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Abstract

Capsular contracture remains a challenge in plastic surgery and represents one of the most common postoperative
complications following alloplastic breast reconstruction. The impact of the surface structure of silicone implants on the
foreign body reaction and the behaviour of connective tissue-producing cells has already been discussed. The aim of this
study was to investigate different pore sizes of silicone surfaces and their influence on human fibroblasts in an in vitro model.
Four different textures (no, fine, medium and coarse texture) produced with the salt-loss technique, have been assessed in an
in vitro model. Human fibroblasts were seeded onto silicone sheets and evaluated after 1, 4 and 7 days microscopically, with
viability assay and gene expression analysis. Comparing the growth behaviour and adhesion of the fibroblasts on the four
different textures, a dense cell layer, good adhesion and bridge-building ability of the cells could be observed for the fine and
medium texture. Cell number and viability of the cells were increasing during the time course of experiments on every
texture. TGF31 was lowest expressed on the fine and medium texture indicating a trend for decreased fibrotic activity. For
silicone surfaces produced with the salt-loss technique, we were able to show an antifibrotic effect of smaller sized pores.
These findings underline the hypothesis of a key role of the implant surface and the pore size and pore structure in preventing
capsular contracture.

1 Introduction

Capsular contracture (CC) remains a challenge in plastic
surgery and represents one of the most common postoperative
complications following alloplastic breast reconstruction or
breast augmentation associated with revisional surgery and
implant replacement [1, 2]. Various theories exist on the
aetiology of CC but the exact causes are still unknown [3-5].
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Several in vitro and in vivo studies have investigated a pos-
sible prophylactic influence of different drugs or modifica-
tions of the implants providing no distinct evidence of
effectiveness in the past [6]. This includes the administration
of Simvastatin, Collagenase or Triamcinolone into capsular
tissue and the coating of implants with antibiotics, spider silk,
Montelukast or Triamcinolone [7-20].

Beside factors like the anatomic implant location, a sub-
clinical infection or inflammation, bacterial biofilm, radio-
therapy of the breast, material properties of the implant
surface have been discussed to play a role in the development
of CC [4, 5, 21-25]. Depending on different texturing tech-
niques (e.g. salt-loss, imprinted, secondarily coated) and the
surfaces created (textured, microtextured, smooth), the inci-
dence of CC is reported with approximately 16% [26].

A common property of synthetic materials, like silicone
implants, is the potential induction of adverse immune
reactions resulting in fibrotic encapsulation, inflammation,
impairment of healing, tissue destruction, or even isola-
tion and rejection of medical devices [27]. Excessive
capsule formation identified as CC in breast implants
manifests itself with a painful tightening and hardening of
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the capsule surrounding the implant. To define the stage
of the CC in breast implant patients, the modified form of
the Baker clinical grading system is commonly used today
[28].

As the surface structure of silicone implants has been
repeatedly discussed as a major factor to influence the
severity of the foreign body reaction, current investigations
focus on different surface textures and their texturizing
techniques as well as their influence on the behaviour of
connective tissue cells and the extent they contribute to CC
[3, 17, 22, 29-31]. Recently, this aspect has also gained
attention due to a potential connection between surface
texture and the occurrence of the so-called breast implant-
associated anaplastic large cell lymphoma (BIA-ALCL), a
rare type of Non-Hodgkin’s lymphoma. Textured implants
have been accused to pose a higher risk for patients to
develop BIA-ALCL, but it has also been described to occur
with smooth surface implants [32]. However, in most of the
cases it remains unclear if previous smooth implants had
been used in the same patients before textured implants
were inserted since the database of reported BIA-ALCL
cases is quite inhomogeneous.

Rough-textured implants are preferred to smooth ones due
to their lower association with CC, especially in combination
with a sub-muscular implantation [22, 23, 31, 33-35]. In this
context, different surface textures could alter the host’s
response to the integration of the foreign material, so that
tissue ingrowth may produce a host prosthesis interface that is
more stable and compatible [29, 36, 37].

To gain more insights into possible biological behaviours
of silicone implant surfaces, the current preliminary in vitro
study concentrates on the question to what extent different
pore sizes, fabricated with the salt-loss technique, influence
the behaviour of fibroblasts at silicone surfaces.

2 Material and methods
2.1 Silicone

The textured surfaces were produced with the salt-loss
technique by the Institute of Polymer Materials (Friedrich-
Alexander-University of Erlangen-Niirnberg). In the pro-
duction process a curable liquid silicone rubber (LSR)
mixture (Wacker Chemie AG, Munich, Germany) was
spread evenly in a polytetrafluorethylene (PTFE) mould
and salt particles of deliberately chosen grain size frac-
tions were sprinkled onto the surface. Afterwards, the
LSR was cured at 120 °C and the salt particles were rinsed
off with water. This process generates similar surface
textures as if the uncured silicone was pushed into a bed
of granular salt, but allows an easier handling of the
uncured LSR [26, 29].
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The four textures included an untextured reference
without pores (control), a fine texture (<63 um pore size), a
medium texture (>250 um pore size) and a coarse texture
(>500 pum pore size).

2.2 Primary cell culture

Human primary fibroblasts (HFIB-D, cryo, provitro AG,
Berlin, Germany) were cultivated in DMEM high glucose
(Dulbecco’s Modified Eagle Medium, Sigma-Aldrich, Inc,
St. Louis, MO, USA) and were supplemented with 10%
FBS Superior (Foetal bovine serum superior, Biochrom/
Merck, Berlin, Germany). Fibroblasts were then incubated
at 37 °C under a humidified atmosphere of 95% air and 5%
CO,. For all experiments, the cells were between passages 7
and 10. Medium was changed every second day.

2.3 Seeding technique and study design

For each examination (d1 =day 1, d4 = day 4 and d7 = day
7) a separate 24-well plate was used. Triplicates were used
for each of the four textures.

Round discs of 14 mm diameter were cut out of the
silicone with a punch, steam-sterilized (via autoclave) and
placed into a 24-well culture plate.

A steam-sterilized Teflon ring (625 mg) was placed on
top of each disc to prevent floating and spinning and to
enable the cells to adhere on the silicone discs. Subse-
quently, 500 ul of a cell suspension containing 8.0 x 10*
fibroblasts (in DMEM high glucose 4+ 10% FBS superior)
was seeded on top of the disc, inside the Teflon ring.

2.4 WST-8 viability assay

To assess the cellular metabolic activity the Colorimetric
Cell Viability Kit I (WST-8) was used according to the
manufacturer’s instructions (PromoCell, Heidelberg, Ger-
many). Experiments were performed after d1, d4 and d7.
The medium was exchanged with 300 ul of DMEM high
glucose and supplemented with 30 pl of the tetrazolium salt
WST-8. Following 2h of incubation, the absorption of
100yl supernatant from each sample was measured at
450 nm with a reference wavelength of 600 nm (Multiskan
GO; Thermo Fisher Scientific) [38].

2.5 Staining

For DAPI staining, samples were transferred into a new 24-
well culture plate after dl, d4 and d7, washed with
phosphate-buffered saline (PBS) and fixed in 4% for-
maldehyde (Roti-Histofix 4%, Carl Roth GmbH Karlsruhe,
Germany). Samples were washed with PBS and distilled
H,O and stained with 1000 ul DAPI mixture (1 pg/ml)
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(Roche Molecular Systems, Pleasanton, CA, USA) per
sample. After repeated washing with distilled H,O, they
were stored with 200 ul PBS per sample at 4 °C.

2.6 Microscopy
2.6.1 Inverted epifluorescence imaging

The images of the DAPI stained samples were taken with an
inverted epifluorescence imaging system (Olympus [X83,
CellSens software; Olympus, Tokyo, Japan). To track the
adhesion and proliferation of the fibroblasts over time,
overview pictures of the samples were taken after d1, d4
and d7.

2.6.2 Cell counting

A simple Image] algorithm was applied to estimate the
overall cell count from DAPI epifluorescence overview
images. After applying a 20 um rolling ball filter to remove
background artefacts, an intensity threshold is applied,
using the Renyi Enthropy algorithm described by Kapur
et al. [39]. A watershed filter is applied to the resulting
binary image to separate overlapping nuclei and the Analyze
Particles function of ImageJ is used to count particles
within the expected size range of cellular nuclei from
50-100 um? [40].

2.6.3 Scanning electron microscopy (SEM)

Scanning electron micrographs (SEM, Zeiss Leica, Jena,
Germany) of the silicone surfaces facilitated a detailed view
of the distribution of pores and their variety in pore size and
morphology. For SEM preparation, the samples were placed
on metal stubs and sputtered with gold for one minute using
a Turbo-Pumped Sputter Coater Q150T (Quorum Tech-
nologies, Laughton, United Kingdom). SEM analysis was
then performed using a magnification of 500 fold.

2.6.4 Multi-photon microscopy

An upright version of the system described by Schneidereit
et al. is used, applying the same mode-locked fs pulsed Ti:

Sa laser (Chameleon Vision II, Coherent, Santa Clara, CA,
USA) and Trimscope II system (TriMScope II, LaVision
BioTec, Bielefeld, Germany) backbone but applying an
upright microscopy stage with a CG FLuotar L25 x/0.95 W
Visir objective (Leica, Germany) [41]. For excitation, a
laser wavelength of 810nm with an average power of
120 mW was applied while the label-free sample auto-
fluorescence was acquired at 525 nm. 3D image stacks are
recorded with typical voxel size of 0.4 x0.4x3 um and a
field of view of 400 x 400 x 500 um.

2.7 Real-time quantitative polymerase chain
reaction (qPCR)

Quantification of the mRNA expression of Collagen 1
(COLI), Collagen 3 (COL3), Transforming growth factor
beta 1 (TGFp1), Matrix metalloproteinase 2 (MMP2) and
Tissue inhibitor of matrix metalloproteinase (TIMP2) was
performed by qPCR. Total mRNA was isolated after d7
from all samples with a RNeasy micro kit (Qiagen GmbH,
Hilden, Germany) according to the manufacturer’s protocol.
To reverse transcribe the total mRNA into cDNA, a
QuantiTect Reverse Transcription Kit was used (Qiagen
GmbH, Venlo, Netherlands). Real-time quantitative PCR
was performed using SsoAdvanced(R) Universal SYBR(R)
Green Supermix (Bio-Rad Laboratories Inc., Hercules, CA,
USA) and a Light Cycler (Bio-Rad CFX96 Touch™).
Determined transcript levels were normalized to the
housekeeping gene glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH). Samples were tested as triplicates and
evaluated by performing the 272 method. Used primer
sequences are listed in Table 1.

2.8 Statistics

For data comparison of the cell counting, a one-way
ANOVA analysis (Sigma Plot, Systat Software) was
applied and indicated with post hoc Tukey test. p <0.05 was
considered significant (*) and p<0.01 was considered
highly significant (**). Mean values of cell number were
compared within same texture groups over the 3 examina-
tion time points and at the endpoint (d7) between texture
groups.

Table 1 Primer sequences

for QPCR Gene Forward primer (5°-3) Reverse Primer (3°-5°)
GAPDH TCCACCCATGGCAAATTCCA TTCCCGTTCTCAGCCTTGAC
TGFp1 CATGGAGGACCTGGATGCC TCCTGAAGACTCCCCAGACC
COLI GCACCATCATTTCCACGAGC AGTGGTTTGGATGGTGCCAA
COL3 (Al) GGTGAAAGAGGATCTGAGGGC AACACCACCACAGCAAGGA
MMP2 GCCGTGTTTGCCATCTGTTT AGCAGACACCATCACCTGTG
TIMP2 TCTCGACATCGAGGACCCAT TGGACCCAGTCGAAACCCTTG
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The normal distribution for PCR and WST-8 was tested
using the Shapiro-Wilk test. Hence, for data comparison of
the PCR and WST-8, the non-parametric Kruskal-Wallis
test (SPSS, IBM Deutschland GmbH, Germany) was
applied on the four different textures. p <0.05 was con-
sidered significant. In case of significant results, a Mann-
Whitney-U test was performed.

3 Results
3.1 Viability of cells

Viability of cells was examined with the WST-8 assay. Cell
viability increases over time on all three textures. Only the
control (no texture) showed a consistent activity. Viability
is highest on all examination time points for the medium
texture followed by coarse and fine, but no significant dif-
ference could be found between the three examination days.

3.2 DAPI overview images

The DAPI stained overview images show that the cells
adhere, expand over time and spread on the silicone
(Fig. 1). The control shows a noticeably more irregular,
chaotic and less dense cell distribution. On the fine and
medium texture, the cells grow densely on the surface and
form a homogenous layer. On the coarse texture the ‘holes’
remain visible and the fibroblasts seem to grow entirely on
the areas between the pores.

3.3 Cell counting

A comparison on growth within same texture groups shows
an increasing cell growth on all textures. Cell number of
the control on d7 is significantly higher than on d1 and d4
(p<0.01). The fine texture shows a decreasing numerical
value on d7 with respect to d4. In the medium texture, cell
number on d4 and d7 are significantly higher than on dl
(d4: p<0.05, d7: p<0.01). In the coarse texture d7 is
significantly higher than d1 (p <0.05).

A comparison of the growth endpoints (d7) between
texture groups shows significantly higher cell numbers on
fine and medium texture to coarse texture.

3.4 SEM

To evaluate the pore structure and the surface generated by
the salt-loss technique the samples were examined using
SEM (Fig. 2). As described by Barr et al., the resulting
implant surface remains “randomly-arranged, with cubical
and sharp-edged cavities” [3]. Particularly, the fine texture
shows a great variety in pore size. The SEM pictures
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revealed a marginal irregularity also for the non-textured
control.

3.5 Multi-photon microscopy

The label-free visualisation of the cells using a multi-photon
microscope scrutinized the morphology of the cells and
their growth behaviour. Unexpectedly, instead of growing
into the pores, the fibroblasts formed a bridge across them.
The bridging depends on the pore size. In the fine and
medium texture, the pores can be overgrown (Fig. 3a, b),
though the distance in the coarse texture is too wide to be
overcome by the cells. Figure 3¢ shows how the cells “fall”
over the edge of the coarse pore and seem to float in the
“air” when trying to grow over it.

3.6 PCR

In the following, the PCR results of the 272C method are
described. Figure 4 shows the gene expression for all
aforementioned target genes. The analysis of the gene
expression showed in all samples a very low mRNA
expression for TGFpI. No significance was found between
the 4 groups.

The data of the gene expression analysis showed no
statistically significant differences. The expression for
COLI was highest in the medium and coarse texture. The
highest expression rate for COL3 was found in the medium
texture, followed by the fine texture, coarse texture and
control (no texture). For MMP2, the expression rate was
higher in the fine texture than in any other texture, whereas
medium and coarse textures were identical. TIMP2 revealed
in all textures homogeneous data.

4 Discussion

Independent of the synthetic material or medical device, a
foreign body reaction as a result of implantation has been
well-known for decades. This reaction is ubiquitous and
remains an unsolved problem until today, even though
millions of different medical devices are being implanted in
humans for various indications, and primarily without
noteworthy serious side effects in most cases.

In the case of silicone breast implants, many approaches
have been pursued to prevent the development of CC as a
form of excessive foreign body reaction, in both clinical and
experimental studies [42]. Besides possible preventive fac-
tors, like atraumatic tissue handling, aseptic conditions
during the operation and placement of the implants either
subpectorally or subglandularly, the surface of the implants
and therefore, their interaction with human tissue after the
implantation might play an important role. Consequently,
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Fig. 1 DAPI overview images of
the different surface textures on
dl, d4 and d7 (scale bar: 1 mm).
Irregular cell distribution in the

control (no texture). Dense cell

growth in the fine and medium

texture. Sponge-like cell growth
in the coarse texture

fine no texture

medium

coarse

Fig. 2 Representative scanning
electron images of the 4 textures
without fibroblasts, respectively,
in 500-fold magnification (scale
bar: 20 um). Control (no texture)
a, fine texture b, medium texture
¢, coarse texture d
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Fig. 3 Representative multi-
photon microscopy images of
bridge-building fibroblasts on
fine a and medium texture b;
“Floating” fibroblasts on coarse
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Fig. 4 Gene expression 272 of COLI, COL3 a, TIMP2, MMP2 b and
TGFpI c in fibroblasts cultivated for seven days on different silicone
textures. Highest values for COLI in medium and coarse, for COL3 in
the medium texture. Highest expression rate for MMP?2 in fine, TIMP2
shows homogenous data. Highest values for TGFf!I in control and
coarse texture
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implant surfaces have been modified using diverse techni-
ques to create different kinds of textures containing differ-
ent pore sizes and pore structures on a microscopical level.
The salt-loss or sugar-loss technique as well as the method
of imprinting using a negative contact imprint, e.g. poly-
urethane foam, are used among manufacturers today. All
these techniques aim to improve the biocompatibility with a
reduction of the foreign body reaction towards implanted
materials. But the term biocompatibility is not clearly
defined yet. Ratner promoted a more detailed look at this
issue, as he differentiates between biocompatibility and
biotolerability [43, 44]. Consequently, material that triggers
normal tissue reaction regarding wound healing is defined
as biocompatible, whereas biotolerable material rather leads
to a low degree of inflammatory tissue response for long
periods.

There is still insufficient knowledge on the impact of the
surface structure on CC at the cellular level [45]. It remains
unclear how different surfaces, with irregular pore dis-
tribution, pore depth and different contact angles, influence
the surrounding cells, even if studies exist that showed little
fibrosis in materials with smaller sized pores
[29, 31, 37, 46-50]. It is already known that cells are guided
by their surrounding topography, and it is suggested that
they are “spatially aware”. Cells might therefore probe their
adjacent surroundings leading to an interaction which could
down-stream cell reactions to biomaterials or the extra-
cellular matrix (ECM) [51]. Regular surface characteristics
of textured surfaces might promote the growth of fibroblasts
on the surface resulting in a decrease of contractile forces.
This contact modification could result in a reduced fibrotic
activity around implants [37, 52].

Because this topic has been of high relevance for years,
and a possible association between the implant surface
structure and BIA-ALCL represents a cutting-edge research
topic, we performed this study. We directly compared, to
the best of our knowledge, for the first time, four deliber-
ately modified different surface textures of rubber silicone
material with their respective different pore sizes on a
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cellular level. Therefore we focused on the salt-loss tech-
nique and different intervals of pore sizes.

Since fibroblasts play a major role in fibrosis develop-
ment, we focused on the interaction between this type of
cells and the silicone material [45, 53-58]. The most
important markers related to CC known today were asses-
sed [59]. The gene expression rates for TGFfI as a leading
marker for fibrosis and COLI and COL3 were analysed.
MMP2 and TIMP2, which play an important role in the
remodelling process of the ECM and therefore in the reg-
ulation process of wound healing and foreign body reaction,
were used [60-64].

Furthermore, we assessed the cell distribution pattern and
cell adhesion as well as the cell growth in relation to the
pore size.

DAPI staining was used for analysis of distribution
pattern of the fibroblasts. A homogenous and dense cell
growth could be detected on fine and medium textures,
whereas the control (no texture) showed irregular cell
growth and multiple spots without cells. This finding is
similar compared with the coarse texture, but is due to the
large pore size in the latter one, in particular corroborated
by the multiphoton images revealing a failure of fibroblasts
to ‘bridge’ the larger gaps in the coarse material with larger
pore sizes. The WST-8 cell viability assay after 7 days is in
accordance with the results of the DAPI overview staining
by showing the highest cell viability for the medium texture.
The cell counting revealed highest cell number in the fine
and medium texture, coming along with the aforementioned
results. But as a limiting finding the development of the
absolute cell count within one experimental group and
during the experimental course represented divergent from
the WST-8 assay. This might be due to a methodical dif-
ference between the WST-8 assay and the algorithm used
for absolute cell counting. Whereas the WST-8 assay reli-
ably detects vital cells, the absolute cell counting was per-
formed on the basis of the DAPI staining with non-vital
cells. The multi-photon laser scanning microscope revealed
cell growth in the fine and medium textures as an almost
closed layer over the silicone pores building cell bridges.
No single cells could be detected in the pores using them for
ideal cell-size dependent ingrowth, as one could hypothesis
an ideal pore-size/cell-size relation to be a preventive factor
for exceeding foreign body reaction. In the coarse texture
samples cells dropped into the pores or showed an inho-
mogeneous growth pattern along the pores with finger-
shaped cell extensions and missing intercellular contact.
Therefore, fine-pored textures seem to enable homogenous
cell growth, even if the cells do not ideally fill the pores by
their cell body. Hence the induction of a best possible
physiological cell response might positively influence and
therefore reduce the foreign body reaction. Furthermore, the
hypothesis is underlined that fibroblasts need a sort of

irregular surface of synthetic or artificial materials for an
uncomplicated integration process. On the other hand,
large-pored surfaces might lead to a more inhomogeneous
and uncontrolled cell growth and thus, to an increased
fibrotic activity.

During the physiological wound healing process, as well
as in the course of breast capsule formation, the differ-
entiation of fibroblasts to myofibroblasts plays an important
role. This process is initialized by the TGFf1 signal path-
way. TGFp1 is well described as main molecule in the
formation of CC [65, 66]. As a cytokine that influences cell
proliferation and differentiation, it as well represents a
potent fibrotic, angiogenetic and inflammatory mediator and
therefore, plays a major role in fibrotic diseases. A low or
decreased expression of TGFp is associated with a reduced
fibrotic tendency. Former studies tried to inhibit the TGFf1
pathway in order to reduce the development of myofibro-
blasts and with it the formation of CC [67, 68].

In our preliminary study, gene expression analysis
revealed a trend for decreased fibrotic activity for the fine
and medium texture. TGFf31 showed the lowest expression
for those groups. Additionally COL3 and the relation of
COLI to COL3 affirmed this observation, as these results
are known for reduced fibrotic response [69].

The role of MMPs and TIMPs in the context of activation
or inhibition in the development of CC is not thoroughly
understood. The degradation and collagenous remodelling
could be a key process in fibrosis. TIMPs are endogenous
inhibitors of MMPs and four homologous subtypes are
known (TIMP-1, 2, 3 and 4). In general, every TIMP is
capable of inhibiting all MMPs. Only the efficacy of MMPs
inhibition varies for each TIMP. Related to our study,
TIMP?2 inhibits metalloproteinases, including MMP?2, but is
also required for MMP2 activation [70]. Moreover, MMP2
is said to have an antifibrotic effect in ECM remodelling
and an inhibitory activity against COLI [71]. As seen for
liver fibrosis, TIMPs seem to have divergent roles and do
not appear to function strictly by blocking the matrix-
degradation or the collagenolytic activity of metalloprotei-
nases [71].

In this study, MMP2 was found to be expressed highest
in the fine and medium texture. Together with the results of
TGFf31, COLI and COL3 this could be interpreted as an
active remodelling process towards a more controlled cell
reaction against the silicone surfaces and confirm the anti-
fibrotic effect of MMP2. TIMP2 showed no remarkable
differences between the single surfaces. Ulrich et al.
assessed tissue from women with CC of smooth and tex-
tured implants (negative-contact polyurethane foam
imprinting). They found an upregulation of TIMPI and
TIMP?2 in relation to the graded severity of the CC. Fur-
thermore, they observed a significantly higher expression of
both genes in smooth implants [64]. Kyle et al. found an
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upregulation of TIMP4 in contracted breast capsule explants
in smooth and textured implants [72]. Therefore, the inter-
pretation of our results in this context seems difficult due to
the different roles of TIMP.

In general, interactions of cultured cells with biomaterials
can vary depending on multiple conditions concerning the
material characteristics, cell type, cell age, culture condi-
tions etc.—as is known from similar experience from tissue
engineering and regenerative medicine [73-76]. Further-
more a limitation is that cell culture experiments might
exceed 7 days. But crucial changes and cell reactions related
to the assessed cells take place in an early stage. Moreover
further studies could assess different pore sizes of alter-
native silicone surfaces.

Nevertheless, our findings are suitable to shed more light
on the behaviour of biocompatible silicone materials and the
interaction of cells with various implant surfaces. To further
clarify the various cell-cell interactions, future studies shall
take into consideration that different cell types may interact
differently with silicone breast implants, and thus could be
differently involved in the foreign body reaction. Conse-
quently, further experiments in this context could focus on
co-culture settings using connective tissue and breast tissue
for the best possible imitation of an in vivo setting (and
directly analyze ECM formation and activation of pathways
on the protein level). Moreover, modifications of other
surface textures should be assessed to gain more insights
into the influence of distinct texture pore sizes in relation to
the different existing texturing techniques.

5 Conclusion

Besides multiple possible factors, the surface texture of
silicone breast implants seems to have a major impact on
the development of capsular contracture. Different existing
implant texturing techniques with different pore sizes may
exert a distinct influence on the foreign body reaction and
cell adherence. For surfaces produced with the salt-loss
technique we were able to show an antifibrotic effect of
smaller-sized pores in an in vitro model using human
fibroblasts in this study. These findings underline the
hypothesis of a key role of the implant surface and the pore
size and pore structure in preventing capsular contracture.
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