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Abstract
The purpose was to observe whether valproic acid (VPA) has a positive effect on bone-defect repair via activating the Notch
signaling pathway in an OVX rat model. The MC3T3-E1 cells were cocultured with VPA and induced to osteogenesis, and
the osteogenic activity was observed by alkaline phosphatase (ALP) staining, Alizarin Red (RES) staining and Western
blotting (WB). Then the hydrogel-containing VPA was implanted into the femoral epiphysis bone-defect model of
ovariectomized (OVX) rats for 12 weeks. Micro-CT, biomechanical testing, histology, immunofluorescence, RT-qPCR, and
WB analysis were used to observe the therapeutic effect and explore the possible mechanism. ALP and ARS staining and
WB results show that the cell mineralization, osteogenic activity, and protein expression of ALP, OPN, RUNX-2, OC, Notch
1, HES1, HEY1, and JAG1 of VPA group is significantly higher than the control group. Micro-CT, biomechanical testing,
histology, immunofluorescence, and RT-qPCR evaluation show that group VPA presented the stronger effect on bone
strength, bone regeneration, bone mineralization, higher expression of VEGFA, BMP-2, ALP, OPN, RUNX-2, OC, Notch 1,
HES1, HEY1, and JAG1 of VPA when compared with OVX group. Our current study demonstrated that local treatment
with VPA could stimulate repair of femoral condyle defects, and these effects may be achieved by activating Notch signaling
pathway and acceleration of blood vessel and bone formation.
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Graphical Abstract

1 Introduction

Osteoporosis is a health-concern metabolic bone skeletal
disease characterized by increased bone loss and bone-
structure deterioration, which will lead to reduced bone
mineral density (BMD) and bone strength and increased
risk of fragility fractures [1–3]. Most osteoporotic frac-
tures and defects occur in low-energy trauma in elderly
people with femoral neck, distal radius and vertebral
fractures [4]. In the event of a bone fracture or defects,
bone tissue has the unique regeneration ability to replace
damaged tissue by constant remodeling with osteoclasts,
osteoblasts, osteocytes, and bone-lining cells. When bone
defect reaches a certain volume, it is difficult to complete
bone-defect healing by its regeneration ability, especially
combined with osteoporosis characterized by markedly
impaired bone-repair ability [5, 6]. Over the last few
decades, bone-substitute materials have received sig-
nificant attention, and numerous bone biomaterials
researches have been reported [7, 8]. While autologous
bone graft is still considered to be the “Gold Standard”
for bone-defect reconstruction, the complications such as
extension of surgical time, increase of surgical sites, and
infection chance and aggravation of patient pain may

therefore promote people to find and design new alter-
native drugs and biological materials [9].

Valproic acid (VPA), a branched-chain fatty acid
extracted from Valeriana officinalis, which has been widely
used in people with epilepsy for more than 20 years owing
to its remarkable effect and 80% oral bioavailability [10].
VPA is an inhibitor of the CYP450 enzyme characterized
by minimal effects on hepatic metabolic enzymes that has
been used as an antiepileptic drug for many years [11].
Previous studies have reported that VPA functions as a
histone deacetylase inhibitor (HDACi), with the specific
inhibiting activity by binding to the catalytic center of
HDACs, which stimulate apoptosis and inhibit the pro-
liferation of cancer cells [12]. In vitro experimental studies
have reported that VPA regulates cell histone acetylation to
accelerate osteoblast differentiation and the maturation
processes [13, 14]. Interestingly, several cellular and our
previous animal experiment have shown VPA’s beneficial
effects on bone health [15–18].

Although our study has confirmed that VPA plays a positive
effect in the process of bone remodeling [19], the local
administration of VPA in the treatment of osteoporotic bone
defects is lacking and limited. Based on these previous studies
and our previous animal experiment, we hypothesized that
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local administration of VPA may have a positive effect on
bone-defect regeneration in an OVX rat model. The aim of the
present study was to investigate the effect of local treatment
with VPA on bone defect in an OVX rat model, and pre-
liminary exploration of possible mechanisms.

2 Materials and methods

2.1 Experimental animal

The current study employed 40 healthy female SD rats
(12 weeks of age, weighing 230 ± 25 g). All animals were
housed in groups of five in cages in a temperature- con-
trolled environment (25 ± 1 °C, 55–65% relative humidity;
12 h of artificial lighting) in the central laboratory of
Yijishan hospital. All experimental rats were kept on pellet
feed with standard laboratory diet and tap water, ad libitum.
All surgical procedures and drug treatment during the
course of the experiment, as well as the sacrifice of the rats
at the end of the experiment were approved by the Animal
Research Committee.

2.2 Preparation of VPA hydrogel scaffolds

The VPA hydrogel was synthesized as described [20].
Briefly, 200 μl of poloxamer 407 hydrogel (BASF, Lud-
wigshafen, Germany) (1/4 volume ratio) was mixed with
50 μg of valproic acid and 0.01M phosphate-buffered saline
(PBS) (pH 7.4, at 4 °C). The VPA hydrogel solutions were
introduced in Teflon molds (1.5-mm diameter × 4.0-mm
height), and samples were immersed in 0.9 wt.% of NaCl
solution at 37 °C for setting.

2.3 Animal experiments

In order to establish an osteoporosis model, the rats were
subjected to bilateral ovariectomy(OVX, n= 25) or sham
operation (Sham, n= 15) according to a previously
described protocol [21, 22] and were kept for 12 weeks.
Subsequently, each of five rats from OVX group and Sham
group were randomly selected and executed. Bilateral
femora were collected and measured by Micro-CT and HE
staining to verify the establishment of standard post-
menopausal osteoporotic animal models. Then all animals
were randomly divided into three groups of 10 rats each:
Sham group, OVX group, and VPA-treatment group (VPA
group). Once osteoporosis was confirmed, a drilling bone
defect with 1.5-mm external diameter of the ante-
roposterior channel was created by an electric motor with a
speed of 1500 rpm in the femoral condyle of the remaining
rats according to our previous reports [19, 23]. The rats
were classified to VPA group and were implanted and

treated with VPA hydrogel. Two intraperitoneal injections
of calcein(20 mg/kg) were injected on the 3rd and 10th day
before the rats were sacrificed. After 12 weeks of treat-
ment, the rats undergoing bone defect surgery were
sacrificed using an overdose of chloral hydrate. Femur
samples were harvested. Femurs were fixed at 4 °C with
4% paraformaldehyde.

2.4 Cell culture and alkaline phosphatase (ALP)
staining and Alizarin Red (RES) staining

As an osteoblast precursor cell line, MC3TE‐E1 was
obtained from the Institute of Biochemistry and Cell
Biology, CAS (Shanghai, China). MC3TE‐E1 was cul-
tured in 24-well plates at 1 × 104 cells per well with
growth-culture medium. After culturing for 24 h,
MC3TE‐E1 cells were plated at a density of 1 × 104 cells/
ml in 24-well plates and cultured in growth medium
supplemented with 10−8 M dexamethasone (Sigma),
50 μg/ml ascorbic acid (Sigma), and 5 mM β-glycerol
phosphate (Sigma). Then the medium was added with
phosphate-buffered saline (PBS) or valproic acid (10−6

M). The medium was changed every four days during
osteogenic differentiation. After induction for 14 and
21 days, osteogenesis was evaluated by staining MC3T3-
E1 osteoblasts with ALP substrate mixture (ALP staining
kit, Sigma) and Alizarin Red reagent (RES, Cyagen
Biosciences, Guangzhou, China) as protocol described,
respectively.

2.5 Micro-CT evaluation

Formation of new bone in defect areas was evaluated by
Micro-CT (Bruker Skyscan 1272 system, Kontich, Bel-
gium). The parameter is set to 55 kV and 114 m A with a
thickness of 0.048 mm per slice in medium-resolution
mode, 1024 reconstruction matrix, and 200 ms integration
time. These images and parameters of trabecular bone with
a distance of 1 mm proximal from the end of the growth
plate in femoral metaphysis were compared between the
Sham group and OVX group to confirm the osteoporosis rat
model. For evaluation of bone formation in the defect area,
a 1.5-mm-diameter area in the center of each bone defect
was selected as the volume of interest (VOI). After 3D
reconstruction, bone mineral density (BMD), bone mineral
content (BMC), bone volume fraction (BV/TV), trabecular
number(Tb.N), trabecular thickness (Tb.Th), and trabecular
separation(Tb.Sp) were automatically determined for iden-
tification of osteoporosis model, while BMD, BV/TV, Tb.
N, Tb. Th, Tb. Sp, and the mean connective density (Conn.
D) in VOI regions were used to evaluate new bone for-
mation, using a protocol provided by the manufacturer of
the Micro-CT scanner as previously described [24, 25].
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2.6 Biomechanical examination

Compression testing of bone samples was performed imme-
diately after the micro-CT scan. The distal femoral metaphysis
of each femur was placed in a 5mm-wide and 2 mm-deep
notch of an aluminum alloy base, which was fixed to the
mechanical testing system(Instron 5566; Instron, Norwood,
MA, USA). The compression load was applied to the ventral
aspect of the condyles at 2mm/min until failure. Ultimate load
(N) was calculated from the load-deformation curve.

2.7 Histomorphometric analysis and
immunofluorescence staining

Part of the femora was decalcified in 10% EDTA (pH 7.4) for
4 weeks and then embedded in paraffin. Four-micrometer-thick
longitudinally oriented along the defect sections were used for
staining. The specimens were stained with hematoxylin and
eosin (H&E) according to a standard protocol, viewed under a
light microscope and the stained areas were quantified using a
BI-2000 medical image analysis system (Chengdu TME
Technology Co, Ltd., Chengdu, China). Vascular endothelial
growth factor (VEGFA) and recombinant human bone mor-
phogenetic protein-2 (BMP-2) staining were used to quantify
the expression of osteogenesis and vascularization factors in the
defect area. In brief, fresh bone sections were stained with
individual primary antibodies to rats VEGFA (Abcam,
ab206887, 1:100) and BMP-2 (Abcam, ab214821, 1:100),
overnight at 4 °C. Subsequently, the secondary antibodies
conjugated with fluorescence (Jackson Immuno Research, 415-
605-166, 1:500; 315-605-003, 1:250) were used at room
temperature for 1 h while avoiding light and observed under a
confocal microscope (FLUOVIEW FV300, Olympus). Calcein
double labeling in undecalcified bone slices was observed
under a fluorescence microscope (FLUOVIEW FV300,
Olympus) to quantify bone mineralization in the defect area.

2.8 Western blot analysis

MC3TE-E1 cells 3 days after drug intervention were prepared
for Western blotting as previously described. Bone tissue in the
defect area was processed with liquid nitrogen. After that, spin-
OUT columns (GT1200, G-Biosciences, St Louis, USA) were

used for the rapid purification of protein. The membrane was
incubated with Anti-alkaline phosphatase (ALP, Abcam,
ab198554, 1:1000), Anti-RUNX family transcription factor 2
(RUNX 2, Abcam, ab236639, 1:1000), Anti-osteopontin
(OPN, Abcam, ab214050, 1:1000), Anti-Osteocalcin (OC,
Abcam, ab133612, 1:1000), Anti-VEGFA (Abcam, ab214424,
1:1000), Anti-BMP-2 (Abcam, ab214821, 1:1000), Anti-
Notch1 (Abcam,ab52627, 1:1000), Anti-HEY1 (Abcam,
ab154077, 1:1000), Anti-Jag1 (Abcam, ab109536, 1:1000) and
Anti-HES1 (Abcam, ab119776, 1:1000) overnight at 4 °C.
Protein expression levels were normalized to Glyceraldehyde 3
phosphate dehydrogenase (GAPDH; Boster, Wuhan, China,
1:2000) protein levels. The next day, the membranes were
washed and incubated with the corresponding secondary anti-
body, diluted at 1:1000 for 2 h at room temperature. The
membrane was incubated with ECL-enhanced claim inesence
solution and then exposed to X-ray films (Pierce Biotechnol-
ogy Inc., Rockford, IL).

2.9 Reverse transcription and real-time polymerase-
chain reaction (RT-PCR) analysis

According to the manufacturer’s instructions, total messenger
RNA (mRNA) was extracted using the total RNA extraction
kit (Takara, Kusatsu, Japan). Complementary DNA (cDNA)
was obtained from total RNA using first Strand cDNA
Synthesis Kit (Toyobo, Osaka, Japan). Then synthetic cDNAs
and specific primers were used for qRT PCR with the TB
GreenTM Premix Ex Taq II (Tli RNaseH Plus) kit (Takara,
Kusatsu, Japan) on the CFX ConnectTM Real-Time System
(Bio-Rad, Singapore). GAPDH was used as an internal control.
Sequences of primers for the reference gene (GAPDH) and
interested genes are listed in Table 1.

2.10 Statistical analysis

All data are shown as mean ± standard deviation, analyzed
using SPSS 19.0 software(IBM SPSS Statistics for Windows,
Armonk, NY, USA). One-way analysis of variance(ANOVA)
was used for multiple between-group comparisons followed by
Tukey’s post hoc test. Paired-samples t test was used for
comparisons of normal groups and OVX groups. A value of
P ≤ 0.05 was considered to reflect significance.

Table 1 Nucleotide sequences for real-time RT-PCR primers

Genes Forward (5′-3′) Reverse (5′-3′) Product length

Notch 1 CGGGGCTAACAAAGATATGC CACCTTGGCGGTCTCGTA 68

HES1 GGAAATGACAGTGAAGCACCT CAGCACACTTGGGTCTGTG 78

HEY1 GGCAGGAGGGAAAGGTTACT CTCAGATAACGCGCAACTTC 79

JAG1 GGCAACACCTTCAACCTCA GCCTCCACAAGCAACGTATAG 103

GAPDH TGCGATGGGTGTGAACCACGAGAA GAGCCCTTCCACAATGCCAAAGTT 130
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Fig. 1 VPA treatments affect cell function and related protein
expression. A, D Representative pictures of ALP staining and Alizarin
red staining of osteoblasts after VPA intervention. B, C, E and F The
quantification of mineralized nodules, mineralized area, ALP activity,

ALP gray value. G, H, I, G and J The relative expression levels of
osteoblast-related proteins after VPA intervention and representative
pictures of WB detection. *Vs. Control group, p < 0.05
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3 Result

3.1 Cell function and related protein expression

In order to determine the effect of VPA on MC3T3-E1
cells function and related protein expression, this study
further conducted ALP staining, RES staining and WB
analysis. As shown in Fig. 1A, the ALP staining and RES
staining with quantification of area in osteogenic differ-
entiation of MC3T3-E1 cells is shown in Fig. 1B. The
mineralized nodules (number per well), mineralized area
(%), ALP activity and ALP gray value of VPA group
were significantly higher than that of control group (P <
0.05). The osteogenic protein expressions including ALP,
OPN, RUNX-2, and OC of VPA group were significantly
higher than that of the control group (P < 0.05). These
results indicate that the treatment with VPA can sig-
nificantly increase MC3T3-E1 cell function and related
protein expression.

3.2 Osteoporosis animal model validation

A total of 6 rats died during the experiment, including
anesthetic accidents, infection and surgical accidents. No
animal death was found in the first operation. The death of
rats occurred during or after the second operation, including
OVX group (n= 2), Sham group (n= 2), and VPA group
(n= 2). After 12 weeks of ovariectomy and sham operation,

the femurs of 5 rats were randomly selected and observed
by Micro-CT and HE staining microscope as shown in
Fig. 2. Imaging and tissue sections clearly show that there is
a serious trabecular loss in the metaphysis of the femur in
the OVX group; the quantitative results of Micro-CT
include BMD, BMC, BV/TV, Tb. Th, Tb. N, and Tb. Sp,
which shows that there are significant statistical differences
in the above-mentioned indexes between the two groups
(P < 0.05). These results indicate that the osteoporotic rat
model induced by ovariectomized surgery in our experi-
ment achieves the expectation.

3.3 Micro-CT evaluation

The 3D reconstruction images and middle part (Fig. 3A–C,
a–c) of Micro-CT clearly shows us the bone remodeling of
the defect area after 12 weeks of treatment with different
intervention methods. As we expected, the defect area of
the Sham group was almost filled with bone tissue, while
large amounts of bone tissue were found in the VPA group,
but it was difficult to find the bone tissue in the OVX
group. The quantitative results were expressed as BMD,
BV/TV, Tb. Th, Tb. N, Conn. D, and Tb. Sp (Fig. 3).
Therapy with VPA showed positive effects on all micro-CT
parameters. Compared with group OVX, local treatment
with VPS shows better bone microscopic parameters,
including the highest BMD, BV/TV, Tb. N, Conn.D, Tb.
Th, and a lower Tb. Sp (P < 0.05).

Fig. 2 A 2D micro-CT images of femoral metaphysis in sham and
OVX rats, the scale bar represents 1 mm. B The BMD, BMC, BV/TV,
Tb.N, Tb.Th, and Tb.Sp of trabecular bone of femoral metaphysis in

OVX group and sham group. C Representative H&E staining for the
normal and osteoporotic femur(magnification of 20). *P < 0.05 versus
Sham group
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Fig. 3 The representative pictures of Micro-CT images of the distal
femur 12 weeks after biomaterials implanted from group of Sham (A,
a), OVX (B, b), and VPA (C, c). The scale bar represents 2 mm.

Quantitative results of new trabeculae bone in defect area including
BMD, BV/TV, Tb. N, Conn.D, Tb. Th, and Tb.Sp. *Vs. Sham group,
p < 0.05, #Vs. OVX, p < 0.05
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3.4 Biomechanical testing, histological and
fluorescent analysis

Biomechanical testing, histological, and fluorescent ima-
ges showing bone repair in defect for different treatments,
as shown in Figs. 4 and 5. In 12 weeks, a large amount of
bone tissue fills the defect area in the Sham group and
VPA group. In the OVX group, only a very small amount
of new bone tissue can be observed, and large defect areas
still exist. The biomechanical test results show that the
ultimate strength of the VPA group is significantly higher
than that of the OVX group (p < 0.05). In fluorescent
analysis, local treatment with VPA showed the larger
calcein green-marked defect area (p < 0.05), and VPA
treatment exhibited the higher values of relative bone

mineralization (green/green-marked defect area) (p <
0.05), compared to that of the OVX group.

3.5 Immunofluorescence and RT-PCR, WB analysis of
osteogenesis and angiogenesis-regulatory
factors

The osteogenesis and angiogenesis regulator of bone defect
measured by immunofluorescence and WB clearly show us
the expression of VEGFA and BMP-2 of the defect area
after 12 weeks of treatment with different intervention
methods (Figs. 6 and 7). As we expected, the defect area of
the VPA group was almost filled with immunofluorescence
for VEGFA and BMP-2, but it was difficult to find immu-
nofluorescence in the OVX group.

The quantitative results measured by WB were expressed
as Notch 1, HES1, HEY1, JAG1, OC, OPN, RUNX-2, ALP,
VEGFA and BMP-2. Therapy with VPA showed positive
effects on Notch 1, HES1, HEY1, JAG1, OC, OPN, RUNX-
2, ALP, VEGFA and BMP-2 expression. Compared with
group OVX, local treatment with VPA shows the higher
protein expression with Notch 1, HES1, HEY1, JAG1, OC,
OPN, RUNX-2, ALP, VEGFA, and BMP-2 (P < 0.05).

Gene expression of defect area bone tissue after different
treatment, as shown in Fig. 7. At 12 weeks, the VPA group
showed increased Notch 1, HES1, HEY1, and JAG1 than the
OVX group (p < 0.05). These results indicate that the Notch
pathway of VPA treatment is activated, and the expression of
Notch 1, HES1, HEY1, and JAG1 is upregulated.

4 Discussion

In this experimental study, a standard osteoporotic animal
model was established 12 weeks after bilateral ovariectomy.
Bone-forming capacity was evaluated with local adminis-
tration with VPA in OVX rats for 12 weeks after distal
femur-defect creation. The current study provides evidence,
by biological activities of MC3T3-E1 osteoblasts, Micro-
CT, Western blot, real-time PCR, biomechanical testing,
histological, and immunofluorescence analyses, confirming
the positive effects on bone of local VPA therapy in OVX
rats. In addition, the harmful effects on bone regeneration
after bone injury were more obvious in OVX rats compared
with Sham group rats. After local treatment with VPA,
osteogenic ability and bone microstructure parameters of
defects were significantly improved in OVX rats. Therefore,
our findings indicated that VPA reversed the effects of
estrogen deficiency on repair, strengthened the bone-
regeneration capacity, and enhanced the repair of femoral
metaphyseal defects in OVX rats.

In this study, we used standard bilateral OVX rats, the
most frequently used hormone-deficient osteoporosis animal

Fig. 4 Biomechanical testing results after VPA treatment. *Vs. Sham
group, p < 0.05, #Vs. OVX, p < 0.05

Fig. 5 Bone regeneration of defected area by histological (A, magni-
fication, ×10) and fluorescent analysis (B, magnification, ×200). C, D
Total fluorescently marked defect area (%) and relative bone miner-
alization (green/green marked defect area) after treatment. *Vs. Sham
group, p < 0.05, #Vs. OVX, p < 0.05
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model [26], to mimic osteoporosis observed in menopausal
women, and then a hydrogel containing VPA implanted into
the femoral condyle defect under the state of osteoporosis to
simulate the state of bone defect in the human body. Inter-
estingly, a similar phenomenon that the femoral condyle
defect in OVX rats provide a poor bone regeneration with
osteoporotic bone was also reported in our previous studies
[27, 28]. However, osteoporosis stimulation decreased bone
formation and bone repair when compared with the Sham
group. These results above confirm that the bone regeneration
of bone defects is negatively influenced by osteoporotic bone
conditions. Therefore, in order to increase bone-formation
potential further, it is necessary to increase bone-regeneration
capacity in the state of osteoporosis.

Hydrogel, a kind of three-dimensional, insoluble hydro-
philic polymer with good biocompatibility, biodegradability,

large water content, and tissue-like flexibility, is used to
form drug-delivery vehicles [29]. This material is able to
transport nutrients and metabolites from the extracellular
matrix for its special structure, which contributes to cell
proliferation and differentiation [30], and leads to its wide
use in tissue engineering. Currently, a vast array of hydro-
gels have been investigated, including alginate, fibrin, chit-
osan, hyaluronic acid, and gelatin. Previous research has
confirmed that poloxamer 407 hydrogel is an effective
controlled delivery system, and can be competent as a local
drug carrier [31]. Therefore, poloxamer 407 hydrogel was
used as an effective carrier for VPA in this study. In the
study, local treatment with hydrogel containing VPA pro-
duced anabolic effects on new bone in femoral condyle
defect. Recent studies have shown interesting results for this
drug in bone metabolism and bone remodeling, suggesting

Fig. 6 After VPA intervention,
the relative expression levels of
VEGFA and BMP-2 in the bone
defect area were detected by
immunofluorescence and the
representative pictures of WB
detection. A VEGFA and BMP-
2 expression measured by
immunofluorescence; B, C
immunofluorescence was used
to detect the quantitative results
of VEGFA and BMP-2
expression in the tissues of the
bone-defect area; D the
representative pictures of WB
detection; E the quantitative
results of VEGFA and BMP-2
expression in the tissues of the
bone-defect area. *Vs. Sham
group, p < 0.05, #Vs. OVX,
p < 0.05
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that this medication might be relevant for the treatment of
osteoporosis, since it has been shown to be effective in
preventing bone loss [15–17]. Moreover, recent studies have
shown the role of VPA in pathogenesis, tissue regeneration,
and can serve as a useful Notch pathway activator and that it
is a potential alternative drug for regulation of cell histone
acetylation [17]. Indeed, a study has shown that this drug
reduces local tissue damage in glucocorticoid–induced
osteonecrosis of the femoral head [15]. Previous research
has confirmed that intermittent treatment with VPA resulted
in significant increases in trabecular thickness and trabecular
number while decreasing trabecular separation, which

improved the extrinsic biomechanical properties of bone,
prevention of bone fragility, and decreased fracture risk. In
vitro cell research has been conducted to evaluate the effect
of VPA on biological function of osteoblasts and osteoclasts
[16]. Our current results showed that local treatment with
VPA increased bone repair and enhanced bone regeneration
for 12 weeks.

Why did local treatment with VPA show a positive effect
on bone formation in the defect area? Therefore, further
investigations are required to confirm these findings and
explore possible mechanisms for the observed association.
In order to further investigate the potential mechanisms,

Fig. 7 Protein and gene expression of defect area bone tissue after
different treatment. A, B WB detection results and quantitative
detection results of osteoblast-related regulatory protein expression. C,
D WB detection results and quantitative detection results of specific

protein expression of Notch pathway. E The quantitative detection
results of specific gene expression of Notch pathway. *Vs. Sham
group, p < 0.05, #Vs. OVX, p < 0.05
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we also performed bone-tissue immunofluorescence, qRT-
PCR, and western blotting experiments to analyze the
mRNA expression of related gene, regulatory factor, and
protein contents. Recently, studies indicated that notch
signaling also plays a vital role in mineralization of bone
tissue via a direct regulation effect on osteoblastic activity
[32, 33]. Besides, a large body and animal of emerging
evidence has proved that angiogenesis plays a key role in
bone repair [34, 35]. Similarly, angiogenesis and osteo-
genesis were regulated by a variety of growth factors, such
as VEGFA and BMP-2 [36, 37]. In this study, the influ-
ences of VPA on function of osteogenic biological
MC3T3-E1 cells were further detected. As we hypothe-
sized, VPA can significantly promote ALP expression and
mineralization in MC3T3-E1 osteoblasts as assessed by
ALP staining and Alizarin red staining. The results of WB
and RT-PCR show that the dose of VPA used in this study
can significantly promote the expression of cellular
osteogenic regulatory proteins, such as ALP, RUNX-2,
OPN, BMP-2, and OC. In addition, it can activate the
Notch pathway and significantly upregulate Notch 1,
HES1, HEY1, and JAG1 in MC3T3-E1 osteoblasts and
bone tissues. Bone-tissue immunofluorescence and WB
clearly showed us the expression of VEGFA and BMP-2 in
bone tissue in the defect area, which further confirmed
that local blood-vessel formation and bone formation were
significantly improved after VPA intervention. Combining
the above results, what we can explain is local treatment
with VPA can markedly promote osteogenesis and
angiogenesis, which causes acceleration of local bone
formation and enhanced mineralization ability, and
resulting in achieved finally bone regeneration and
improved bone strength.

As far as we know, this is the first study of the effect of
local administration with VPA on the regeneration of
bone defect under osteoporotic conditions. Nevertheless,
this study had several deficiencies. The mechanisms
underlying the effects of VPA on osteogenic differentia-
tion of MSCs should be elucidated. Delivery systems that
allow the sustained release of VPA should be developed
for effective bone regeneration in vivo. The optimal
dosage of VPA should be determined for bone regenera-
tion by using animal studies.

5 Conclusion

In summary, our study suggests that the treatment solution
with local administration with VPA is useful to improve the
initial bone regeneration of defects by increasing bone
formation and angiogenesis in osteoporotic rats. Besides,
this benefit effect may be mediated by locals used with VPA
via notch signaling pathway.
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