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ABSTRACT
With lead-based perovskite materials, lead content and long-term stability are the 
big concerns. Recently, Cesium tin iodide  (Cs2SnI6) double perovskite has gained 
recognition as a stable and environment-friendly photovoltaic material compared 
to lead-based perovskite materials. In the present study, we have investigated 
 Cs2SnI6 based solar cell with all inorganic transport materials using SCAPS-1D. 
The optimized device exhibited a maximum efficiency of about 18%. Further we 
fabricated  Cs2SnI6 perovskite films using a solution process approach, utilizing 
CsI and  SnI4 in a 2:1 ratio. For synthesized double perovskite film, the crystallin-
ity, morphologies, and optical characteristics were examined. Additionally, the 
stability analysis confirmed that the prepared perovskite films were stable for 
more than two months under ambient exposure. Finally, utilizing the synthesized 
 Cs2SnI6 thin films as an absorber material, we fabricated two solar cells without 
and with hole transport layer (HTL), having configurations of glass/FTO/ZnO/
Cs2SnI6/Ni and glass/FTO/ZnO/Cs2SnI6/  MoS2/Ni, respectively, in the ambient 
conditions. As a major finding, it has been observed that the inclusion of  MoS2 as 
HTL improved overall performance, with an enhancement in the power conver-
sion efficiency (PCE) of nearly 45% compared to the device without HTL.

1 Introduction

In recent years, climate changes brought up by the 
pollution demands for cleaner renewable energy tech-
nologies to meet the future requirements for energy 

[1]. The rising perovskite-based solar cells technique 
has drawn their attention from research communities 
because of its improved PCE that hikes from a value of 
3.8% to about 25.7% in a very short amount of time [2]. 
Owing to the different electronic and optical behaviour 
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of hybrid perovskite such as high carrier mobility, 
higher absorption coefficient, larger diffusion length, 
tunable bandgap and comparatively less costly fabri-
cation technique make it more viable for photovoltaic 
application and drew much attention of the research 
communities [3–5]. Although hybrid perovskite has 
excellent qualities, the presence of lead is challenging 
because of environmental and ecological issues [6, 7]. 
In addition, the long-term stability due to the presence 
of organic cation is another significant issue related 
to this superior technology, preventing its massive 
application [8, 9]. To overcome the toxicity and stabil-
ity issues, a number of research have been conducted 
for the advancement and development of lead-free 
perovskites that share many of the same properties 
as their lead-containing counterparts [6]. The  Cs2SnI6 
has distinguished itself as a leading material to replace 
lead-based perovskites among the possible lead-free 
options. The  Cs2SnI6 possesses an optimal bandgap 
(Eg) in the range of 1.25–1.62 eV, absorption coeffi-
cient (over  105  cm−1) and carrier mobility (1–509  cm2 
 V−1  s−1). In addition,  Cs2SnI6 shows excellent stability 
in the air owing to the presence of  Sn4+

. These proper-
ties make them a favourable choice for photovoltaic 
applications.

Qiu group was the first to utilize  Cs2SnI6 as a light 
absorber material configured with c-TiO2 and P3HT 
functioning as the electron transport layer (ETL) and 
hole transport layer (HTL), respectively. With an open-
circuit voltage (Voc) of 0.51 V, the end design had an 
efficiency of 0.96% [10]. The same team later devel-
oped solar cell by diffusing the solution of  Cs2SnI6 into 
the ZnO nanorod layer, resulting in a device efficiency 
of 0.86% [11]. Planar solar cell in a n-i-p configura-
tion using the  Cs2SnI6 perovskite was also employed, 
producing a PCE of 0.46% [12]. Further, spray-casted 
method was utilised to prepare  Cs2SnI6 films. The pre-
pared perovskite film was then assembled to develop 
perovskite solar cell (PSC) with the device architecture 
of FTO/CdS/  Cs2SnI6 /C/Ag. For PSC based on  Cs2SnI6 
and using CdS as the window layer, the fabricated 
device displayed the highest recorded Voc of 0.86 V 
[13]. Recently, Shodruz T. Umedov’s group studied 
the effect of varying the A-site in  Cs2SnI6, and they 
employed an inverted structure with the device con-
figuration as ITO/CuI/Cs2SnI6-alloyed/PCBM/AZO/
Ag, achieving a PCE of 0.135% with  Cs2SnI6 and a PCE 
of 0.66% with alloyed films [14].

Despite numerous efforts and several synthesis 
processes reported so far [15–20], the device efficiency 

for  Cs2SnI6 PSC is still relatively low. Together with 
synthesis and fabrication approaches, the choice of 
the ETL and HTL might also be very important for 
increasing device efficiency, as they can efficiently 
reduce the losses such as non-radiative recombina-
tion and current leakage. A desirable outcome can 
be obtained by combining the ETL, HTL, and the 
absorber/active layer in a balanced manner. Essen-
tially, the ETL is the key component of a solar cell that 
separates the electrons from the absorber layer while 
block the holes to pass through it. Zinc oxide (ZnO) 
and Titanium dioxide  (TiO2) are suitable solar spec-
trum harvesting materials as ETLs. Of the two, ZnO 
is the most suitable candidate to be used as ETL, as it 
exhibits high electron mobility and has the advantage 
of being fabricated at a lower temperature [21]. HTL 
plays a significant role as well, as it blocks electrons 
and only permits holes to travel through it, much like 
ETL. Additionally, it serves the crucial purpose of iso-
lating the moisture from stepping into contact with the 
perovskite absorber layer, which improves the stability 
of the device by lowering the possibility of degrada-
tion. Therefore, HTL must be selected carefully so that 
carrier transportation, device performance, and device 
stability can be improved [22, 23]. So far, the common 
hole transport materials (HTMs) exploited in stand-
ard PSC devices are organic ones, such as PEDOT:PSS, 
Spiro-OMeTAD, P3HT, etc. [24–26]. Although the 
PSCs utilizing organic HTMs exhibit excellent PCE, 
the main issue with these HTMs is their high manu-
facturing cost and at most, the stability issue affect-
ing device performance. Employing inorganic HTMs 
could be suitable strategy to overcome the limitation 
found in organic HTMs. Several inorganic HTMs such 
as  Cu2O, CuO,  Niox, CuI, CuSCN,  MoOx,  MoS2 has 
been utilised in PSCs, of which MoS2, a metal dichal-
cogenide having a direct bandgap of 1.2 eV, can be a 
suitable choice to be used as HTM owing to its bet-
ter optical and electrical properties, solution process-
ing ability, and thermal stability [27–29]. In recent 
years,  MoS2 has been used as the HTL in perovskite 
solar cells in a typical device configuration. It has also 
been used in inverted structures [30]. To utilise the 
 MoS2 as bulk HTL, its solubility is improved, or to 
obtain bulk HTM, the  MoS2 is spin coated for a few 
cycles. In addition, to increase efficiency and stability, 
a few layers of  MoS2 are coupled with Spiro-OMeTAD, 
an organic HTM [31]. Thus, utilising  MoS2 as HTL 
could be a reliable choice to enhance the cells’ perfor-
mance and reliability.
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In this paper, we have carried out a simulation and 
experimental based study of  Cs2SnI6-based solar cell 
with all inorganic transport materials, ZnO as the ETL 
and  MoS2 as the HTL. Two devices using  Cs2SnI6 as 
an absorber material have been investigated without 
HTL and with HTL, having configurations as glass/
FTO/ZnO/Cs2SnI6/Ni(device1) and glass/FTO/ZnO/
Cs2SnI6/MoS2/Ni(device2), respectively. For the syn-
thesis of  Cs2SnI6 double-perovskite film, a simple 
solution process approach has been followed [32], 
while the devices were fabricated using one step spin 
coating method. The fabricated devices exhibited an 
efficiency of 1.03% and 1.89% without and with  MoS2 
layer, respectively. In addition to this, an exhaustive 
simulation has been performed which demonstrated 
that the proposed device performance can further 
improve upto 18% PCE subjected to a more sophis-
ticated experimental environment, by optimizing the 
bulk defect.

2  Numerical modelling and experimental 
procedure

2.1  Simulation approach and device structure

Before carrying out the experimental work, we first 
investigated the proposed structure theoretically, since 
theoretical works offer a simple working environment 
to work with many facets of operation and analyze the 
key concerns. Theoretical works do not require any 
specific atmosphere, laboratory, or chemicals, but they 
do assist in selecting the optimal configuration and 
optimizing the various parameters so that the best per-
formance of the PSCs may be obtained. This could not 
only save our time but also relieve us from the tedious 
job of continuously optimizing the different param-
eters such as thickness, defect density, doping density 
etc. while fabricating the device. As a result, trustwor-
thy software programmes are required for leading the 
careful optimization of solar cells prior to fabrication. 
We designed and investigated all inorganic solar cell 
(device 1 and device 2) using solar cell capacitance 
(SCAPS-1D) software. Upto seven semiconducting 
layers can be used by the SCAPS-1D simulator for 
evaluating the different performance parameters of 
solar cells. It offers a platform where almost all factors, 
including charge carrier mobility, band-gap, electron 
affinity, and doping, may be changed in order to com-
prehend the physics of the device.

This tool utilizes Poisson equation (Eq. 1.), Continu-
ity equations (shown by Eq. 2. and Eq. 3 for electron 
and holes, respectively) and drift–diffusion equations 
(shown by Eq. 4. and Eq. 5 for electron and holes, 
respectively) for modelling and estimating the device 
performance.
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(CsI) anhydrous, beads (99.999%), tin (IV) iodide 
 (SnI4), anhydrous powder (99.999%),  MoS2 powder 
(99.99%), ZnO powder (99.9%).

2.3  Material synthesis

For the preparation of  Cs2SnI6 solution, CsI and  SnI4 
were dissolved in a 2:1 molar ratio in 3 ml of 2-isopro-
pyl alcohol (IPA). After dissolving CsI and  SnI4 pow-
ders in the reaction solvent, they were then stirred 
gently for 3 h at room temperature (25 °C) and kept 
overnight, resulting in a double perovskite black solu-
tion at the end. The solution of  MoS2 has been pre-
pared by dissolving 320.14 mg of  MoS2 powder in 
2 ml of N-methyl-2-pyrrolidone (NMP) and stirring it 
for 2 h, while for the preparation of the ZnO solution, 
814 mg of ZnO powder is dissolved in 10 ml of IPA, 
and the solution is stirred continuously for overnight 
at room temperature.

2.4  Device fabrication

We used fluorine-doped tin oxide (FTO) coated glass 
as a substrate for fabricating solar devices. The fabri-
cation of thin films with uniform thickness frequently 
involves thermal vapor deposition system. However, 
because the precursor is uncontrolled, it is challeng-
ing to precisely regulate the composition of the film. 
Sol–gel is a low-cost chemical process that creates 
material by changing the liquid phase (sol) into the 
solid phase (gel) [35–38]. This form of fabrication typi-
cally involves a spin coating or dip coating process, 
followed by a heat treatment step. It has been discov-
ered that annealing is essential to decrease material 
flaws. Annealing is a popular method used in the man-
ufacturing of nanomaterials to either increase crystal 
quality or stabilize the structure at a temperature. In 
these tests, parameters like as annealing temperature 
and rotation speed were employed to study their 
impact on the creation of ETL, HTL, and perovskite. 
However, perovskite materials still have several draw-
backs, such as deterioration due to water interaction 
and low thermal stability [39–41]. The temperature of 
perovskite thin films was optimized via a post-anneal-
ing process. First, FTO was cleaned in ultrasonic baths 
for 30 min each with DI water, acetone, and IPA. For 
the fabrication of devices, first, the ZnO sol–gel solu-
tion was spin-coated on the FTO substrate for 30 s 
at 3000 rpm. The as-deposited films were heated at 
100 °C on a hot plate for 10 min. The prepared ZnO 

(b)  Energy Band diagram of proposed device 
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Fig. 1  a Schematic structure of proposed device b Energy Band 
diagram of proposed device

Table 1  Simulation parameters used for theoretical investigation

Parameter ZnO Cs2SnI6 MoS2

εr 9.0 10.0 13.6
EG (eV) 3.27 1.48 1.29
χ (eV) 4.1 4.01 4.2
μn  (cm2/V. s) 100 0.38 100
μh  (cm2/V. s) 25 382 150
ND  (cm−3) 1.0 ×  1018 0 1.0 ×  1015

NA  (cm−3) 0 2.0 ×  1015 1.0 ×  1017

DOS(CB), Nc  (cm−3) 2.2 ×  1018 2.2 ×  1018 2.2 ×  1018

DOS(VB), Nv  (cm−3) 1.8 ×  1019 1.8 ×  1019 1.8 ×  1019
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film was cooled down. The  Cs2SnI6 solution was then 
spin-coated on prepared ZnO film for 50 s at 1000 rpm. 
In order to get uniform perovskite film and to evapo-
rate the solvent part, we annealed the prepared per-
ovskite film at 110 °C for 10 min. We repeated this pro-
cess twice to obtain desired thickness for the absorber 
layer. Then, the  MoS2 solution was spin coated onto 
perovskite film at a rotation speed of 2000 rpm for 30 s. 
This was further followed by annealing the  MoS2 film 
at 150 °C on hot plate. After deposition of different 
layers, finally, the nickel (Ni) metal contact layer as a 
back electrode was deposited using the e-beam depo-
sition method. Glass/FTO/ZnO/Cs2SnI6/Ni and glass/
FTO/ZnO/Cs2SnI6/MoS2/Ni, photovoltaic devices were 
fabricated following the above process under ambient 
conditions.

2.5  Characterization

Malvern Panalytical GIXRD with Cu-Kα 1.542 Å wave-
length radiation, 2θ angle varying in the range of 10° 
to 60°, having tube voltage of 50 kV, and tube current 
of 100 mA was used to record the X-ray diffraction 
patterns, which were then used to analyse the struc-
tural characteristics of the deposited films. An ultra-
violet–visible(UV–VIS) spectrophotometer (UV-2600 
Shimadzu’s proprietary model) was employed to cal-
culate the UV–VIS absorption spectrum of  Cs2SnI6. 
The surface morphology of  Cs2SnI6 film has been 
investigated with field emission scanning electron 
microscope (FER-SEM; Zeiss Gemini SEM 500). A 
Keithley 2400 source meter was utilized for calculating 
the current density–voltage (J–V) characteristics. The 
performance parameters were calculated under AM 
1.5 illumination with 100 mW/cm2 produced by the 
Netport Oriel12A solar simulator. Across a 0.09  cm2 
active region, the J–V curves were measured.

3  Results and discussion

3.1  Simulation study of device 1 and device 2

ETL, HTL, and absorber layer thicknesses play an 
important role in deciding the performance of solar 
cells. For this, we first investigated the effect of the 
thickness of ZnO for both configurations, for which we 
varied the thickness of ZnO from 50 to 500 nm while 
keeping the thicknesses of other layers constant. It was 
found that with an increase in thickness from 50 nm to 

higher, the value of efficiency starts decreasing. Thus, 
the optimized thickness of ZnO was kept at 50 nm.

The absorber layer thickness significantly influ-
ences the PCE of PSCs hence, we varied it from 100 to 
1500 nm. The value of Jsc increases with an increase 
in thickness for both devices. At a thickness of 100 nm, 
PCE of 6.12% with Voc of 0.6762 V was found, and 
after a thickness of 900 nm, a constant value of PCE 
of about 17% with a Voc of 0.9752 V was observed for 
device 1. Thus, optimized thickness of absorber layer 
for device 1 was kept as 900 nm. While for device 2, it 
was observed that at a thickness of 100 nm, a PCE of 
7.93% with a Voc of 0.9251 V was found. An optimum 
efficiency of 18.18% was obtained at a thickness of 
776 nm. Thus, the optimized thickness of the absorber 
layer for device 2 was kept at 776 nm. Figure 2 shows 
the PCE with the variation in the thickness of the 
absorber layer for both devices.

Keeping the thickness of absorber layer at 776 nm 
and ZnO at 50 nm for device 2, we varied the thick-
ness of  MoS2 from 50 to 500 nm. The results showed a 
decrease in PCE as  MoS2 layer thickness varies from 
50 to 500 nm. At a thickness of 50 nm  MoS2 layer, the 
maximum PCE was attained. Figure 3 shows effect on 
PCE of both devices with variation in ZnO and  MoS2 
thicknesses.

3.2  Physiochemical properties

Crystallographic properties of the  Cs2SnI6 perovskite 
thin film prepared using CsI and  SnI4 in a 2:1 ratio 
was examined from their X-ray diffraction patterns. 

Fig. 2  Variation in the PCE with the variation in thickness of 
absorber layer
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Figure 4 depicts the XRD pattern of  Cs2SnI6 thin film 
deposited on FTO. From Fig. 1., we can observe that 
two major peaks are obtained at 2θ values equal to 
26.5° and 30.7° that corresponds to atomic plane (222) 
and (004), respectively. Other peaks are obtained at 
2θ values equal to 13.1°, 21.5°, 43.9°, 52.125° and 
54.525°. These peaks correspond to atomic plane 
(111), (022), (044), (226), (444), respectively. The XRD 
peaks corresponding to atomic planes are identical to 
PDF# 73–0330 pattern and also is in good agreement 
with previously reported work [12, 13, 19, 32]. All 
obtained peaks were for  Cs2SnI6 double perovskite. 
No peaks were observed for CSI which indicate the 
proper formation of perovskite material.

Figure 5 shows the  Cs2SnI6 UV–VIS absorption 
spectra that was observed. The absorption band 
between 300 and 800 nm could be seen in the UV–VIS 
absorption spectrum. The obtained spectrum is in 
good agreement with previously published study [32].

The optimum performance of solar cell largely 
depends on the morphology of the absorber layer. For 
this, we examined the morphological characteristics of 
the  Cs2SnI6 layer. Figure 6(a) and (b) shows the  Cs2SnI6 
FESEM images that were obtained (magnifications of 
25 K at a scale bar of 1 μm) and cross-sectional image 
for the proposed  Cs2SnI6 based solar cell. Compact and 
small crystals with clear edges having triangular and 
octahedral facets constitute the morphology.

3.3  Photovoltaic performance of fabricated 
devices

We fabricated two devices using  Cs2SnI6 as light 
absorber material, in HTL and HTL-free configura-
tions. J-V curves were used to evaluate the devices’ 
performance. Figure 7 shows obtained J-V charac-
teristics for the fabricated device. The obtained final 
performance parameters for the fabricated pho-
tovoltaic devices have been displayed in Table 2, 
along with the earlier notable works reported in this 
domain. It can be seen from Table 2 that the device 
without  MoS2 yielded PCE of 1.03%,  Voc of 0.436 V, 
a short circuit current density  (Jsc) corresponding to 
5.48 mA/cm2, and fill factor (FF) of about 43.03%. 
While, with the incorporation of  MoS2 as the HTL, 
we obtained enhanced the efficiency. Its value rises 
from 1.03% to1.89% due to overall improvements in 
 Voc,  Jsc, and FF. The improvement in performance 
parameters due to incorporation of the  MoS2 layer 

Fig. 3  Variation in the PCE with the variation in thickness of 
ZnO and  Mos2 layer

Fig. 4  XRD pattern of  Cs2SnI6 thin film deposited on FTO Fig. 5  UV–VIS absorption spectra of  Cs2SnI6
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can be explained from their energy band diagram 
as displayed in Fig. 1(b). In the absence of the  MoS2 
layer, some of the photogenerated charge carriers 
travel to Ni electrode. This enhances the photocar-
rier recombination at the  Cs2SnI6-Ni interface and 

thereby causes a reduction in the solar cells’ current 
generation. While the  MoS2 layer raises its conduc-
tion band position significantly above that of  Cs2SnI6, 
this prevents electrons from the absorber to pass 
through to the  MoS2 layer. The selective extraction 
of holes at the  Cs2SnI6-MoS2 interface reduces the 
recombination of the photogenerated carriers and 
hence improves the current generation of the solar 
cells. Thus, with the insertion of  MoS2 as HTL, the 
overall performance of the solar cell is enhanced.

3.4  Perovskite film and device stability

When we deal with perovskite materials, long-term 
stability is the major challenge since they degrade in 
the presence of moisture and oxygen. The produced 
 Cs2SnI6 samples were stored at room temperature in 
ambient conditions to investigate their environmen-
tal stability. After 9 and 12 weeks, the prepared films 
were again examined using XRD, as shown in Fig. 8 
(A-C). After 9 weeks a peak at 27.6° starts appear-
ing. After 12 weeks the CSI impurity peak at 27.6° 
(JCPDS:77–2185) starts increasing. This shows that the 
film begins to degrade as a result of  Cs2SnI6’s disinte-
gration in ambient conditions. Thus, prepared  Cs2SnI6 
film is stable for two months.

Furthermore, we also investigated device stability 
for which we took an unencapsulated  Cs2SnI6 based 
solar cell (device 2) having initial PCE of 1.89%. The 
device 2 was kept under 1-sun illumination continu-
ously for about 1000 min in an ambient environment. 
After 1000 min of continuous tracking, it was observed 
that device’s PCE decreases only to 1.73%. Figure 9 
shows the variation in PCE of device 2 with time. 
Thus, device 2 was able to preserves 91% of the initial 
PCE. after 1000 min, too.

3.5  Inconsistency of experimental result 
with the simulation analysis

In PSC, recombination plays a role in returning the 
non-equilibrium charge carriers generated by light 
back into a thermal equilibrium state. Recombination 
processes occur both within the bulk of the absorber 
material and at its interfaces, and they are generally 
undesirable. Commonly, defects in perovskite mate-
rials manifest as vacancies, while larger defects like 
grain boundaries and disruptions may also be present. 
The majority of defects in perovskite films are mostly 
observed on the surface or at the grain boundaries. 

Fig. 6  a FESEM image (top view) of  Cs2SnI6 thin film at 25 k. b 
Cross-sectional image for the proposed  Cs2SnI6 based solar cell

Fig. 7  J-V characteristics curve of  Cs2SnI6 based fabricated 
device with and without  MoS2
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The density of these defect states is highly depend-
ent on the film deposition procedures. These defects 
introduce shallow or deep energy levels within the 
bandgap. As a consequence of these imperfections, 
electrons and holes can become trapped, leading to the 
occurrence of the Shockley–Read–Hall recombination 
process [42]. Therefore, we need to concentrate on the 
techniques so that defect density can be reduced. This 
comprises the perovskite engineering so that the grain 
size can be enlarged, film morphology and crystallin-
ity can be improved. Large grain size, smaller grain 
boundaries, and better crystallinity all contribute to a 
reduction in charge recombination, bulk defects, and 
surface defects in the perovskite films, which greatly 
enhances the device performance of perovskite solar 
cells.

To find a gap between experimental and theoreti-
cal efficiency, we tried to anticipate the proposed 
device behaviour at different bulk defects level rang-
ing from 1 ×  1014  cm−3 to 1 ×  1018, the corresponding 

Table 2  Performance 
parameters of fabricated 
device and Comparative 
evaluation with Published 
Literature

The bold represents, the results compiled for in this work

S. No Fabricated device Structure Jsc

(mA/cm
2
)

VOC
(v)

FF
(%)

PCE
(%)

Ref

1 Glass/FTO/TiO2/  Cs2SnI6/P3HT/Ag 5.41 0.51 0.35 0.96 [11]
2 FTO/TiO2/Cs2SnI6/P3HT/Ag 7.41 0.25 0.245 0.47 [12]
3 ITO/CuI /Cs2SnI6/PCBM/AZO/Ag 2.145 0.242 0.27 0.135 [13]
4 Glass/FTO/CdS/Cs2SnI6/C/Ag 0.33 0.86 0.37 0.11 [14]
5 FTO/TiO2/Cs2SnI6/Pt 6.752 0.367 0.595 1.47 [16]
6 FTO/ZnO/Cs2SnI6/Ni 5.48 0.436 0.43 1.03 This work
7 FTO/ZnO/Cs2SnI6/MoS2/Ni 8.11 0.498 0.4672 1.89 This work

Fig. 8  XRD patterns obtained after 9 weeks and 12 weeks

Fig. 9  Variation in PCE of device 2 with time

Fig. 10  Variation in PCE with bulk defect density
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variation is shown in Fig. 10. One can depicts from 
the figure that, the PCE significantly decreases from 
18 to 2% as the level of defects get increased. Thus, 
rise in defects could be one of the probable reasons for 
the decrement of experimental efficiency [43]. In addi-
tion, while doing the experimentation, achieving the 
precise optimal thickness of the perovskite and trans-
port layers is very challenging. The chemical processes 
involved during the fabrication of the perovskite layer 
can introduce slight variations in its thickness [44]. 
These variations can be attributed to factors such as 
the deposition technique, solution concentration, and 
reaction kinetics, which may affect the final thickness 
achieved. Therefore, achieving an exact and consistent 
thickness of the perovskite layer was difficult due to 
the inherent variability associated with the fabrication 
process. This may also lead to a lower experimental 
efficiency of the proposed PSC. Despite the incon-
sistency between the optimal numerical PCE and the 
experimentally achieved PCE for the proposed solar 
cells, it can be inferred that the device has the potential 
to exhibit excellent photovoltaic performance with the 
 MoS2 layer as a HTL and be subjected to fabrication in 
a more sophisticated environment.

4  Conclusion

In this work, we successfully synthesised and depos-
ited air-stable  Cs2SnI6 double perovskite films employ-
ing a one-step spin-coating technique. The successful 
synthesis of perovskite material is confirmed by the 
XRD spectrum. Further, we fabricated solar cells with-
out and with HTL having configurations as glass/FTO/
ZnO/Cs2SnI6/Ni and glass/FTO/ZnO/Cs2SnI6/MoS2/Ni, 
respectively, using  Cs2SnI6 films under ambient con-
dition. Among the two devices, the device with HTL 
yielded optimum performance with Voc = 0.4672 V, 
Jsc = 8.11 mA/cm2, FF = 46.72%, and PCE of 1.89%. In 
addition, as a conclusion, we found that the device 
with HTL exhibited an improved efficiency of around 
1.89% compared to earlier reported results. The find-
ings open a new path for developing an effective and 
stable  Cs2SnI6 perovskite solar cell.
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