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ABSTRACT. Current reform-driven mathematics documents stress the need for

teachers to provide learning environments in which students will be challenged to

engage with mathematics concepts and extend their understandings in meaningful ways

(e.g., National Council of Teachers of Mathematics, 2000, Curriculum and evaluation

standards for school mathematics. Reston, VA: The Council). The type of rich learning

contexts that are envisaged by such reforms are predicated on a number of factors, not

the least of which is the quality of teachers’ experience and knowledge in the domain of

mathematics. Although the study of teacher knowledge has received considerable

attention, there is less information about the teachers’ content knowledge that impacts

on classroom practice. Ball (2000, Journal of Teacher Education, 51(3), 241–247) sug-

gested that teachers’ need to ‘deconstruct’ their content knowledge into more visible

forms that would help children make connections with their previous understandings

and experiences. The documenting of teachers’ content knowledge for teaching has

received little attention in debates about teacher knowledge. In particular, there is

limited information about how we might go about systematically characterising the key

dimensions of quality of teachers’ mathematics knowledge for teaching and connec-

tions among these dimensions. In this paper we describe a framework for describing

and analysing the quality of teachers’ content knowledge for teaching in one area

within the domain of geometry. An example of use of this framework is then developed

for the case of two teachers’ knowledge of the concept ‘square’.
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INTRODUCTION

A principal theme in current reform-driven mathematics documents is

the need for teachers to provide learning environments in which stu-

dents will be challenged to engage with mathematics concepts and

extend their understandings in meaningful ways. Recent discussions

of the role of the mathematics teacher emphasise the importance of

teachers helping students to develop knowledge structures that will
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allow the student productively to explore a suitable range of mathe-

matical problems. The sense of this perspective is clearly articulated

in the recommendations, such as that of the National Council of

Teachers of Mathematics (1989, p. 128), that there is a need for

teachers to ‘shift from dispensing information to facilitating learning’.

Knapp (1997) views the adoption by teachers of this shift in concep-

tualisation of teaching as one of the central planks of the broad

reform movement in mathematics and science teaching. One part of

this movement is the specification of the crucial role that teachers

and their knowledge play in influencing the knowledge and under-

standings constructed by students. A critical assumption made in

development of the agenda for reform is that the teacher should

have access to a well-developed, good quality, body of mathematical

content knowledge. In this study we address the issue of how to cha-

racterise the quality of a teacher’s mathematical content knowledge.

The purpose of this study was twofold. First, we develop a frame-

work for identifying dimensions of quality in teachers’ content

knowledge for geometry and teaching of a concept in geometry. Sec-

ond, we use this framework to describe the knowledge provided by

two teachers who completed a number of tasks that were designed to

access their knowledge of this concept.

Teacher Knowledge and Mathematics Teaching

Recent research about development of teachers’ competence in mathe-

matics has identified three major components of teachers’ knowledge

base which permit them to perform their role effectively: Mathematics

content knowledge, pedagogical knowledge, and the blend of knowl-

edge of content and pedagogy. Mathematical content knowledge

includes information such as mathematical concepts, rules and associ-

ated procedures for problem solving. Pedagogical knowledge refers to

teachers’ understanding of their students, and the processes involved in

teaching. The blend of content and pedagogical knowledge includes

understandings about why some children experience difficulties when

learning a particular concept while others find it easy to assimilate,

knowledge about useful ways to conceptualise and represent the chosen

concept (Feiman-Nemser, 1990), the quality of explanations that teach-

ers generate prior to and during instruction (Leinhardt, 1987), and per-

ceptions about the nature of mathematics. This blend has also been

labelled as pedagogical content knowledge (Shulman, 1986). In recent

years, researchers interested in improving children’s mathematical
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performance have argued that the quality of teachers’ own knowledge

has a strong influence on how that knowledge is accessed and exploited

during planning for a lesson and instruction (Clark & Peterson, 1986;

Lawson & Chinnappan, 1994; Schoenfeld, 1992).

While the study of teacher knowledge has received considerable

attention, there is less information about teachers’ content knowledge

that impacts on classroom practice. In highlighting this issue, Ball

(2000) made the distinction between ‘knowing how to do mathematics

and knowing it in ways that enable its use in practice’ (p. 243). Ball

suggested that teachers’ need to ‘deconstruct’ their content knowledge

into more visible forms that would help children make connections

with their previous understandings and experiences. The following

quote adumbrates the issue.

‘Understanding the use of mathematics in the work of teaching is critical area ripe
for further examination. It is not only what mathematics teachers know but also

how they know it, and what they are able to mobilise mathematically in the course
of teaching’ (Ball, Lubienski & Mewborn, 2001, p. 451).

The documenting of teachers’ content knowledge for teaching has

received little attention in debates about teacher knowledge. In partic-

ular, there is limited information about how we might go about cha-

racterising the qualities of this knowledge in a systematic manner. In

this paper, we describe a framework designed to allow us to undertake

such a characterisation. In so doing we examine the issue of ‘how they

know it’ that Ball et al. (2001) drew attention to.

Geometric Knowledge

Students’ understandings of geometry have received considerable

attention in most curriculum documents, and this area is regarded as

providing important foundations for appreciation of other mathemat-

ics topics such as algebra. K-12 mathematics curriculum documents

(Board of Studies, 2002; National Council of Teachers of Mathemat-

ics, 2000) have identified geometric knowledge under various themes

such as spatial concepts, attributes of 2-dimensional (2-D) and 3-

dimensional (3-D) shapes, plane geometry, deductive geometry and

coordinate geometry. All these areas involve spatial thinking and use

of conventions in geometry diagrammatic representations. Vinner and

Dreyfus (1989) suggested that formal concept definitions and images as

provided in the curriculum may be different from images of the con-

cept that individual students develop. In a traditional classroom,

teachers may focus on the former at the expense of the latter, which
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could include individual students’ idiosyncratic ways of understanding

geometry concepts.

In their analysis of perception of geometric figures, Gray, Pinto,

Pitta and Tall (1999) highlighted the power of language in helping

learners to make hierarchical classifications. They suggested that

‘through verbal discussion, instruction and construction, the child may

begin to see hierarchies with one idea classified within another, so that

a square is a rectangle is a quadrilateral’ (p. 112). Thus, the language

used by a teacher plays a central role in the development of under-

standings about 2-D shapes and their relations to other shapes.

From the teaching point of view, current models of embedded

learning emphasise not only properties of shapes but also the identifi-

cation of these shapes in an array of real-life contexts. For example,

teachers’ content knowledge about 2-D shapes would involve not only

descriptions about features of parallelograms but also the construction

of parallelograms using pattern blocks, and the awareness of use of

these shapes in real life activities. Teachers must also be able to articu-

late the relationships between parallelograms and other 2 and 3-D

figures, such as rectangles, triangles, rhombus and quadrilaterals in

general. That is, teachers need to bring a level of representational flu-

ency to the teaching of 2-D shapes. This fluency, which should include

language that is associated with 2-D shapes, can be argued to reflect

teachers’ geometric knowledge for teaching. In order to improve our

sense of what content knowledge matters in teaching geometry, we

would need to identify the ‘critical components’ of the deconstructed

knowledge referred to by Ball (2000). In the first instance, this requires

a fine-grained analysis of not only the content of geometric knowledge

but also its deconstruction and reorganisation which is important for

accessing and making concepts visible to students.

Geometric Knowledge Connectedness

It is generally accepted that, all other things being equal, a teacher

with a better quality knowledge base will be more able to assist stu-

dents than one with lesser quality knowledge (Grossman, 1995;

Munby, Russell & Martin, 2001). Researchers have emphasised the

importance of recognising the connected nature of the teacher’s knowl-

edge base. Robinson, Even and Tirosh (1992) suggested that in order

to understand the depth of teachers’ knowledge and understanding it

was necessary to examine the network of interconnected schemas and

procedures that form the knowledge base. Schoenfeld (1988)

observed that development of mathematical thinking requires not only

200 MOHAN CHINNAPPAN AND MICHAEL J. LAWSON



mastering various facts and procedures, but also understanding con-

nections among them, and suggested that there is value in providing

detailed descriptions of the structures that support such thinking. As

yet, we have very few detailed discussions of the ways in which the

quality of connectedness of elements of teacher knowledge can be

investigated and represented.

The starting point for our attempt to represent the quality of math-

ematics teachers’ knowledge of content was Mayer’s (1975, p. 529)

notion of knowledge connectedness. Mayer described the accumulation

of new information in long-term memory as adding new nodes to

memory and connecting the new nodes with components of the exist-

ing network. Internal connectedness refers to the degree to which new

nodes of information are connected with one another to form a single

well-defined structure or schema. This sense of connectedness refers

both to the presence of nodes related to a schema and to the quality

of the relationships established among those nodes. The broad notion

of quality here can be related, in part, to what Anderson (2000) refers

to as the strength of a memory trace. Seen in this way, the stronger

the connections among the nodes in a particular schema, the better is

the quality of that structure. Mayer (1975) referred to external con-

nectedness as the degree to which newly established knowledge struc-

tures are connected with structures already existing in the learner’s

knowledge base. For example a teacher might be expected to relate a

schema for proportion with schemas for ratio or fraction.
One important dimension related to the quality of that structure.

Is the identification of what connections are present in a knowledge

structure. Other things being equal, the more comprehensive the con-

nections in a knowledge structure are, the more ‘rich’ or more elabo-

rated is the structure, the more useful it will be in problem solving

(Anderson, 2000). However, it is also apparent that the nature of the

connections within a knowledge structure, not just the number of

connections, is also important. Some time ago Bruner (1966) referred

to knowledge representations as having degrees of ‘power’, and Witt-

rock (1990) has more recently described both student and teacher

understandings as having ‘generative’ capacity. Both power and gen-

erative capacity draw attention to the quality of the connections in a

knowledge structure. The more powerful and more generative a struc-

ture, the more widely it can be applied in problem solving (Bruner,

1966). So we might expect different individuals to have connections

between proportion and ratio or fraction that differ in power. In sim-

ilar vein, we might expect a student’s new schema for proportion

to have both a certain quality in its internal structure (internal
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connectedness) and a certain quality in its connections to related

schemas (external connectedness). This analysis of connectedness was

used by Chinnappan (1998a, b) who argued that the linking of the

different pieces of knowledge of geometry and trigonometry reflect

deeper and richer understandings.

The above discussion relating to the quality of connections in a

knowledge representation omits the question of how to describe such

quality. In developing the framework discussed below, we have set out

one way in which we think the quality of a knowledge structure re-

lated to mathematical content knowledge can be described. We have

used the notions of internal (within-schema) and external (between-

schema) connectedness for representing the structural dimensions of

teachers’ knowledge and have defined specific features of those struc-

tures as indices of quality. These notions provide a way to represent

the complexity of geometric knowledge base in a manner that focuses

on the state of organisation of that knowledge.

Representation of Geometric Knowledge Structure in Maps

As the study of dimensions of teachers’ geometric knowledge for

teaching involves the examination and specification of schemas and

relationships, we need tools that will help us to represent the organisa-

tional features of that knowledge. An intuitively appealing and effec-

tive procedure for representing knowledge structure is that known as

concept mapping. The concept map has emerged in a number of forms

in the literature of educational research, though the term is most com-

monly associated with the work of Joseph Novak and his colleagues in

the science education program at Cornell University (e.g., Novak,

1990; Novak & Gowin, 1984). In establishing this representational for-

mat, Novak drew extensively on the descriptions of learning that had

been developed by Ausubel (1968). The establishment of meaningful

relationships among concepts was contrasted by Ausubel with rote

learning in which concepts were not embedded in rich conceptual net-

works, but were left relatively unelaborated and conceptually isolated

within the broad conceptual structure. In the Ausubelian view, the

growth of knowledge was characterised by the gradual development of

more complex and more differentiated structures organised in a hierar-

chical pattern. The different parts of this structure could be related, or

integrated, through the establishment of propositional links. The hier-

archical structure of a concept map was seen by Novak as instantiat-

ing the process of knowledge growth that Ausubel termed

subsumption.
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Concept maps, in general, are graphs, or networks, consisting of

nodes and labelled lines (Lawson, 1994). The nodes are used to indi-

cate concepts, or categories, while the lines correspond to a relation

between pairs of concepts. The label on the line tells how the two con-

cepts are related. Shavelson, Lang and Lewin (1993) referred to this

relation as a proposition and argued that concept maps represent

important aspect of learner’s propositional knowledge in a domain.

A major difference among the various types of concept maps is

their basic structure and the degree of control one wishes to impose in

constructing the maps. A hierarchical concept map is better suited to

assessing concepts that are organised in a top-down fashion, where the

top-level of the map shows the most inclusive and subsumptive con-

cept. However, if one is interested in elucidating multiple links among

concepts or among concept clusters, and the integration of this infor-

mation in the generation of explanations involving analogies and/or

metaphors, then a web-like structure will be more appropriate (Beiss-

ner, Jonassen & Grabowski, 1993). Furthermore, the structural analy-

sis of forms of spatial representation carried out by Novick and

Hurley (2001) suggests that a network structure can provide flexibility

in representation of direction of relationships and of linking of units

that are not available with matrix or hierarchy formats. It is for this

reason that we have used a network structure for the concept maps in

our framework.

Concept mapping techniques have also been argued to be appropri-

ate for representing complex interrelationships among schematised

knowledge within and between domains (Jonassen, Beissner & Yacci,

1993). A number of recent studies have used concept maps to assess

conceptual understanding in mathematics and science (Coleman, 1993;

Laturno, 1994; Markman, Mintzes & Jones, 1994; Williams, 1998). In

this project, we have attempted to realise more of the potential of

mapping representations to provide indices of the quality of teacher’s

geometric knowledge and, to some extent, the transformation of this

knowledge for practice. In doing this we are not intending to suggest

that we have captured an enduring representation of an individual tea-

cher’s knowledge base. We assume that all knowledge bases are in a

constant state of evolution, so that what we are representing is con-

ceptual space that has been activated across the times of our interac-

tion with the participants. In addition we have chosen to use the term

‘schema’ as the basic organisational unit within the map rather than

‘concept’. In doing this we are following the use of schema proposed

by Anderson (2000), that we see as allowing for representation of
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declarative, procedural and conditional characteristics of a category

than does the label ‘concept’. The schema is seen to be composed of

relationships among a number of features.

METHOD

Participants

The teachers whose geometric knowledge is the subject of this report

were two of five experienced teachers recruited for a larger project,

along with five novice teachers. The experienced teachers were selected

using two criteria: first, they had at least 15 years of mathematics

teaching experience at the high school level; and second, they were all

recommended by their peers or professional subject associations as

exemplary teachers. The maps developed for this report were based on

the knowledge exhibited by two teachers, Gary and Sue. In addition

to having 20 years of teaching experience, Gary was the head of the

mathematics department at his high school in an Australian capital

city and was also involved in the writing of mathematics textbooks for

high school students. Sue was one of the senior mathematics teachers

in a private girls’ school in a different capital city.

The teachers were interviewed individually during school hours and

their responses were audio-taped and videotaped for later transcrip-

tion. They were told that the purpose of the study was to find out

what teachers know about topics in geometry and about the teaching

of these topics.

Procedure

Three interviews were conducted with each participant, each lasting

about 1 h. The interview schedule allowed each participant multiple

opportunities to access knowledge and provided a range of activities

for prompting such access. Throughout the interviews, the teachers

were reminded also to consider geometry knowledge that was relevant

to their teaching. During the first interview the teacher was asked to

talk about a list of focus schemas in the areas of geometry, trigonome-

try, and coordinate geometry that were relevant to the school curricu-

lum and their teaching. In the first instance teachers were asked to talk

about the concept of square (focus schema 1) and their understandings

about the teaching and learning a square. As this was a free recall ses-

sion we asked questions such as: ‘Tell me what you know about
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square’ and ‘Tell me how you would teach square to your students’.

The teachers were invited to use diagrams to explain their thoughts if

they wished to do so. Following teachers’ responses to square, the

teachers were asked similar questions about 12 other focus schemas

(squares, rectangles, lines, similar triangles, congruent triangles, paral-

lel lines, area, coordinates, triangles, right-angled triangles, regular

hexagons, regular octagons, circles). All 13 focus schemas were

required to solve the four problems given to the teachers during the

second interview.

During the second interview, the teachers were asked to think aloud

as they solved four problems. The problem-solving activity was in-

cluded because we anticipated that the application of knowledge to a

problem might lead to activation of knowledge additional to that

accessed in the first free-recall interview. Two of the problems involved

the use of knowledge related to the focus schema square. When the

teachers indicated that they had completed a solution they were asked

if the problem could be solved in any other ways. They were also asked

to comment on any feature of their solution that could be related to

the way their students would solve these problems. For example, teach-

ers were asked, ‘How would you expect your students to tackle this

problem’, ‘What type of difficulties would you expect your students to

experience if they are given these problem, Why?’ The above prompts

were expected to elicit teachers’ further understandings about how their

students would approach the problem thus providing data about how

teachers integrate knowledge about focus schemas (from Interview 1)

and the use of these schemas in a problem situation.
The format for the final interview was a series of probing ques-

tions designed to give the teacher the opportunity to access relevant

knowledge that had not been activated in the previous two inter-

views. For example, in a discussion with a teacher who had not yet

mentioned symmetry, we might have commented; ‘You haven’t said

anything about symmetry of a square yet’. Or if a particular rela-

tionship had not been discussed we asked: ‘How are these two con-

cepts related?’
The activities in the three interviews were designed to provide good

estimates of the teachers’ knowledge in the area of geometry and

knowledge for teaching geometry. We can never be certain that we

have tapped all that a teacher might have constructed and decon-

structed about a specific topic. However, we argue that the use of the

free-recall, problem solving and detailed probing activities did provide

a good estimate of the functionally available knowledge of geometry

and for teaching geometry.
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In addition to the experienced teachers recruited for the project,

information was also sought from an academic mathematician. This

mathematician was a member of a university mathematics department

whose area of professional expertise was geometry. The focus of our

interview with this mathematician was generation of a list of features

and relationships for each of the focus schemas that could be used as

a guide in evaluating the degree of completeness and accuracy of a

teacher’s geometry knowledge base. It is important to note that this

information provided by this academic mathematician was not used as

a template or a scoring rubric.

Map Structure

We adopted a simple form of representation for the node-link struc-

ture for the maps that can be used to identify teachers’ knowledge of

geometry (KG) and knowledge of geometry for teaching (KGT). The

boxes and ovals, or nodes, in the maps indicated schemas and fea-

tures, and the lines joining the boxes/ovals showed that a relationship

was expressed between a schema and features, or between schemas.

We identified four areas of KG and KGT about the focus schema and

the relations that had been built around that schema.

1. The defining features of the focus schema (Defining Features)

The term ‘defining features’ is used here to refer to necessary prop-

erties of the focus schema. For example, in the case of square, these

features are that the sides are equal, all the interior angles are equal,

and the opposite sides are parallel.

2. The related features of the focus schema (Related Features)

Related features of the focus schema include information that one

could derive by going beyond the basic defining properties of the

schema. For instance, information about the formula for determin-

ing the area of a square would fall into this category of related

features.

3. Relationships between the focus schema and other schemas (Other

Schemas)

In addition to information that was activated about a particular fo-

cus schema, teachers would also make links between the focus sche-

ma and other geometric figures, such as the connection between a

square and a rhombus.

4. Other representations of the focus schema (Applications)

In this section of the map we considered the different representations

of the focus schema, such as analogies, metaphors, illustrations or
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real life examples. For example, the idea that some floor tiles are

square in shape, or that tessellation of tiles is used in tiling an area,

falls into this category of information.

The above-mentioned four areas reflect the complex structure of fo-

cus concepts such as that of square that evolves from single words

that Gray et al. (1999) refer to in their analysis of role of language in

perceptions about shapes. Defining and related features are related to

the notion of concept images (Vinner & Dreyfus, 1989). The frame-

work shows emergence of hierarchies that emanate from use of key

words such as square. Gray et al. (1999) suggest that the mental ima-

ges and physical objects that are supported by the linguistic descrip-

tions could evolve in a ‘more pure and imaginative way’.

Structure of Mapping Template

The template for our map is shown in Figure 1. Information related to

the defining features of the focus schema was recorded in the bottom

left corner, and elaborations on these features (related features) were

recorded in the lower right section of the map. D1 refers to defining

feature 1 of the schema. D11 shows features arising from D1 and so

on. In the bottom right section, R11 shows schemas emanating from

related feature, R1. Links to other schemas were recorded on the up-

per right part of the map and are indicated by nodes labelled as S1,

S21 and so on. Information relating to applications and alternative

representations was included in the top left part of the map, so that

A1 is used to depict instances of teachers using other representations

for, or applications of, the focus schema. Where relationships were de-

scribed by the teachers, labels were included on the line joining a pair

of schema, or on the line between a schema and feature. Arrows on

lines were used to show the direction of relationship of one node to

another noted by the participant. If there were instances of links be-

tween nodes in related and other schemas, these were indicated by

lines with appropriate arrows. Such links are not shown in Figure 1.

Analysing the Maps

We have proposed that the connectedness of knowledge can be

described both in terms of the number of knowledge components pres-

ent, as well as in terms of the qualitative relations that exist among

the knowledge components. The scope, or range of knowledge, can

be seen as a quantitative feature of a knowledge base that reflects
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teachers’ knowledge of geometry (KG). The characteristics of the

organisation of the knowledge base, which require more qualitative

judgements, are chosen to represent the depth of elaboration of the

knowledge structure. The depth of elaboration is used as a measure

of teachers’ knowledge of geometry for teaching (KGT) because we

FOCUS
SCHEMA

Other
Schemas

Applications

Defining
Features

D1

D11

D111

D1111 D1112

D112

D12

D2

Related
Features

R1

R11

R111

R1111 R1112

R112

R12

R2

A1 A2

A21

S2

S22

S1

S21

Figure 1. Map template for representing connectedness.
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contend that the elaborations constrain teachers to reflect on their

content knowledge and deconstruct them in ways that their students

could relate to.

The basic units of analysis used to construct the maps were nodes

and links. Nodes were established for all schemas associated with geo-

metric terms and for all the features associated with these terms that

were mentioned by the participant during the interviews. The partici-

pating teachers did not play any role, either in the construction or the

revision of the maps. That is, the construction of the concept maps for

each of the participating teachers was based solely on data generated

during the three interviews. Data from each of the teacher interviews

were compared in order to ensure that what was said in the nodes and

links were correct. The reliability of this process was established by

consensus using two coders.

In Figure 1, the within-schema links refer to connections among the

Defining features and those among the Related features of square. The

between-schema links refer to links between the focus schema for

square and Other schemas. The following measures were derived for

each map.

Quantity

We interpreted quantity as having two sub-categories: (a) Number of

nodes, and (b) Number of links. The concept maps were analysed in

two ways in order to generate values for ‘Number of nodes’ and

‘Number of links’ listed in Table I. First, we considered nodes that ap-

peared on the first layer away from the focus concept. For example, in

the case of Gary’s concept map (Figure 2), nodes with labels ‘Angles’

and ‘Sides’ were deemed to be located in the first layer, as these had

the first direct link to our focus concept, ‘Square’. We then counted

the number of nodes that evolved from each of these Layer 1 nodes,

and added one more for the starting node. This procedure yielded the

result 5 for both ‘Angles’ and ‘Sides’ for Gary. Only nodes at the first

layer were considered in this analysis. A similar procedure was fol-

lowed for the counting of links, which included the link from the focus

concept to the layer one node in question. Again, for Gary we ob-

tained 5 links for ‘Angles’ and ‘Sides’.

Cross-links made between Defining and Related features were also

identified. In Gary’s map there were three cross-links between Related

features and the Sides node and the score of 3 is shown under Cross-

linking in Table I. This analysis of the concept map in order to gener-

ate values for quantitative indicators of knowledge connectedness was
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also applied to between-schema knowledge components and the results

of this are shown in Table II.

Quality

The quality of the concept maps was analysed for the two broad

dimensions of integrity and connectedness. Integrity was analysed in

terms of (a) completeness and (b) accuracy. A judgement of integrity

here is not an absolute judgement about what a teacher knows, but

was seen more functionally as a rating of the knowledge that the tea-

cher was prompted to access by the range of specific research proce-

dures used here. A rating of ‘High’ for completeness indicated the

presence of all defining features. A rating of ‘Moderate’ for complete-

ness was assigned if one defining feature was missing and a rating of

‘Low’ was given if more than one defining feature was missing.

Accuracy refers to the degree of correctness of the information pro-

vided by teachers. Information that is not correct may be manifested in

various forms. An incorrect piece of knowledge could be a misconcep-

tion (McKeown & Beck, 1990) or it could be ‘garbled’ (Perkins & Sim-

mons, 1988). For example, if a teacher could not differentiate between

the lines of symmetry in a square and a rhombus this would be a case

of a misconception. If there was no evidence of garbled knowledge or
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misconceptions a rating of ‘High’ was given for accuracy. ‘Moderate’

and ‘Low’ ratings were assigned for one, or more than one instance, of

misconceptions or garbled knowledge respectively.

Connectedness was represented by four sub-categories: (a) depth,

(b) branching, (c) cross-linking and (d) complexity of relationships.

Depth refers here to the extension of connections in a concept map in

vertical directions along a single path. Within-schema depth is a mea-

sure of the degree of vertical connection in a schema. We refer to this

spread as occurring over different vertical layers of the nodes in the

concept map. Between-schema depth is a measure of vertical connec-

tions among schema. Links made over more than two layers were as-

signed a rating of ‘Level 3’ for depth; those across two layers and at a

single layer being scored as ‘Level 2’ and ‘Level 1’ respectively on this

measure.

Branching is a measure of the number of paths associated with a

Layer 1 node. If there was evidence of branching from a node at a sin-

gle layer a rating of ‘Low’ was assigned. Branching at two layers and

at more than two vertical layers was assigned ratings of ‘Medium’ and

‘High’ respectively. Cross-linking is a measure of horizontal linking

between branches from a node or between sections of the map. The

scores for cross-linking represent the number of cross-links among fea-

tures for the within-schema scoring or from other schemas to features

of the focus schema in the between-schema ratings.

The complexity of a stated label for a relationship was also rated.

If the description of the label showed evidence of elaboration, or of bi-

directionality, it was rated as ‘Complex’. Elaboration here refers to

any specification of the nature of a relationship between nodes that

went beyond definition or allocation of membership. If there was no

evidence of elaboration of the relationship, a rating of ‘Moderate’ was

given for complexity. A ‘Simple’ rating indicated presence of a

link that was implied. Parallel scoring systems were used for all

between-schema measures, except completeness because the extent of

between-schema links is open ended.

RESULTS AND DISCUSSION

The Teachers’ Concept Maps

As shown above, all four dimensions of our framework describe as-

pects of KG but it is the quality of elaboration within each component

that qualifies as KGT. Figures 2 and 3 show the maps that were con-

structed for the focus schema of square for the two teachers, Gary and
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Sue. A first impression is that Gary accessed a larger number of con-

nections involving squares, as shown by comparison of the number of

arrows emanating to and from the focus schema. Comparison of the

lower halves of the two figures shows that the difference between the

teachers was associated with the accessing of related features of

square. Gary’s output contained more nodes and links for the related

features. The same pattern was apparent in the upper right section of

the figures. Again Gary made more connections to other schemas. As

shown by the blank section in the upper left corner of both figures, in

the activities engaged in here, neither teacher made any statements

that referred to applications or examples.

Gary’s map suggests that he not only has a well-developed under-

standing about the properties of square and also has an extensive

network of connections between squares and other geometrical fig-

ures. He was able to highlight differences and similarities that exist

between square and related figures. For example, he represented a

square as a polygon, as a quadrilateral and made explicit its relation-

ship to an isosceles right-angled triangle. He identified bi-directional

relationships between square and rhombus and square and rectangle.

In contrast, Sue’s map contained fewer such connections to other

schemas. Nevertheless both teachers have built up a considerable

amount of KG.
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The same general comment applies to the related features section of

the two maps. Gary showed that the symmetry of a square could be

identified in more than one way. This understanding of symmetry is

extended to his observations that squares tessellate. Again this section

of Sue’s map was less developed. Scoring of the two maps provided a

more detailed account of the differences in the output of the two

teachers.

Within-Schema Ratings

Results of the analysis for the focus schema of square in terms of

quantity and quality are provided in Tables I and II. Table I con-

tains data on indicators that were internal to the concept of square,

links that indicated within-schema organisation. Gary’s concept map

contained a total of 10 nodes related to the defining features of the

focus schema, and 15 nodes associated with the related features.

Analysis of the number of links among these nodes also showed sim-

ilar scores for defining and related features. The number of nodes

and links in Sue’s map was similar for the defining features, but low-

er for the related features. In terms of the estimates provided by our

analysis Gary’s knowledge of square was more extensive than Sue’s.

However, both teachers have constructed KG that shows the links

between language and images that children need to learn about 2-D

shapes.

In the qualitative analysis there were high ratings for integrity in

the within-schema sections of both teachers’ maps and the ratings for

depth were similar for the two maps. In Gary’s representation of sym-

metry there was a greater extent of branching than that produced by

Sue. This suggests that this is a more elaborated chunk of knowledge

for Gary indicating a higher level of deconstruction of content knowl-

edge to KGT. However, the lack of cross-linking between these two

branches of symmetry indicates that there seems to be little integration

between knowledge about line symmetry and rotational symmetry.

Overall, Gary’s map showed more cross-linking, though none of the

cross-links was explicitly labelled by either teacher. The complexity of

the labels used by the teachers to describe within-schema relationships

was also similar, with most relationships being rated as moderate,

indicating lack of elaboration of these relationships. Here one can de-

tect room for further developments of Gary’s KGT.

Between-Schema Ratings

Table II shows the ratings given to the teachers’ knowledge about

relationships between square and other schemas. Scores were derived
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for each of the schemas in the first layer of nodes extending from the

focus schema (Layer 1 Schemas). The quantitative analysis showed

that Gary again accessed a larger number of nodes than did Sue and

established a greater number of links among these nodes. Of these, the

highest number of links and nodes accessed by Gary involved the

rhombus schema, suggesting the development of mature KGT in this

area. For both teachers the relationships established were accurate.

With regard to between-schema connectedness, with one exception, the

ratings for both teachers were generally lower than was the case for

their within-schema representations. For both, the depth ratings in the

between-schema analysis were lower on average and there was less evi-

dence of branching. In Gary’s map the links with greatest extent of

depth and branching were those between square and rhombus, rhom-

bus and parallelogram, and rhombus and quadrilateral, thus indicating

the clustering of these schemas.

Gary provided more instances of complex labelling of relationships

than did Sue, though there was no instance where such descriptions in-

volved extensive elaboration. For example, Gary mentioned that an

isosceles right-angled triangle is half of a square. However, he did not

go further and discuss the implications of such relationships in using

or deriving, say, Pythagoras’ theorem, or trigonometric ratios. These

extended connections and elaborations constitute features of well-

developed KGT. Both teachers made explicit links between features of

square and other schemas, with Gary making more of these links than

Sue. In addition, Gary explicitly linked the square with quadrilateral

and rhombus schemas, and linked the latter to the isosceles right-an-

gled triangle schema.

The scoring of the maps provided the detail supporting the inter-

pretation derived from visual inspection of the maps. The specifica-

tion of qualities of the maps allowed us to make judgements that

were not just quantitative ones. Thus, through use of the scoring

system, we were able to make clear that not only did Gary’s output

show a more extensive network of linked nodes, but that more of

the nodes in his map were linked by complex relationships. This

relational information contained in related features and related sche-

mas might be called upon during teaching for problem solving. Our

analysis suggests that in a problem where relationships between, say

a square and isosceles triangles, or between a square and a quadri-

lateral, needed to be ascertained, Gary would more readily access

such knowledge than would Sue because of the better state of his

KGT.
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CONCLUSION

We contend that the design of the analytical procedure for making

judgements about the quality of teachers’ knowledge is soundly based,

and that the indicators we have developed represent important fea-

tures of KG and KGT in a small area of geometry.

The analysis shows that Gary has a rich set of connections with

evidence of complex differentiation among schemas, and within the fo-

cus schema in some instances. Overall, his knowledge has high integ-

rity and shows evidence of substantial branching in certain areas. In

the between-schema analysis, about half of the relations that were dis-

cussed by Gary were complex in nature. The within-schema analysis

provided less evidence of cross-linking between branches than might

have been expected for an experienced teacher, though there was such

cross-linking in other parts of his map. For instance, as shown in Fig-

ure 1, Gary discussed area, perimeter, rotational symmetry and reflec-

tion symmetry. He did not, however, discuss relationships between the

two types of symmetry, area and perimeter. The effects of different

transformations on attributes of square could be expected to be a to-

pic of questions from some students. Further, concepts of symmetry

and transformations could be discussed in terms of matrix representa-

tions and coordinates. This is an important area of learning mathe-

matics that would help students draw more complex links among 2-D

figures and other topics in school curriculum. Thus, Gary could

deconstruct his content knowledge to a higher degree than was evident

in this analysis.

We suggest that this mapping procedure is useful for purposes

where the systematic characterisation of teachers’ KG and KGT is re-

quired. There are other implications of this analysis. The comparison

of the output of the two teachers in this study does suggest that the

knowledge bases they could call upon in their teaching are quantita-

tively and qualitatively different. We have, for purposes of illustration,

focussed only on representation of one focus schema. However, if the

patterns reported here were confirmed for other schemas in this part

of mathematics, it seems clear that the knowledge resources available

to Gary, and so to his students, would be richer than those in Sue’s

case. Clearly, we do not want to extend the province of this claim

unreasonably. There are many other factors associated with effective

teaching than the quality of the teacher’s content knowledge base and

we make no claims in this regard about the two teachers discussed

here. However, we do suggest that the lack of integration between the
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different branches of schema knowledge of teachers could impact on

their teaching, in that they and their students might not draw out

important distinctions and similarities between key knowledge schemas

in classroom interchanges.

Although the focus of the analysis in this paper has been on one

simple concept we do not think that the analytical procedure we have

described is limited to use with such concepts, nor is it limited to the

field of geometry. It is important to note that even when the concept

of square was the focus of discussion, the teachers also accessed

knowledge of more complex geometric schemas, such as symmetry

and congruence, and that these could be represented in the analysis.

The reason for our focus on relatively simple figures arose from the

objectives of our larger project in which we have also examined the

understandings of the students being taught by the teacher partici-

pants.

In the present study, we attempted to generate estimates of quality

of teachers’ knowledge of this part of geometry and for teaching

geometry by inviting the participants to discuss their understandings in

three different but related contexts. However, observing the same

teachers in action might enrich further these data about knowledge for

teaching geometry. In that case, it should not be assumed that obser-

vation of teachers in action would necessarily result in accessing by the

teachers of different sets of knowledge from that accessed using tasks

such as the ones involved in this study. The knowledge access process

depends in part on the cues provided by the situation and it could be

the case that the teaching situation is less rich in cues than say, the

problems and question probes used in this project. For students, it is

clear that they can leave much of their available knowledge inert, dur-

ing problem solving (Watson & Lawson, 1995), and the same may

happen with teachers if lessons did not involve a degree of problema-

tising of the content. So there is some interesting further research to

be undertaken in observing teachers’ knowledge access while they are

teaching.

We contend that the system of analysis used in this study takes us

beyond that used in other studies that have employed concept map-

ping or similar graphical systems as a means of representing knowl-

edge states. The current system takes us beyond the point reached by

Williams’ (1998) study in mathematics, enabling us to present a more

detailed and differentiated description of the dimensions of a teacher’s

knowledge base for subject matter content and the teaching of this

content. The indices used in the framework provide a way to make
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more specific statements about a teacher’s ‘depth of understanding’.

Overall, our experience with this procedure suggests that there is value

in pursuing Mayer’s (1975) distinction between internal and external

connectedness in order to make judgements about the qualitative fea-

tures of a knowledge network.
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NOTES

In the top right-hand corner of Figure 2, two attributes of Other Schemas appear in

circles, while the remaining ones are in ovals. This is due to the technical feature of

the software which was used to construct the map. We do not attribute any signifi-

cance to the ovals and circles.
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