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Abstract This study explores the ways in which eleven preservice elementary teachers

used a web-based teacher resource to apply a mathematical definition, to correct a pro-

cedural error in arithmetic, and to make sense of a story requiring the multiplication of

fractions. In our analysis we propose a framework to compare the behaviors and values

expressed by our participants with the values and norms of the mathematical community.

This analysis suggests that many preservice elementary teachers are profoundly mathe-

matically unsophisticated. In other words, they displayed a set of values and avenues for

doing mathematics so different from that of the mathematical community, and so

impoverished, that they found it difficult to create fundamental mathematical under-

standings.
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The only way to learn mathematics is to do mathematics.

Paul Halmos, Hilbert Space Problem

(as found in Gallian, 1998, p. 51)

As mathematicians at a large, comprehensive university, we are faced with the challenge of

preparing future generations of elementary teachers to teach mathematics. This is a

daunting task indeed, given that many elementary teacher education students and prac-

ticing elementary teachers reveal a paucity of mathematics content knowledge (e.g., Ball,

1990; Ma, 1999) and overtly authoritarian beliefs about the nature of mathematical
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behavior (Schuck, 1996; Seaman, Szydlik, Szydlik, & Beam, 2005). We are left to wonder

how best to design our programs for prospective elementary teachers. Should we

emphasize mathematics content or stress mathematics methods and connections to the

elementary curriculum? What forms should these courses take and which faculty members

are best qualified to teach them?

At the center of this debate lies a persistent tension between the education and the

mathematics communities over the types of mathematical knowledge elementary teachers

need. The research literature distinguishes several components of teacher knowledge

including content knowledge, knowledge of learning and the learner, general pedagogical

knowledge, and pedagogical content knowledge. Fennema and Franke (1992) provide a

synthesis of this literature and then propose that teacher knowledge is both situated and

changeable. ‘‘Within a given context, teachers’ knowledge of content interacts with

knowledge of pedagogy and students’ cognitions and combines with beliefs to create a

unique set of knowledge that drives classroom behavior’’ (p. 162). We now describe recent

work (Ball, 1993; Ball, 2000; Hill, Rowan, & Ball, 2005; Ma, 1999) that is aligned with

this model and points to the need for teachers who can mediate between the understanding

and ideas brought by the students and the mathematical demands of the content. Shulman

(1986) writes, ‘‘The key to distinguishing the knowledge base of teaching lies at the

intersection of content and pedagogy, in the capacity of a teacher to transform the content

knowledge he or she possesses into forms that are pedagogically powerful and yet adaptive

to the variations in ability and background presented by the students’’ (p.15). In the end,

we will propose an emerging point of consensus between the mathematics education

community and the community of mathematicians.

Ma (1999), based on her study of 23 United States and 72 Chinese elementary teachers,

observed that the effective teachers were those who demonstrated profound understandings

of fundamental mathematics. Such teachers exhibited deep understanding of basic math-

ematical ideas (e.g., number sense, operations, algorithms, number systems), the ability to

make connections among those ideas, the use of multiple representations of those ideas,

and an understanding of the curriculum that allowed for longitudinal coherence in their

teaching. In the forward to Ma’s book, Shulman asserted that Ma’s conception of what it

means to understand mathematics ‘‘…emphasizes those aspects of knowledge most likely

to contribute to a teacher’s ability to explain important ideas to students’’ (in Ma, 1999, p.

xi). Thus, her conception of mathematical knowledge is profoundly pedagogical; it is tied

to the specific tasks required of teachers as they assess, guide, and nurture the mathematical

thinking of children.

Through study of their own work as elementary teachers, both Ball (1993) and Lampert

(2000) have rendered detailed accounts of the complex and demanding mathematical work

of teaching. The teacher must understand the rich connections among mathematical ideas.

She must bridge gaps between students’ use and standard mathematical use of notation and

language. At the same time she must model and request the mathematical behaviors of

sense making, conjecturing, and reasoning. For example, Lampert (2000), in her analysis

of her work with fifth-grade students graphing the distance a car travels in 15 minutes,

asserts that teaching occurs:

in the terrain of division, in the relationship between division and fractions, and in a

larger domain of what mathematicians might call ‘‘multiplicative structures’’ where

rate, ratio, functions, and other big related ideas reside.… It occurs in my using

words that keep the concrete context of time, speed, and distance in the conversation

and in connecting this context to the mathematical terrain of rate and ratio. It occurs
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in rehearsing familiar number facts and in encouraging reasoning about when

assertions make sense. (p. 27)

More recently, Ball and her colleagues (Ball & Bass, 2003; Hill, Schilling, & Ball, 2004)

have set out to identify and measure a mathematical knowledge for teaching needed to

carry out the mathematical work of teaching. The following summary prepared by a cadre

of mathematicians and mathematics educators captures the flavor of this knowledge.

Effective teaching requires an understanding of the underlying meaning and justi-

fications for the ideas and procedures to be taught, and the ability to make con-

nections among topics. Fluency, accuracy, and precision in the use of mathematical

terms and symbolic notation are also crucial. Teaching demands knowing appro-

priate representations for a particular mathematical idea, deploying these with pre-

cision, and bridging between teachers’ and students’ understanding. It requires

judgment about how to reduce mathematical complexity and manage precision in

ways that make the mathematics accessible to students while preserving its integrity.

(Ball, et al., 2005, p. 4)

Effective teachers of mathematics should understand mathematical definitions, represen-

tations, examples and notations, and recognize those which are most powerful in sup-

porting children’s understanding; they should hear the mathematical thinking of children

and guide and extend that thinking; they should recognize the nature of children’s errors

and alternate conceptions, and help them to create counterexamples and arguments. In their

study of first and third grade classrooms, Hill, Rowan, and Ball (2005) demonstrated that

teachers’ mathematical knowledge for teaching positively predicted gains in mathematical

achievement of their students. Their work suggests that we must improve ‘‘…not just what

mathematics teachers know, but how they know it and what they are able to mobilize

mathematically in the course of teaching’’ (Ball, 2000, p. 243).

The purpose of this paper is to elucidate a related facet of teacher knowledge that we

term mathematical sophistication, and to demonstrate that this construct is helpful in

explaining why some preservice teachers fail to make sense of mathematics. Specifically,

we show that preservice elementary teachers in our study could not use a teacher resource

to refresh fundamental mathematical ideas, and we demonstrate that this failure was due, in

large part, to their lack of mathematical sophistication. While this construct is informed by

our own work as mathematicians and by our observations and reading of the work of

practicing research mathematicians, it seems logically ‘prerequisite’ and intimately

intertwined with the mathematical work of teachers as described by Ma and Ball. If

children construct knowledge, then the pedagogically powerful forms of mathematical

content knowledge suggested by Shulman might intersect those same elements that allow

mathematicians to create new mathematics. In other words, aspects of doing mathematics

that make the subject accessible to the mathematical community might also make it

accessible to students.

Our research perspective is one of social constructivism. We assert that cultural and

social processes are fundamental to mathematical activity and that the culture of the

mathematics classroom plays an essential role in developing ‘‘mathematical disposition’’

among students (Yackel & Cobb, 1996, p. 458). This perspective is described as follows by

Bauersfeld (1993):

The understanding of learning and teaching mathematics … support[s] a model of

participating in a culture rather than a model of transmitting knowledge. Partici-

pating in the processes of a mathematics classroom is participating in a culture of
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using mathematics, or better: a culture of mathematizing as a practice. The many

skills, which an observer can identify and will take as the main performance of a

culture, form the procedural surface only. These are the bricks of the building, but

the design for the house of mathematizing is processed on another level. (p. 4)

Within this paradigm, student understanding is tied to the mathematical norms of the

school mathematics classroom, a culture that may be at odds with the culture of the

mathematical community. It is this social constructivist perspective that suggests we

compare students’ mathematical behaviors and beliefs with those of mathematicians.

We use mathematical sophistication to describe the result of enculturation into the

community of practicing mathematicians. In other words, a mathematically sophisticated

individual has taken as her own the values and ways of knowing of the mathematical

community. We note that the construct of ‘‘mathematical sophistication’’ is related to

beliefs about the nature of mathematical behavior. An abundance of research suggests that

preservice elementary teachers are ‘‘unsophisticated;’’ for example, they often believe that

doing mathematics means memorizing and applying formulas to contrived textbook

exercises (Ball, 1990; Carpenter, Lindquist, Mattews & Silver, 1983; Schuck, 1996). In this

paper, we seek explicitly to identify some fundamental norms of the community of

mathematicians and to demonstrate how these norms can help us to understand why many

preservice teachers find mathematics difficult. In the following framework we attempt to

list and clarify these norms.

Framework

We assert that the difference between a sophisticated mathematics student and a naive one

lies in her beliefs about the nature of mathematical behavior, her values concerning what it

means to know mathematics, and particularly in her avenues of experiencing mathematical

objects and her distinctions about language. Specifically, we propose the following list of

norms that indicate mathematical sophistication and form the ‘‘design for the house of

mathematizing.’’ Both authors have doctorates in mathematics, are faculty members of the

mathematics department of a midsize comprehensive university, and teach mathematics to

preservice elementary teachers, to mathematics majors, and to graduate students in math-

ematics education. The content of the courses we teach includes topics in number theory,

geometry, data analysis, calculus, and abstract algebra. We generated this list as members

of the community of mathematicians and based on writings by prominent mathematicians

as indicated. We acknowledge that there is no single view of ‘what mathematics is,’ yet we

assert that the following list is a relevant subset of that which mathematicians value.

1) Mathematicians seek to understand patterns based on underlying structure. ‘‘Seeing

and revealing hidden patterns is what mathematicians do best’’ (Steen, 1990, p. 1).

‘‘The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the

ideas like the colours or the words, must fit together in a harmonious way. Beauty is

the first test: there is no permanent place in the world for ugly mathematics’’ (Hardy,

1941, p. 14).

2) Mathematicians make analogies by finding the same essential structure in seemingly

different mathematical objects. Poincaré asserted, ‘‘Mathematics is the art of giving

the same name to different things’’ (in O’Connor & Robertson, 2003, Quotations

section, } 7). ‘‘A mathematician is a person who can find analogies between theorems;

a better mathematician is one who can see analogies between proofs and the best
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mathematician can notice analogies between theories. One can imagine that the

ultimate mathematician is one who can see analogies between analogies’’ (Banach in

Ulam, 1976, p. 203).

3) Mathematicians make and test conjectures about mathematical objects and structures.

‘‘When you try to prove a theorem, you don’t just list the hypothesis, and then start to

reason. What you do is trial and error, experimentation, guesswork’’ (Halmos, 1985,

p. 321).

4) Mathematicians create mental (and physical) models for and examples and non-

examples of mathematical objects. This is the way we come to create and understand

our definitions, and thus understand our mathematical objects. ‘‘A good stock of

examples, as large as possible, is indispensable for a thorough understanding of any

concept, and when I want to learn something new, I make it my first job to build one’’

(Halmos, in Gallian, 1998, p. 40). Models give us intuition about the behavior of

mathematical objects and their relationships to other objects and allow us to check

results for reasonableness.

5) Mathematicians value precise mathematical definitions of objects (Tall, 1992).

Definitions provide us both necessary and sufficient criteria for classifying objects,

creating taken-as-shared meanings, and making arguments. ‘‘What is a good

definition? For the philosopher or the scientist it is a definition which applies to the

objects defined, and only those; it is the one satisfying the rules of logic’’ (Poincaré,

1946, p. 430). ‘‘The mathematician is not concerned with the current meaning of his

technical term…. The mathematical definition creates the mathematical meaning’’

(Polya, 1957, p. 86).

6) Mathematicians value an understanding of why relationships make sense. Poincaré

claimed, ‘‘Mathematicians do not study objects, but relations among objects; they are

indifferent to the replacement of objects by others as long as relations do not change.

Matter is not important, only form interests them’’ (in Gallian, 1998, p. 115).

7) Mathematicians value logical arguments and counterexamples as our sources of

conviction (Tall, 1992). These help us to understand relationships among mathemat-

ical objects and provide us autonomy. ‘‘Proof is the idol before whom the pure

mathematician tortures himself’’ (Eddington, 1928, p. 337).

8) Mathematicians value precise language and have fine distinctions about language. We

need these distinctions to communicate assertions and to make and evaluate

arguments. For example, we carefully distinguish between ‘‘and’’ and ‘‘or,’’ ‘‘there

is something, such that for all’’ and ‘‘for all, there is something such that,’’ ‘‘at most’’

and ‘‘at least,’’ necessary and sufficient conditions, and converse and contrapositive

forms, to name just a few. ‘‘Ordinary language is totally unsuited for expressing what

physics really asserts, since the words of everyday life are not sufficiently abstract.

Only mathematics and mathematical logic can say as little as the physicist means to

say’’ (Russell, 1931, p. 82). Laplace asserted, ‘‘Such is the advantage of a well-

constructed language that its simplified notation often becomes the source of profound

theories’’ (in O’Connor and Robertson, 2004, Quotations section, } 5).

9) Mathematicians value symbolic representations of, and notation for, objects and ideas.

Powerful notation helps us to organize our own thinking and to communicate meaning

to others. Leibniz claimed, ‘‘In symbols one observes an advantage in discovery which

is greatest when they express the exact nature of a thing briefly and, as it were, picture

it; then indeed the labor of thought is wonderfully diminished’’ (in Simmons, 1992,

p.156). ‘‘A good notation has a subtlety and suggestiveness which at times makes it

almost seem like a live teacher’’ (Russell in Newman, 1956, Vol. 3, p. 1856).
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The National Council of Teachers of Mathematics (NCTM) recognizes the above norms

of the mathematical community and promotes them. For example, NCTM (2000) asserted

that ‘‘understanding of patterns’’ is a fundamental aspect of doing mathematics; that

‘‘…all students must make and investigate mathematical conjecture’’ (p. 122); and that

students ‘‘…[u]se the language of mathematics to express mathematical ideas precisely’’

(p. 128). Furthermore, NCTM recommends that all students ‘‘…recognize reasoning and

proof as fundamental aspects of mathematics,’’ (p. 56), and ‘‘…use representations to

model and interpret … mathematical phenomena’’ (p. 67).

We stress that mathematical sophistication does not imply an understanding of any

specific definition, mathematical object, or procedure. Rather, having mathematical

sophistication means possessing the avenues of knowing of the mathematical community

that allow one to construct mathematics for oneself. For example, a mathematician may

have no understanding of knot theory. But because she is mathematically sophisticated, she

can read a book on the subject and teach a course. (As university mathematicians, we often

teach content courses without any prior knowledge of the standard definitions or theorems.

We learn the ideas by studying the definitions and reconstructing and inventing the relevant

arguments and procedures during the term.) We assert that she has access to understanding

the mathematical ideas of knot theory because she has internalized the above values and

behaviors. We now show how lack of mathematical sophistication denied this access to the

students in our study.

Research design and methods

Participants and setting

Elementary teacher education students at our university are required to complete three

mathematics content courses. At the start of the first course (Number Systems), each

student completes a 30-item multiple-choice Inventory designed to assess conceptual and

procedural knowledge of fundamental mathematics. The examination requires students to

apply definitions, to complete calculations, to make sense of stories involving geometric

shapes, decimals, or fractions, and to interpret graphs and tables. We identified three target

problem-types commonly answered incorrectly on the examination to use in this study.

(Each of the three problems was answered incorrectly by at least two-thirds of the 58

students who took the examination in the semester the study was conducted.) The problems

were also selected in a way that we might observe several indicators of mathematical

sophistication; that is, we chose problems in which understanding definitions (#5 on our list

of values), interpreting examples (part of #4 on our list of values), and using context to

create models (another part of #4 on our list of values) might be important components to

finding a solution.

We wanted to determine if student difficulty with these problems stemmed from a lack

of recall of algorithms and terms (the common student complaint, ‘‘I know this stuff, but

it’s been so long, I just don’t remember how to do it…’’) or if their lack of procedural

proficiency with elementary mathematics such as division of decimals or finding a GCF

reflects a deeper lack of understanding of the ways of learning and knowing mathematics.

We used student work on the Inventory to identify a pool of students who had answered

incorrectly all three of the target problems. Eleven participants were chosen from this pool

to represent several demographic factors including gender, academic history in college

mathematics, age, major, and class. The mean score (number of items correct out of 30) on
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the initial taking of the Inventory for the interview participants was 14.45 (s.d. = 4.1,

n = 11); 6 scored between 25% and 50% correct and the remaining 5 scored between 50%

and 75% correct. We chose not to select as an interview participant any student who scored

above 75% correct, as we were interested in studying those students with apparent lack of

proficiency in basic mathematical skills. Of the 58 students who took the Inventory, all but

10 scored in this range (25%–75% correct), and so our participants are not atypical of our

population of students in the course. In addition, all but one of the interview students

earned a C or better in the course.

Data collection

As the emphasis of this study was on interpreting students’ understandings of basic

mathematical tasks with a view to observing their use or non-use of various indicators of

mathematical sophistication, qualitative research methods were used in this study. These

methods are described next.

Interviews with students

During the first four weeks of the semester, each of the eleven participants completed a

semi-structured, one-on-one interview. In the interview, the participant was first asked to

solve three problems isomorphic to the target problems and to discuss her thinking about

each problem and its solution. The student was not told whether her solutions were correct.

Then she was allowed to study independently (in any manner she chose) and alone with a

resource similar to one to which she might have access as a practicing teacher. After

twenty minutes, the interviewer returned and asked the student if she was ready to discuss

the problems again or if she would like additional time at the site. All eleven students

indicated that they were ready to resume the interview. The participant was now asked to

revisit each interview problem, to make any changes she felt appropriate, and to explain

again her thinking about the problem. If a student changed her thinking in any way, she

was asked to explain why, and to discuss how the resource contributed to her revised

thinking. The interviews were audiotaped and the written work was videotaped.

Interview tasks

The interview tasks are presented in Table 1. In finding the solution to Task 1, the students

must distinguish between a ‘‘factor’’ and a ‘‘multiple’’ and compute a greatest common

factor (GCF) and least common multiple (LCM). Thus, students might find it helpful

to focus on understanding the relevant definitions and considering examples and

Table 1 Mathematical tasks used in interviews

Task
Number

Mathematical Problem

One What is the greatest common factor of 60 and 105?

What is the least common multiple of 60 and 105?

Two Calculate 0.4 7 0.05.

Three Brooke has a 3
4

pound (12 oz.) bag of M&M’s. If she gives 1
3

of the bag to Taylor, what fraction
of a pound does Taylor receive?
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non-examples (#4 and #5 on our list of values). Task 2 assessed the division of decimals. A

student could solve this problem either by mimicking an example of the standard procedure

or by appealing to a model of division (e.g., ‘‘How many times does 0.05 fit into 0.4?’’ Or

‘‘How many nickels are in 40 cents?’’). It was also important to attend to the meaning of

the notation and to use it with precision (#9 on our list of values). Task 3 required students

to make sense of a word problem involving multiplication of fractions. In order to

understand this problem, it was essential for students to attend carefully to the meaning of

the language in the problem (#8 on our list of values), and helpful to use a model for

fraction multiplication (#4 on our list of values).

The teacher resource

The study resource is a website coordinated with the Everyday Math (University of

Chicago School Mathematics Project, 2004) curriculum, found at http://www.math.com/

homeworkhelp/EverydayMath.html. It provides teachers and parents with statements of

mathematical definitions, explanations, examples, and practice problems for a variety of

topics, including each mathematical idea that was needed for an interview problem.

Although the pedagogy of the website is not always consistent with a constructivist theory

of learning and the explanations are not always the most elegant or intuitive, we chose it

for this study because Everyday Math is the curriculum used in the elementary schools in

our district, and it is typical of the type of resource practicing teachers might have

available. Participants were shown how to access the information they might need to assist

them, all of which was available on a single menu. All eleven students reported that the

website was easy to use.

To give the reader a sense of the site, we demonstrate the resource material relevant to

the first part of the first interview problem: determine the GCF of 60 and 105. At the

website, the student finds the appropriate definition, a review of the procedure for finding

the GCF of two numbers, and several examples (see Figure 1). Definitions and examples of

‘‘factor,’’ ‘‘multiple,’’ and ‘‘prime factor’’ are accessible by a direct link from this page.

Similarly, the website lists the steps in the common algorithms for ‘‘moving’’ the decimal

Greatest common factors (GCF)

The greatest common factor, or GCF, is the greatest factor that divides two numbers.  To
find the GCF of two numbers:

1. List the prime factors of each number.

2. Multiply those factors both numbers have in common.  If there are no common prime 
   factors, the GCF is 1.

First Glance In Depth Examples Workout

Fig. 1 Everyday Math webpage for greatest common factor
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point in a long division problem and for multiplying fractions, together with examples

illustrating the use of each. In our opinion, the pedagogy of the website would not be

appropriate for students learning these concepts for the first time, but could be useful as a

concise review of previously learned ideas. It might seem that the students who would most

benefit from the short time at the site would be those who had known the definitions of

terms and the procedures at one stage of their schooling and had simply forgotten them.

Indeed, we used the website intervention in our interview protocol precisely to discover

how often this was the case and to observe the manner in which students did or did not use

the avenues of knowing of the mathematics community. Our premise is that the true

underlying cause of students’ lack of skill is not merely a need for knowledge refresh-

ment, but rather is a paucity of ‘‘accessing skills,’’ a profound lack of mathematical

sophistication.

Data analysis

To prepare the data for analysis, the videotapes of student written work on each problem

were viewed to annotate the written work using students’ comments during interview

questioning. Careful attention was paid to distinguishing work and comments made prior to

use of the teacher resource from work and comments make after such use. This annotated

written work was then analyzed as to the correctness of the solutions prior to and after use

of the teacher resource in order to prepare Table 2. After the written data were thus

clarified, the researchers listened to each audiotape many times in order to code student

actions and comments. This coding of the data took several iterations, with early analysis

suggesting the need for a framework by which we could describe the concept of mathe-

matical sophistication. In the final analysis, we used the items in our framework as cate-

gories. As a further check on the reliability and validity of the coding of the data, we asked

a colleague who was not a part of the research team to listen to the tapes and independently

to assess the mathematical sophistication displayed by the students’ work and words. He

concurred with our assessment of the correctness of students’ solutions and with our coding

of their explanations in all cases.

Results

The presentation of our analysis of the data is twofold. First, we explore participants’

understandings of three mathematical tasks (see Table 1) before and after their independent

Table 2 Number of interview students with correct problem solution

Interview Tasks On Initial Skills
Inventory (in class)

In Interview before
Time at Website

In Interview after
Time at Website

On Final Skills
Inventory (in
class)

#1a – GCF of 60 & 105 0 2 3 7

#1b – LCM of 60 & 105 0 1 1 4

#2 – 0.4 / 0.05 0 0 5 2

#3 – multiplication of
fractions word
problem

0 3 4 7

Note: n = 11
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work with the teacher resource. Second, we apply the proposed framework and use it to

illuminate reasons for the students’ successes and failures in working on these tasks.

Student work on the mathematical tasks

Recall that the interview tasks consisted of three problems that were essentially a subset of

those on the Inventory. All the interview participants indicated that these were mathe-

matical tasks that they were able to solve at some point in their schooling. In the words of

Kay, ‘‘A lot of this stuff I’m looking at – I know how to do it. I’ve done it before. But I

haven’t done it in so long, I’ve forgotten how.’’ They also expressed a need to ‘‘refresh the

procedures to use to get the answers.’’ Table 2 shows the number of interview participants

who solved each problem in the interview correctly both before and after ‘‘refreshment’’

time with the teacher resource. The number with correct solutions after time at the website

resource includes those who had correct solutions prior to spending time there.

Comparing Columns 2 and 3 on Table 2, we see that none of the 11 interview participants

gained the ability to find a Least Common Multiple (Task 1b), and only one gained the ability

to find a Greatest Common Factor (Task 1a) after using the teacher resource. Meg, a freshman

dual elementary and special education major, shared her frustration, ‘‘Even after looking at

that website for awhile, the GCF and LCM… I couldn’t figure it out.’’ Likewise no partic-

ipant who had been unable to solve Task 3 prior to using the website resource could interpret

the one-step word problem correctly after using it. The only participant who did correct her

solution after using the site said she did so because she had recalled that the word ‘‘of’’ in the

problem statement meant ‘‘multiply.’’ We acknowledge that the learning process is complex,

and it is possible that students learned something more from the website than they revealed in

the interview. Thus, in our analysis, we will focus on what our participants did at the site in

addition to what they appeared to have learned from their time there.

While, as indicated above, no participant appeared to gain understanding of terms,

examples, notation or models from the resource, almost half were able to use the resource

to correct procedural errors in applying the division algorithm for decimals (Task 2).

Successful participants were those who initially made a correct interpretation of the

division notation (that is, they set up the ‘‘long division box’’ with 0.05 on the outside and

0.4 on the inside) and performed a long division, but were unsure of how to ‘‘move’’ the

decimal point in the answer.

Thus, even though these students expected to be able ‘‘to pick it up quick,’’ they were

generally unsuccessful in ‘‘refreshing’’ their ‘‘know how,’’ despite claims that the website

was easy to navigate and to read. Kara reported, ‘‘I think it is a very good website for

people who are trying to help kids with math. [It has] good explanations and the definitions

were helpful.’’

From Column 4 on Table 2 we see that at the end of the semester (after the first content

course), 7 of the 11 interview participants were able to find the correct GCF (of 24 and

300), 4 correctly determined the LCM, and 7 were able to solve a one-step word problem

involving multiplication of fractions. Thus there appears to have been some increase in

understanding and skill that may be based on the participants’ experiences in this content

course. While gratifying, the nature of this increase is not the focus of this study, but is

noted for information. We also observe that, although 5 participants corrected their

procedural knowledge (on how to ‘‘move’’ decimals) in the interview, only 2 of these were

still able to answer this type of problem correctly at the end of the semester. In other words,

the improvement in procedural knowledge gained at the site did not appear to last.
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Mathematical sophistication

In order to make sense of the participants’ inabilities to use the teacher resource to assist

them in solving the three interview tasks, we now contrast the approaches students said

they had used while studying at the site with the ways of knowing of the mathematical

community as presented in the framework. Only one student in the study distinguished

between a factor and a multiple prior to work at the site, and all eleven were unsure of the

meaning of a least common multiple (LCM). As Sue explained, ‘‘For me I feel they [the

words ‘factor’ and ‘multiple’] are interchangeable,’’ and Emmy stated, ‘‘Multiples are

numbers that multiply together to give the number and a factor is a number that goes into

the number.’’ Eventually, most students decided that the greatest common factor (GCF)

was the largest number that went into both (and then typically found the largest prime
factor) and the LCM was the smallest number that went into both (and then generally found

the smallest prime factor). Hence, attending to the definitions while at the site would have

been beneficial for all participants.

We assert that a mathematician, when faced with using an unfamiliar definition, will

persist in understanding the precise statement of that definition (#5 on our list of values).

She will create examples and non-examples and explore why each criterion given in a

definition is important (#4 on our list of values). The students did not do this. Typically

they ignored the definitions and spent their time at the site trying to follow the procedures

for computing a GCF and an LCM. They focused almost exclusively on what to do, and not

on sense making. After time at the site, six of the ten students who initially could not find

an LCM now attempted to mimic the procedure they had studied (building the LCM from

the prime factorizations of two numbers) to find the LCM of 60 and 105. None was

successful. None could describe what it was they were finding or why the procedure made

sense (#6 on our list of values). None could provide an intuitive definition of LCM. Of the

remaining four students who were unable to compute correctly the LCM of 60 and 105

initially, two students stated that the site confirmed their initial (incorrect) understanding,

and the remaining two claimed to have studied the definitions, but then said they were

unable to understand them or to use them in the context of the problem.

Initially, no student could find the correct quotient of 0.4 and 0.05 (Task 2). Two

students attempted to compute instead the quotient of 0.05 and 0.4 (reversing the divisor

and the dividend); two unsuccessfully used a model of repeated additions (How many

times does 0.05 fit into 0.4?); two participants tried to think about what needed to be

multiplied by 0.05 to get 0.4; and three students attempted to perform the long division but

were unsure how to ‘‘move’’ the decimal point. The remaining two students did not

attempt the problem, but one stated that the answer must be bigger than 0.4 because

‘‘…dividing by a point-something, I’m pretty sure makes it greater.’’ In all cases, the

students would have benefited from the following avenues of knowing of the mathematical

community: careful attention to the notation (so they were performing the correct division

or so that they could be more effective in their use of their models) (#9 on our list of

values); rounding and estimation of the size of the answer; and the creation of a model for

division (such as thinking about how many nickels fit into 40 cents) (#4 on our list of

values) so that they could make sense of the problem and assess the reasonableness of their

answers (#6 on our list of values).

The resource site shows the standard long division procedure along with explanation

and examples; its only model is ‘‘division as the inverse of multiplication.’’ The site

advocates rounding decimal numbers in order to estimate the reasonableness of answers,

and it encourages the reader to multiply the answer and divisor to check that the product is
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the dividend. This ‘‘check’’ is included as part of each example. The students focused

exclusively on reproducing the procedure. In fact, after time at the site even the students

who initially had models for the problem abandoned them. Recall that they had not been

told that their initial answers were incorrect. Typically, they did not estimate the size of an

answer beforehand. Five students used the standard procedure to obtain the correct answer.

Meg, however, was not convinced that the result was correct. ‘‘I know 8 isn’t the answer.

That doesn’t make sense. You have to get a decimal.’’ After time at the site two students

‘‘moved the decimals’’ and then, in the end, moved them back, getting 0.08 as their

(incorrect) answer. Kara explained, ‘‘So I would get the same thing (0.08), I just had to do

it the right way.’’ None of the students who had reversed the quotient noticed this after

time at the site. All students indicated that this was a type of problem they always did with

a calculator. Ann stated, ‘‘We learned how to do it [divide decimal numbers] on the

calculator. As far as doing it in my head, oh no, I don’t remember how to do this. And

without a calculator I felt lost [when taking the inventory test in class].’’

Students were uniformly uncertain how to approach the story problem that required

multiplication of fractions (Task 3). Typically, they responded to the presence of fractions

in the problem by determining immediately a common denominator. ‘‘First, I’d attempt

to get a least common denominator…’’ (Sue on first reading). And then a majority

attempted a subtraction because the M&Ms were ‘‘given away.’’ They appeared to focus

on key words from the problem rather than making sense of the situation in the story.

Prior to spending time on the website, three of the 11 students correctly determined that

Taylor received ¼ pound of M&Ms. One of these (Emmy) used her contextual knowl-

edge of cooking to model the problem. The other two students drew pictures to represent

the fractions and decided that the answer was ¼ (although one of these incorrectly said ‘‘

¼ of the bag’’ at one point). Of those students who did not get the correct result, six

attempted subtraction (two of whom could not correctly determine the difference) and

two used division (both of whom could not correctly determine the quotient) to solve

Task 3.

A mathematician faced with an unfamiliar or confusing story would attend very

carefully to the language in the problem (#8 on our list of values), making certain that she

was able to make sense of the situation. She might draw a picture or create another model

for the problem (#4 on our list of values), or, in the interview task, make a temporary

conversion to ounces. Finally, she would consider whether her answer made sense in the

context of her model (#6 on our list of values). Indeed, the three students who did these

things were successful and the remaining students were not. The website provides fraction

definitions, fraction algorithms, sample story problems, the assertion that ‘of’ typically

means multiply, and an example to make sense of this assertion. However, in order to find

this explanation, the student would have needed to click on the section on ‘‘multiplying

fractions,’’ and most did not know that this operation was required for the problem.

Instead, the interview students typically used the site to refresh their memories of the

procedure for the operation they had initially chosen without further scrutiny of the

problem’s meaning or the reasonableness of answers. Thus, the information at the site did

not prove useful for them in solving the interview problems.

Discussion and conclusions

Many preservice elementary teachers begin their education programs unable to perform

basic computations or to explain fundamental mathematical ideas. Typically, they attribute
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these difficulties to the length of time that has passed since they last considered such

problems or to their dependence on the calculator. University mathematics instructors, on

the other hand, have been heard to blame their students’ school preparation, their inat-

tentiveness in class, or their unwillingness to study. Our data, however, suggest yet another

explanation: preservice elementary teachers are profoundly mathematically unsophisti-

cated. In other words, they display a set of values and avenues for learning mathematics

that is so different from that of the mathematical community and so impoverished, that

their attempts to create fundamental mathematical understandings often meet with little

success. While it may be that this lack of mathematical sophistication is a result of

students’ prior experiences in school mathematics, we claim that the weakness in their

preparation goes well beyond a simple deficiency in procedural knowledge.

The participants of this study were not just unable to find a least common multiple of

two numbers; they did not even attempt to make sense of the relevant definitions provided

by a teacher resource. They were not just unable to recall the procedure for dividing 0.4 by

0.05; they were sometimes unable to set up the correct quotient (even as they followed an

isomorphic example), and they often did not focus on giving meaning to the problem or the

answer. They were not just unable to operate with fractions; they did not attend carefully to

language in a story problem, and they did not attempt to use relevant explanations. What

they did instead was to mimic the procedural examples provided by the resource - even at

the expense of their own tentative models and understandings. What educators would call

poor procedural knowledge was an indicator of poor conceptual understanding, and worse,

was an indicator of an inability to use the avenues of knowing of the mathematical com-
munity to gain either conceptual or procedural understanding. We acknowledge that we

studied only eleven preservice elementary teachers at one stage of their program, and that

we did not select as participants high-achieving students. However our participants did

earn fairly good grades (grades B and C) in their content course and are likely to graduate

and become elementary teachers.

Our data support the assertion that mathematics courses for teachers should focus on

their enculturation (in the sense of Bauersfeld, 1993) into the mathematical community.

We advocate not necessarily an authentic replica of the mathematical community in

classrooms for preservice teachers but rather an increased focus on the relevant and

powerful avenues of knowing used by mathematicians. Elementary teachers must come to

value precise definitions, develop habits of classifying objects based on those definitions,

and invent examples and non-examples of mathematical objects as ways of enabling them

to learn mathematics. They must learn to appreciate the power of mathematical language

and notation. They need to create models that have meaning. Acquiring these aspects of

mathematical sophistication is essential if preservice elementary teachers are to learn the

mathematics they need to understand for teaching.

This enculturation into the mathematical community’s avenues of knowing is as

important as a deep understanding of any specific content knowledge. In their 2001 report

on the mathematical education of teachers, the Conference Board of the Mathematical

Sciences recommended, ‘‘along with building mathematical knowledge, mathematics

courses for perspective teachers should develop the habits of mind of a mathematical

thinker…. Most of all, prospective teachers need to learn how to learn mathematics’’ (p. 8).

This study supports this recommendation and indeed, we claim that developing ‘‘the habits

of mind of a mathematical thinker’’ should be the crucial role that mathematics content

courses play in the preparation of teachers.

Our assertions are also consistent with the current reform efforts in mathematics edu-

cation and the process recommendations for school mathematics made by the National
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Council of Teachers of Mathematics (NCTM, 2000). Indeed, Ball (2000) and her col-

leagues have drawn similar conclusions.

In our recent work on mathematics teaching, we expected to see that concepts such

as place value and decimal notation would be central, and they have been, as have

operations and methods of reasoning. However, beyond that, we have been struck by

the unanticipated by recurrent prominence of certain mathematical notions. For

instance, we have found that ideas about equivalence, similarity, and even isomor-

phism emerge across many instances of ordinary and extraordinary teaching and

learning. We have also uncovered salient issues involving mathematical language:

symbolic notation, mapping among representations, and definitions of terms. (p. 244)

These activities are not just crucial facets of mathematical knowledge, but they are part of

the mathematical work of teaching. Elementary teachers should define terms in ways that

will help children classify objects, solve problems, and make arguments. They should

create examples and non-examples that enable their students to clarify definitions and

concepts. Elementary teachers should use mathematical symbolism and notation to capture

the mathematical ideas that their students express. They should choose and use many

different models of mathematical ideas to provide multiple learning opportunities for their

students. While Ball reached these conclusions by studying the mathematical work of

teaching from the perspective of a mathematics educator, this study supports similar

conclusions from the perspective of the mathematics community. In other words, mathe-

matical sophistication and mathematical knowledge for teaching are inextricably linked,

and should represent a common goal for both mathematics content and methods courses.

If, then, such courses for preservice teachers should focus on the mathematical work of

teaching using the avenues of knowing of the mathematical community, we need faculty

instructors who are able to teach these courses from both perspectives; that is, they, like their

students, must be acculturated in both communities. This presents a serious dilemma.

Mathematicians are mathematically sophisticated, but they are often unable to make that

sophistication transparent to students, and most are unfamiliar with the mathematical

knowledge for teaching elementary school mathematics. For example, they are unfamiliar

with intuitive mathematical ideas held by children, with the sequencing of the school

curriculum, and with the representations, examples and tasks that are most effective at

bridging children’s mathematical models with more sophisticated ideas. Many mathematics

educators, on the other hand, are familiar with the mathematical knowledge for teaching but

lack mathematical sophistication. And neither mathematical sophistication nor the mathe-

matical knowledge for teaching is easily attained. Research is needed (in the vein of Chazen

& Ball, 1999; Goos, 2004; Yackel, 2001; Yackel & Cobb, 1996) to document processes of

this enculturation of faculty in both communities as well as to describe classroom and other

experiences that increase mathematical sophistication among students.

Acknowledgements We acknowledge our colleague, John E. Beam of the University of Wisconsin
Oshkosh, for his assistance in the collection and analysis of the data for this study; and we thank all
reviewers for their helpful comments on earlier drafts of this paper. This work was supported in part by the
University of Wisconsin Oshkosh Scholarship of Teaching and Learning Initiative.

References

Ball, D. L. (1990). Prospective elementary and secondary teachers’ understanding of division. Journal for
Research in Mathematics Education, 21(2), 132–144.

180 C. E. Seaman, J. E. Szydlik

123



Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary school
mathematics. The Elementary School Journal, 93(4), 373–297.

Ball, D. L. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning to teach.
Journal of Teacher Education, 51(3), 241–247.

Ball, D. L., & Bass, H. (2003). Making mathematics reasonable in school. In G. Martin (Ed.), Research
compendium for the principles and standards for school mathematics (pp. 27–44). Reston, VA:
National Council of Teachers of Mathematics.

Ball, D. L., Ferrini-Mundy, J., Kilpatrick, J., Milgram, R. J., Schmid, W., & Schaar, R. (2005). Reaching for
common ground in K-12 mathematics education. Unpublished manuscript.

Bauersfeld, H. (1993). Teachers pre and in-service education for mathematics teaching. Seminaire sur la
Representation, 78. Canada: CIRADE, Université du Quebec à Montreal.
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