one plausible hypothesis is that the

fragile knowledge is rooted in students’ prior experiences with didactic contracts that

prevail in high school and even university mathematics and that promote the following

misconceptions: (1) the base step in proofs by mathematical induction is always verifiable

and thus one only needs to worry about the inductive step, and (2) proofs are always as

encompassing as they can be.

Mathematics teacher educators can use the findings of this paper related to difficulties

D1–D3 to design instructional conditions that will first elicit and then address preservice

teachers’ difficulties in mathematical induction. If preservice teachers’ difficulties remain

tacit and pass unchallenged through mathematics teacher education, they are likely to

become sources of misconceptions or reasons underlying fragile instruction of proof in

school mathematics.
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There are at least four ways in which the findings of this paper can be useful to mathe-

matics teacher educators. First, the three difficulties we identified draw attention to a set of

ideas that mathematics teacher educators need to emphasize in their instruction for pre-

service teachers to have opportunities to develop solid knowledge of mathematical induc-

tion.

Second, a precise presentation of mathematical induction in itself is not enough to

advance preservice teachers’ knowledge of this proof method. Our analysis showed, for

example, that, although many students knew that the base step is a necessary component of

the induction method, they could not explain why this step is essential or what can be the

consequences from its omission. Also, some of them focused on the form (i.e., the

appearance) of the proposed proof in Task 1 to judge its validity rather than on

the reasoning it was based on; they considered the proposed proof to be invalid because it

omitted the base step. Thus, they demonstrated what Sowder and Harel (1998) call ‘ritual

proof scheme.’

Third, our findings can inform mathematics teacher educators’ knowledge of preservice

teachers’ understanding of proof more broadly. For example, preservice teachers’ diffi-

culties related to the encompassing character of proofs are presumably not specific to proof

by mathematical induction.

Fourth, our results support mathematics teacher educators’ efforts to organize instruc-

tional situations in which preservice teachers’ difficulties in proof by mathematical

induction (or proof more broadly) surface and become the objects of reflection. Specifi-

cally, the two tasks we discussed in this paper can be used to engage preservice teachers in

activities that will aim to reduce the fragility of their knowledge and accelerate the process

of its crystallization (Movshovitz-Hadar, 1993, p. 266). By breaking the boundaries of

students’ normal experience, the two tasks set up situations where procedural knowledge of

the induction method is not enough for successful performance. Task 1 presents a situation

where the base step is omitted and the truth set of the sentence of interest is the empty set.

In implementing this task, mathematics teacher educators may ask questions like, ‘Why is

the base step essential?’ and ‘What does the inductive step prove?’, in order to bring to the

fore issues of meaning. Task 2 presents a situation where the domain of discourse and the

truth set of a sentence that is proved by a valid proof are different. In implementing this

task, mathematics teacher educators may ask questions like, ‘Is there a relation between the

truth set of the sentence and the domain of discourse?’ and ‘Do the two sets have to be the

same?’, in order to help preservice teachers think about important ideas related to proof. To

manage successfully their discussions with preservice teachers, mathematics teacher

educators need to be able to anticipate common responses by preservice teachers. The

interview segments and the written responses reported in this paper can be useful in this

respect.

The four ways we described above in which the results of this paper can be useful to

mathematics teacher educators apply also for other mathematics instructors who teach

proof to university students. As we mentioned earlier, the two subgroups in our sample had

different experiences with mathematical induction (in terms of breadth and depth), and so

the common difficulties we identified (D1–D3) are likely to be faced by university students

from other programs of study.

To conclude, teachers’ knowledge of mathematics is a central issue in policy and

research discussions about the improvement of students’ mathematical education. Given

the increased emphasis on offering students of all grades rich opportunities to develop

proficiency in proof, it is important that mathematics teacher educators develop a good

sense of how preservice teachers understand proof. This way, mathematics teacher
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educators will be well positioned to design and implement appropriate instructional

interventions to help preservice teachers develop a solid knowledge of proof.
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