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ABSTRACT
Various environmental concerns have emerged today as a result of the developing 
industrial revolution. The use of hazardous oxidizing agents and organic dyes is 
one of the biggest problems facing the textile industry today. This approach needs 
effective and affordable system to degrade such organic pollutants from the point 
sources. In this work,  MnCr2O4 nanoparticle is synthesized using a green method 
for a crystal violet dye removal from wastewater. Three nanoparticle samples 
(CMO-A, CMO-B and CMO-C) were synthesized via green synthesis using bit-
ter leaf extract and different concentration (0.3 M, 0.4 M, and 0.5 M) of  KMnO4. 
The structural, morphological, optical properties, and photocatalytic activity of 
the synthesized  MnCr2O4 spinel were studied. X-ray diffraction (XRD) was used 
to examine the crystal structure and the  MnCr2O4 spinel exhibits cubic symme-
try (Fd3m). The lattice parameters, crystallite size, microstrain, and dislocation 
density of the produced nanoparticles were also assessed using the diffraction 
data. The bandgap energy of the  MnCr2O4 spinel decreased from 1.96 to 1.81 eV 
as the concentration of Mn ion increases from 0.3 to 0.5 M. The  MnCr2O4 spinel 
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1 Introduction

Today, several environmental challenges have arisen 
as a result of expanding industrial revolution to 
meet the demands of the global population whose 
number is growing rapidly [1, 2]. Among the vari-
ous established industries, textile industries use dif-
ferent hazardous oxidizing agents and organic dyes 
for colouration and bleaching. Organic dyes were 
used by more than 50% of various colouring indus-
tries due to their stability and versatility compared 
to other dyes [3]. Particularly, effluents from textile 
industries and petroleum refineries released to riv-
ers, lakes, and seawaters contain organic dyes, which 
are potentially cytotoxic, persistent, and mutagenic, 
and cause severe health issues to living organisms. 
Therefore, it is necessary to remove organic dyes 
from wastewater before releasing it into freshwater 
bodies. Unfortunately, most of these textile indus-
tries dump such dye containing organic wastes in 
rivers without doing appropriate treatment [4, 5]. 
As a result, the hazardous chemicals found in tex-
tile industry effluents can have a negative impact on 
water quality and pose a very harmful effects on ani-
mals when digested.

In the last three decades, the contaminated envi-
ronments caused by excessive use of hydrocarbon-
based resource buried deep inside the earth has 
sparked a debate among researchers about meeting 
the growing need for clean energy and clean water 
[6, 7]. As a result, various chemical, biological, and 
physical methods including membrane separation, 
adsorption, and coagulation were employed for dye 
or organic pollutants removal from wastewater [8]. 
However, these processes are not cost effective and 
only convert the liquid pollutants into solid form of 
sludge or membrane fouling [1, 9]. These water treat-
ment procedures are confined to recovering organic 
waste from the liquid to solid phases of water 
which can be secondary pollutant [10]. Recently, 
photocatalysis has received a significant attention 
for removal of organic dyes. This process generates 
hydroxyl radicals (·OH) which are strong oxidants 

to degrade the organic dyes [11, 12]. Currently, semi-
conductor metal oxide photocatalyst such as  TiO2, 
 MnO2,  Cr2O3, has been produced, and substantial 
studies have been conducted to fully understand 
their potential in the breakdown of the organic dye, 
most especially those that can be easily biodegrad-
able [13–15]. Moreover, the use of these semiconduc-
tor metal oxides in supercapacitors, sensors, solar 
cells, antibacterial activities etc. [16–20] has made 
the researchers understand the full concept of the 
faradaic processes in them. This has tremendously 
helped in achieving clean energy and organic waste 
control [21].

Among different metal oxides studied so far, tita-
nium dioxide  (TiO2) is widely used as a standard 
photocatalyst in degradation of organic dyes because 
of its excellent set of optical, physical, chemical, and 
electronic properties [19–25]. Also, it is low cost, eco-
friendly, and possess a high chemical stability [26, 27]. 
Despite its benefits,  TiO2 has a large band gap energy 
and electron-hole pair recombination, which are signif-
icant limitations that hinder its ability to perform pho-
tocatalysis and explain its poor visible light absorption 
[28]. This reduces its effectiveness in the degradation 
of organic waste when using visible light irradiation. 
Several modifications have been employed to curb this 
effect but these modifications necessitate additional 
cost, limiting the use of  TiO2 as a photocatalyst. Many 
researchers have been in search of alternative semicon-
ductor metal oxides with similar properties to  TiO2. To 
this end, chromium oxide  (CrxOy) serves as an alterna-
tive material with an additional feature of variable oxi-
dation state [29–31] [2]. The properties of chromium 
oxide have been enhanced by different modification 
techniques [31–33]. Chromium oxides and its spinel 
has been reported to be used in solar cell, catalysis, 
and spintronic applications [34–36].

The spinel is mostly preferred because it offers a bet-
ter sintering reactivity. A few studies have been suc-
cessfully reported on the metal doped  CrxOy or spinel. 
The spinel structure has the general formula  XY2O4 
and uses cation distribution at two separate sites (X- 
and Y-). In this structure, divalent X (II) ions occupy 

showed good absorbance of light in visible range and also showed excellent pho-
todegradation of crystal violet dye solution, with a record of 62.6%, 68.4%, and 
74.9% degradation efficiency for CMO-A, CMO-B, and CMO-C, respectively, after 
130 min of irradiation time.
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the tetrahedral gaps, while trivalent Y (III) ions fill 
the octahedral spaces in the compact packed arrange-
ment of oxygen ions. Stüsser et al., used neutron dif-
fraction technique to study the magnetic properties 
of  Cu0.9Ni0.1Cr2O4 and  CuCr2O4 and observed that 
the magnetic property of  ACr2O4 is greatly affected 
by the electronic property of A and Cr cations. They 
have reported ferromagnetic  Cu0.9Ni0.1Cr2O4 spinel 
[37]. Singh et al. have reported the optical properties 
of Mg ion substituted in  Cr2−xMgxO3. They noted that 
the optical band gap reduced from 3 to 2.76 eV as the 
concentration of the magnesium ion increased [38].

Herein,  MnCr2O4 nanoparticles were synthesized 
via the green synthesis route using Vernonia amygdalina 
(bitter leaf ) extract since the green method is 
inexpensive and environmentally friendly [39, 40]. The 
as-synthesized  MnCr2O4 nanoparticles were used as 
a photocatalyst for degradation of crystal violet from 
synthetic dye solution. To the best of our knowledge 
there is no reported work on the green synthesis of 
 MnCr2O4 spinel using bitter leave extract and its 
application for dye degradation. This study provided 
a baseline idea for researchers and industries to 
extend the scope of their studies on organic pollutants 
treatment before discharging them to the environment.

2 �Experimental

2.1 �Preparation�of�Vernonia amygdalina�leaf�
extract

The fresh leaves of Vernonia amygdalina (bitter leaf) 
were collected from the plant farm inside UNN, Nige-
ria and cleaned very well with distilled water, and 
dried for three days at room temperature. The dried 
leaves were blended. The mixture of Vernonia amygda-
lina (1 g) and distilled water (100 ml) was added to a 
beaker and stirred for 30 min while keeping the tem-
perature at 60 °C. The resultant solution was sieved 

and filtered to get a clear Vernonia amygdalina extract 
solution.

2.2 �Synthesis�of��MnCr2O4�nanoparticles

The  MnCr2O4 nanoparticles was prepared using a 
green synthesis route shown in Fig. 1. In detail, 0.1 M 
of chromium sulphate hexahydrate (Cr(SO4)3·6H2O) 
was prepared in 50 ml of bitter leaf extract, stirred with 
a magnetic stirrer and heated at the temperature of 
60 °C for 10 min. 0.3 M of potassium permanganate 
 (KMnO4) was added to the solution. As in Figure S1 
in the Supplementary Information, upon addition of 
 KMnO4, the solution changed from brownish to deep 
purple colour, synonymous to slow release of Mn ions 
in the solution. This is followed by continuous heating 
(at 60 °C) and stirring until the solution turns to gel. 
The resultant mixture was centrifuged to collect the 
target sample and washed with distilled water three 
times to remove impurities and oven-dried overnight. 
After that, the sample was annealed at 500 °C for 2 h. 
and labelled as CMO-A. For comparison, CMO-B and 
CMO-C spinel samples were synthesized using the 
same procedure using 0.4 M and 0.5 M of KMnO4, 
respectively.

2.3 �Photocatalysis�experiment

10 ppm of synthetic crystal violet dye solution was 
prepared carefully and stirred gently at room tem-
perature for 50 min. The stock was prepared by add-
ing 10 mg of CMO-A, CMO-B, and CMO-C each in 50 
ml of crystal violet dye solution in a separate beaker 
and stirred in the dark for 50 min. This initiates the 
surface adsorption and desorption of crystal violet 
dye. Each of the beakers containing the mixture were 
exposed to sunlight and concentration of the dye 
was measured at every 10 min interval using double 
beam UV–Vis spectrophotometer. Photodegradation 

Fig. 1  Green synthesis pro-
cess of  MnCr2O4 nanoparti-
cle using bitter leave extract
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efficiency of the samples was calculated using Eq. 1; 
[41–44].

where Co is initial concentration of the dye and C is 
concentration of the dye after degradation.

2.4 �Characterization�of�the�synthesized�
�MnCr2O4�nanoparticles

The crystallographic structure and average crystal 
size of the  MnCr2O4 nanoparticles were characterized 
through X-ray diffraction (XRD) using a Bruker AXS 
D8 diffractometer (Bruker, Massachusetts, USA) con-
nected to a copper anode at an incident wavelength 
of 1.540 Å. The crystal size of the nanoparticles were 
calculated using the Debye’s Scherer’s equation (D 
= (kλ/β.cos θ) where D is crystal size, K is Scherer’s 
constant (0.94), λ is the X-ray wavelength, β is full 
width at half maximum of the diffraction peak, and 
θ is diffraction angle. The morphology and elemental 
composition of the  MnCr2O4 nanoparticles were stud-
ied by using a high resolution Tecnai F20 operating at 
200 kV and equipped with an energy dispersive X-Ray 
spectroscopy (EDS) coupled to the scanning electron 
microscope (SEM). The absorbance peak of  MnCr2O4 
nanoparticles were determined by using a double 
beam UV–Vis spectrophotometer.

3 �Results�and�discussions

3.1 �Characterization�of�synthesized��MnCr2O4 
nanoparticles

3.1.1 �X‑ray�diffraction�characterization

The crystallographic structure and average crystal 
size of the  MnCr2O4 nanoparticles were determined 
using X-ray diffraction (XRD). The XRD pattern of 
the synthesized nanoparticles is shown in Fig. 2. It 
is noted that  MnCr2O4 has diffraction peaks at (111), 
(220), (222), (400), (331), (422), (440), (442), (620), (622), 
and (444) planes with the corresponding 2θ at (18.20°), 
(29.93°), (36.87°), (42.84°), (46.90°), (53.14°), (62.19°), 
(66.43°), (70.54°), (74.55°), and (78.48°), respectively. 
These planes indicate the formation of  MnCr2O4 at 
the right proportion having a structural formation of 
spinel cubic symmetry (Fd3m) [45, 46]. The formed 

(1)Degradation efficiency =
C
o
− C

C
o

× 100,

 MnCr2O4 has a face-centred cubic structure with 
JCPDS Card No. 01-075-1614. The average crystallite 
size, dislocation density, and microstrain of the syn-
thesized nanoparticles are calculated using the rela-
tion [47–49].

where δ is the dislocation density, � is the microstrain, 
θ is the Bragg angle, β is FWHM, K = 0.94, λ is the 
wavelength of X-ray, D is the crystallize size.

The tensile strain and comprehensive stress of the 
formed nanoparticle is depicted by the positive and 
negative values of ɛ, respectively, whereas its defect 
is represented by δ. Table 1 shows the crystallite size, 
microstrain and dislocation density of the nanopar-
ticles. The crystallite size for CMO-A, CMO-B and 
CMO-C are 16.78, 17.61, and 17.90 nm, respectively. 
The result show that there is an increase in the crys-
tallite size of the obtained nanoparticles as a result 
of the increasing the molar concentration of  KMnO4 
which is a precursor solution for Mn. The defect in 
the formed nanoparticles was observed to be low as 
indicated in Table 1. The tensile stress of CMO-B and 
CMO-A were observed to be high, whereas CMO-C 

(2)D =
k�

�Cos�

(3)� = 1∕D2

(4)� =

�

4 tan �
,

Fig. 2  The XRD plot of the green route synthesized 
 MnCr2O4nanoparticles

Table 1  The composition of the  MnCr2O4

Sample Crystallite 
size (nm)

Micro strain (ɛ) Dislocation 
density (δ)

FWHM

CMO-A 16.78 0.0065 3.55 ×  10−5 0.49929
CMO-B 17.61 0.0062 3.22 ×  10−5 0.47566
CMO-C 17.90 0.0060 3.12 ×  10−5 0.46801
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shows the lowest tensile stress. The low dislocation 
density and low strain shown by CMO-C could be 
due to the proper insertion of  Mn2+ into the structure 
of  CrxOy. This result is in agreement with the works 
of Hamza et al. [50].

XRD analyses were also performed on two control 
samples: (a) sample synthesized without the addition 
of bitter leaf extract (but annealed at 500 °C/2 h), and 
(b) sample grown in the same condition as CMO-A, 
but without calcination at 500 °C. The result of the 
XRD measurements is shown in Figure S2 in the sup-
plementary information. A few matching peaks at 
(111), (220), and (442) can be identified in the XRD 
profile of the sample synthesized using our green 
route (i.e., using bitter leaf extract) but without cal-
cination. For this sample, the XRD pattern did not 
show a clear, distinct, and sharp diffraction peak for 
each different phase, which strongly suggests that 
the sample is mostly amorphous. This is a confirma-
tion that high-temperature annealing at 500 °C is a 
necessary condition for the formation of  MnCr2O4 
polycrystalline NP as shown in Fig. 2; Table 1 above. 
The XRD of the sample prepared without bitter leaf 
extract, though showed some well-defined peaks, 
none of such peaks match the peaks shown in Fig. 1. 
The sample is therefore not the same as  MnCr2O4. 
Going by the results above, we can affirm that the use 
of bitter leaf extract, followed by a high-temperature 

annealing are the necessary conditions to synthesize 
polycrystalline  MnCr2O4 reported in this paper.

3.1.2 �Scanning�electron�microscope�(SEM)�
characterization

A scanning electron microscope was used to analyze 
the morphology of the synthesized nanoparticles [51]. 
As displayed in Fig. 3, the SEM image for all of the 
 MnCr2O4 nanoparticle samples reveal the surface mor-
phology of the samples and clearly show the effect of 
a varying precursor concentration. The CMO-A has 
clustered irregular spherical shape, whereas CMO-B 
and CMO-C appear to have small densely packed 
nanospherical shapes. The micrograph confirms that 
the change in precursor concentration alters the sur-
face morphology of the samples. Figure 3a, b and c 
show the SEM images of  MnCr2O4 nanoparticle syn-
thesized using 0.3, 0.4 and 0.5 M of  KMnO4 as a Mn 
precursor, respectively.

3.1.3 �Energy�Dispersive�X‑ray�(EDX)�characterization

Energy Dispersive X-ray (JEOL-IT300 LA) analysis 
was used for determining the elemental composition 
of the synthesized  MnCr2O4 nanoparticles. Energy 
dispersive X-ray (EDX) analysis is a technique for 

Fig. 3  SEM micrograph for 
surface morphology analysis 
of the  MnCr2O4nanoparticles

CMO-
C

CMO-
A

CMO-B
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elemental and compositional analysis based on the 
information from the X-rays produced by electron 
irradiation. Once a vacancy is created in the electron 
orbital of the inner shell of a constituent atom by an 
incident electron, electrons with a higher electron level 
are transferred from the outer shell to stabilize it. In 
order words, the high energy primary electron beam 
causes emission of an inner shell electron which leaves 
the atom in an excited state. The presence of  MnCr2O4 
is evidenced by the EDX shown in Fig. 4. The samples 
have traces of impurities such as sulphur, phospho-
rous, potassium, and carbon. These impurities dem-
onstrated that the green extract phytochemicals are 
involved in both capping and reduction of the formed 
nanoparticles. This assertion is confirmed by Alara 
et al. [52]. They studied the EDS of bitter leaf extract 
and it was noted that bitter leaf has a high content of 

oxygen and carbon and moderate potassium, phos-
phorous, and silicon. Therefore, the traces of these 
impurities in the EDX spectra suggest the existence of 
the stabilizing agents [53].

3.2 �Optical�properties�study

The absorbance of  MnCr2O4 was studied within 300 
to 1000 nm spectra range using UV–vis spectros-
copy. Figure 5a shows the absorbance of  MnCr2O4 
at various precursor concentrations. It was observed 
that the increase in wavelength causes the absorb-
ance of manganese chromium oxide to decrease. The 
absorbance peaks were recorded to be 0.59, 0.61, 
and 0.62 for CMO-A, CMO-B, and CMO-C, respec-
tively. This result is in consensus with the works of 
Dumitru et al. [54], which supports the notion that 

Fig. 4  The Energy disper-
sive X-ray (EDX) spectra 
for elemental analysis of 
 MnCr2O4nanoparticles

CMO-A CMO-B

CMO-C

Fig. 5  The absorbance 
spectra a and optical bandgap 
pointing plot b of  MnCr2O4
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the absorbance of spinel decreases with an increase 
in wavelength. They observed that  ZnCr2O4 has 
a broad peak of absorbance from 200 to 650 nm 
wave length range, which is comparable with the 
 MnCr2O4 250 to 700 nm wavelength broad peak of 
absorbance shown in Fig. 5a.

The measure of the absorption coefficient in rela-
tion to photon energy (hv) determines the energy 
bandgap. The optical band gap of  MnCr2O4 is 
defined by the Equation [55, 56].

where A is a proportionality constant, ∝ is the absorp-
tion coefficient and constant  Eg is the energy band-
gap. The energy band gap of  MnCr2O4 is determined 
by plotting the absorption coefficient against pho-
ton energy. The energy band gap plot of  MnCr2O4 is 
shown in Fig. 5b. The plot revealed that the energy 
band gap decreases as the precursor concentration 
increases. It was noted that the optical band gap 
for CMO-A, CMO-B and CMO-C are 1.96, 1.89, and 
1.81 eV, respectively. This result is in harmony with 
the works of Jafarnejad et al. [57], who reported the 
optical band gap of  MnCr2O4 in nanoparticle and bulk 
form to be 1.8 eV and 1.4 eV, respectively.

(5)(∝ hv)
1

2 = A(hv − Eg),

3.3 �Photocatalytic�activity

The electron-hole pairs generated during the exci-
tation of electrons when photo-irradiated usually 
facilitate the degradation of crystal violet dye. Pho-
tocatalysts with excellent surface adsorption aid the 
degradation process [58]. In this work, the photodeg-
radation experiment of crystal violet dye was exam-
ined using sunlight as the irradiation source. At every 
10 min interval, we recorded the absorption spectrum 
of each sample. Figure 6a show the photodegradation 
of crystal violet dye using  MnCr2O4. It was observed 
that all the samples showed positive degradation 
upon irradiation of sunlight and this leads to the col-
our change of the solution within the exposure time 
(0–130 min) as presented in Fig. 6d. CMO-C showed 
excellent degradation compared to CMO-A and CMO-
B. After 130 min, the photodegradation efficiency of 
CMO-A, CMO-B, and CMO-C was calculated to be 
62.6%, 68.4%, and 74.9%, respectively (see Fig. 7a). 
CMO-A showed the least degradation, this could be 
the effect of the high trace of impurities and low value 
of crystallite size. This finding is in line with the find-
ings of Hamza et al., who used  MnxCryO2 to photo-
degrade alizarin red [50]. After 180 min, they found a 
deterioration efficiency of up to 88.9%. The results are 

Fig. 6  Photodegradation 
of crystal violet dye using 
 MnCr2O4spinels at different-
time andthe rate of colour 
changes after photodegrada-
tion
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similarly consistent with the findings of Dumitru et al., 
who have reported a 60% photodegradation efficiency 
for  ZnCr2O4 against humic acid after 3 h [54].

The variation of ln(Co/C) with respect to time 
shown in Fig. 7c was used to determine the reaction 
kinetics of the experiments. The nanoparticles with a 
high value of reaction kinetic constant offer a better 
photodegradation of organic dye. Table 2 shows the 
correlation coefficient  (R2), kinetic rate constant, pho-
todegradation efficiency and the energy bandgap of 
 MnCr2O4 nanoparticles. From the table, the reaction 
kinetics and correlation coefficient of CMO-A, CMO-B, 
and CMO-C was observed to be 8.89 ×  10−3, 1.01 ×  10−3, 
10.78 ×  10−3  min−1, and 0.9934, 0.9612, 0.9679, respec-
tively. CMO-C has the highest value reaction kinet-
ics constant and the lowest correlation coefficient; 
this justifies the 74.9% of photodegradation efficiency 
achieved. The rate of photodegradation of crystal 

violet dye by  MnCr2O4 nanoparticles was determined 
using the pseudo first-order kinetics [59].

where t is the exposure time and k is the reaction 
kinetics constant.

The contact time required to achieve equilibrium 
is proportional to the initial dye concentration. Fig-
ure 7a–c provides an illustration of how contact time 
affects the degradation of crystal violet. The catalyst 
can be recycled completely through physical method 
which is filtration and then thermal treatments. The 
proportion of crystal violet degradation is evidently 
increasing with extended contact time, as shown in 
Fig. 7a. This results mostly from the method by which 

(6)lnC = −kt + lnC
o

(7)ln

C
o

C

= kt,

Table 2  Summary on 
photocatalytic degradation of 
crystal violet using  MnCr2O4 
nanoparticles

Sample Correlation coefficient 
 (R2)

kinetic rate constant
K  (min−1)

Photodegradation
efficiency (%) at 
130 min

Energy 
bandgap
(eV)

CMO-A 0.9934 8.89 ˟  10−3 62.6 1.96
CMO-B 0.9612 1.01 ˟  10−3 68.4 1.89
CMO-C 0.9679 10.78 ˟  10−3 74.9 1.81

Fig. 7  The plot of photo-
degradation efficiency a, C/
Co versus time b, variation 
of ln(Co/C) with respect to 
time c, and photocatalytic 
mechanism d, of crystal 
violet degradation using 
 MnCr2O 4 nanoparticles
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the dye molecules adhere to the nanoparticle’s sur-
face and the adsorption sites became more and more 
loaded as the contact time increased. Table 3 summa-
rizes the photodegradation of various organic dyes 
using different chromium spinel. It is observed that 
the percentage of dye degradation of the synthesized 
 MnCr2O4 nanoparticle is comparable with that of other 
spinel summarized in Table 3, while the quantity of 
photocatalyst used in this work is far smaller, makeing 
it cost effective.

Moreover, the photocatalytic degradation mecha-
nism of crystal violet dye using  MnCr2O4 can take 
place following four major steps as shown in Fig. 7d 
[60]; (i) The diffusion of the dye molecules from the 
contaminated water to the surface of  MnCr2O4, (ii) The 
surface adsorption of crystal violet dye, (iii) Chains of 
oxidation/reduction reaction processes at the adsorbed 
surfaces and (iv) The desorption of crystal violet dye 
at  MnCr2O4 surface. The purpose of desorption is to 
liberate the surface of the spinel photocatalyst for 
new reactant adsorption [61]. The stability and low 
interfacial charge recombination at the surface of 
 MnCr2O4 create room for the reaction between the oxi-
dant and electrons, and the reductant and holes [62]. 
The OH and  H2O are oxidized by the holes to form 
·OH–. Similarly,  O2 is reduced by the electrons to form 
·O2

– (superoxide radical anions). The  H+ in water pro-
tonates ·O2

– to form  HO2
– (hydroperoxide radical), this 

peroxide radical subsequently becomes  H2O2 [63]. The 
 H2O2 is later disassociated forming ·OH–. The formed 
·HO2

– and ·OH– are very effective in the degradation of 
crystal violet dye [64, 65]. The degradation processes 
can be summarized as.

MnCr
2
O

4
+ hv → MnCr

2
O

4
(e
c
b
− + hv

+
vb

)

MnCr
2
O

4
(hv+

vb

) +H
2
O → MnCr

2
O

4
+OH + ⋅OH

MnCr
2
O

4
(hv+

vb

) +OH → MnCr
2
O

4
+ ⋅OH

MnCr
2
O

4
(e−
cb

) +O
2
→ MnCr

2
O

4
+ ⋅O

−
2

⋅O
−
2

+ H
+
→ ⋅HO

2

⋅HO
2
+ ⋅HO

2
→ H

2
O

2
+ O

2

H
2
O

2
+ hv → ⋅OH

OH + dye → Degraded Product

⋅HO
2
+ dye → Decolorized Product

4 �Conclusion

We investigated the influence of Mn concentration in 
the structural, morphological, optical, and photoca-
talysis behaviour of  MnCr2O4.  MnCr2O4 spinel was 
synthesized using green synthesis route. Vernonia 
amygdalina (bitter leaf), was used as the green extract. 
The Mn precursor concentrations were varied between 
0.3, 0.4 and 0.5 M. The XRD result of  MnCr2O4 spi-
nel synthesized at 0.5 M has low dislocation strength, 
good tensile strength and high crystallite size when 
compared to other concentrations. The optical studies 
confirmed excellent absorbance and the energy band-
gap for synthesized  MnCr2O4 spinels are 1.96, 1.89, 
and 1.81 eV for CMO-A, CMO-B and CMO-C, respec-
tively.  MnCr2O4 spinel showed a positive response to 
the photodegradation of crystal violet dye. The deg-
radation efficiency was recorded to be 62.6%, 68.4%, 
and 74.9% degradation efficiency for CMO-A, CMO-B, 
and CMO-C, respectively. The reaction kinetics and 
correlation coefficient 8.89 ˟  10−3, 1.01 ˟  10−3, 10.78 ˟ 
 10−3  min−1, and 0.9934, 0.9612, 0.9679 were recorded 
for CMO-A, CMO-B, and CMO-C, respectively. The 
synthesized  MnCr2O4 nanoparticle shows a good pho-
tocatalytic activity to degrade crystal violet. Finally, 
we recommend that any interested researcher can do 

Table 3  Comparison on chromium spinels photocatalyst performance for different organic dyes

Photocatalyst Photocatalyst 
quantity (mg)

Dye Percentage 
degradation (%)

Degradation time 
(mins)

Ref.

CuCr2O4 20 Methylene blue 99.5 60 [66]
CoCr2O4 40 Eriochrome BlackT (EBT) 90 90 [67]
CuCr2O4 100 Azo dyes 99.6 120 [68]
CuCr2O4 40 Monoazo dye (AV 7) 68.2 120 [69]
BiVO4/CuCr2O4/PANI 10 Methylene blue 95 180 [70]
MnxCryO2 40 Alizarin red 88.9 180 [50]
MnCr2O4 10 Crystal violet 74.9 130 This work
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further investigation on this catalyst for other dyes as 
well as a real sample discharged from industries.
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