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ABSTRACT
A series of UiO-66-NH2-CA-Cu/g-C3N4 (UCC 1/CNx) heterogeneous photocata-
lysts were constructed via a facile physical mixing treatment of the covalently 
post-modified MOF (UiO-66-NH2-CA-Cu) and functional materials g-C3N4. The 
tetracycline removal by the photocatalysis coupled with persulfate activation 
were studied under white light irradiation. The optimal UCC 1/CN20 photocata-
lyst showed the best photocatalytic performance, in which 94.0% TC could be 
efficiently eliminated (k = 0.08669  min−1) within 30 min. The satisfactory degrada-
tion performance could be ascribed to the effective separation of photogenerated 
electron-hole pairs over the heterogeneous binary structure, which were demon-
strated by several characteristic technologies including photoluminescence spec-
tra, electrochemical impedance spectroscopy, transient photocurrent response 
and Bader charge analysis based on density functional theory calculations. More-
over, a possible mechanism behind the photocatalytic degradation was proposed 
and further affirmed by the quenching experiments and electron spin resonance 
measurements. Our work may supply a feasible idea for treating wastewater 
contained organic pollutants based on the heterogeneous photocatalyst.

1 Introduction

Antibiotics belong to a class of antibacterial drugs 
applied to cure bacterial infections of humans and 
animals [1]. Over the past decades, the abuse and 
accumulation of antibiotics lead to the generation of 
antibiotic resistant bacteria, which will finally pose a 
threat to the ecological system and public health [2]. 

Hence, the emerging contaminants of antibiotics in 
the aquatic environment have received much atten-
tion from environmental researchers [3]. Tetracycline 
(TC) as a broad-spectrum antibiotic is one of the most 
widely used antibiotics in some related fields [4]. Thus, 
it is a tricky problem to develop the efficient and fac-
ile treatment technologies for the TC removal from 
wastewater.
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Currently, advanced oxidation processes (AOPs) 
have been perceived as ideal strategies for water 
treatment, in which the generated reactive radicals 
can effectively decompose antibiotics into low-toxic 
and biodegradable products [5, 6]. Compared with the 
hydroxyl radicals (·OH)-based AOPs, the advanced 
oxidation processes based on sulphate radicals 
 (SO4

·−) show more excellent oxidative degradation 
ability towards contaminants because the radicals of 
 SO4

·− process higher selectivity and suitability within 
a wide pH range than those of the ·OH radicals [7, 8]. 
Generally, peroxydisulfate (PDS,  S2O8

2−) or peroxy-
monosulfate (PMS,  HSO5

−) is employed as a promis-
ing oxidant to form free radicals in  SO4

·−-based AOPs. 
Although antibiotics can be oxidized into substances 
with low toxicity by PMS and PDS, the processes usu-
ally need intensive energy input [9]. Recently, many 
studies [10–12] have found that there is a positive syn-
ergy between PDS/PMS oxidation and photocatalysis 
on antibiotics removal. The reasons can be summed up 
in two aspects: (i) The oxidant of PDS/PMS can be acti-
vated by photogenerated electrons to form sulphate 
radicals and simultaneously (ii) The activity of pho-
tocatalysts are improved as PDS/PMS can be served 
as an electron acceptor facilitating the separation of 
photogenerated electron-hole pairs.

As a kind of promising photocatalyst, metal-
organic frameworks (MOFs) have drawn high atten-
tion in the field of heterogeneous photocatalysis over 
the past decades [13–15]. MOFs have many merits 
in comparison with traditional inorganic semicon-
ductors. The high porosity of MOFs, for example, 
is beneficial for the adsorption to pollutants, thus 
can distinctly promote the subsequent degradation 
reactions [16]. What’s more, MOFs have a remark-
able advantage of versatile chemical tunability [17], 
which provides access to enhance the photocatalytic 
performance of pristine MOFs by modifying and 
regulating parent MOFs. As for the modified strate-
gies towards MOFs, implantation of transition metal 
ions into pristine MOFs through coordinating with 
ligands has been proved to be one of feasible ways to 
boost their original photocatalytic activity [18]. For 
instance, Shi et al. [19] constructed Fe@PCN-224 via 
a post-synthetic reaction of porphyria MOF PCN-
224, and its photo-oxidation ability towards gase-
ous isopropanol (IPA) was significantly raised rela-
tive to pristine PCN-224. The photoactive Zr-based 
MOF UiO-66-NH2 exhibits super stability which is 
able to endure post-synthetic modification (PSM). 

So according to the need, immobilizing appropri-
ate transition metal ions like  Fe2+,  Cu2+ and  Co2+ in 
UiO-66-NH2 by covalently post-modification seems 
a fascinating operation. More importantly, the transi-
tion metal of  Fe2+,  Cu2+ or  Co2+ [20] anchored to UiO-
66-NH2 can act as efficient activators for PDS/PMS.

However, single MOFs as photocatalysts usually 
exhibit the unsatisfied photocatalytic performance 
due to their inferior conductance [21]. So far, fabri-
cating heterojunction materials by MOFs and other 
easily conductive semiconductors have been a popu-
lar solution to overcome the defect mentioned above 
[22, 23]. As a metal-free star semiconductor, g-C3N4 
has received considerable interests by virtue of its 
intriguing electronic structure, high stability and low 
cost [24, 25]. Coupling MOFs with g-C3N4 often leads 
to enhanced photocatalytic performance according to 
the previous researches [26]. In addition to increased 
conductivity, the construction of heterojunctions by 
independent MOFs and g-C3N4 with the matched 
positions of valance band (VB) and conduction 
band (CB) can effectively reduce the recombination 
of photon-generated carriers [27], which will further 
promote their photocatalytic activity.

Based on the above background, we firstly 
designed a strategy for preparing a novel Zr–based 
MOF, namely UiO-66-NH2-CA-Cu, through a two-
step covalently post-modification of UiO-66-NH2: (I) 
UiO-66-NH2 was functionalized with citric acid (CA) 
by forming the amide bond, in which the carboxy 
groups of citric acid can be served as the chelating 
sites for the immobilization of additional metal ions; 
(II) further metalized with transition metal ion  Cu2+ 
to obtain the chelate complex. The successful incor-
poration of  Cu2+ into the parent MOF created new 
active sites, thus acquiring the enhanced photocata-
lytic activity. Secondly, for making full use of the 
advantages of UiO-66-NH2-CA-Cu and g-C3N4, the 
UiO-66-NH2-CA-Cu/g-C3N4 (UCC 1/CNx) compos-
ites were fabricated via the facile thermal treatment 
methods. As a result, the efficient photodegradation 
of tetracycline was easily achieved by as-prepared 
composites with the addition of PDS under white 
light irradiation. Besides, the influence of environ-
mental factors (i.e., PDS dosage, photocatalyst dos-
age, initial pH and co-existing anions) on TC removal 
over the UCC 1/CN20+PDS system were investigated 
systematically. Furthermore, the possible mechanism 
was put forward and then confirmed by the quench-
ing experiments and ESR testing.
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2  Experimental

2.1  The details of materials 
and characterizations

2.1.1 �Materials

N,N-dimethylformamide (DMF), acetonitrile 
 (CH3CN), methanol  (CH3OH) and ethanol (EtOH) 
were purchased from Tianjin Damao Chemical Rea-
gent Co. Ltd. Copper chloride  (CuCl2·2H2O, ≥ 99.0%) 
and acetic acid were acquired from Shanghai Guang-
nuo Chemical Reagent Co. Ltd and Tianjin Fengchuan 
Chemical Reagent Co. Ltd, respectively. Zirconium 
(IV) chloride  (ZrCl4) was obtained from Aladdin Rea-
gent Co. Ltd. Potassium peroxydisulfate  (K2S2O8, 
≥ 99.5%) and sodium hydroxide (NaOH, 96.0%) were 
purchased from Tianjin Kaitong Chemical Reagent 
Co. Ltd. Tetracycline hydrochloride (TC) and citric 
acid monohydrate (CA) were provided by Sinopharm 
Chemical Reagent Co. Ltd. Hydrochloric acid (HCl, 
36.0–38.0%) was purchased from Baiyin Liangyou 
Chemical Reagent Co. Ltd. 2-Aminoterephthalic acid 
 (NH2-BDC) and dicyclohexylcarbodiimide (DCC) 
were obtained from Macklin Biochemical Co. Ltd. All 
materials used in this paper were commercially avail-
able analytical grade without further purification.

2.1.2 �Characterizations

The powder X-ray diffraction (PXRD) measurements 
were recorded using a Bruker D8 ADVANCE pow-
der X-ray diffractometer with Cu-Kα radiation to 
investigate the crystallographic structure of the sam-
ples. Fourier transform infrared (FTIR) spectroscopy 
was performed on a DIGILAB FTS-3000 spectrom-
eter using KBr pellets. ULTRA Plus scanning elec-
tron microscope (SEM) and TECNAI  G2F20 STWIN 
D2278 scanning transmission electron microscope 
(TEM) were employed to characterize the morphol-
ogy of the samples. X-ray photoelectron spectroscopy 
(XPS, Thermo Fisher) was used to analyze the chemi-
cal compositions and the chemical oxidation state of 
elements. The ultraviolet-visible diffuse reflectance 
spectrum (UV–vis DRS) of the samples were obtained 
using a UV-2550 ultraviolet-visible spectrophotome-
ter. The photoluminescence (PL) spectra was recorded 
on a LS-55 fluorescence spectrophotometer. The zeta 

potentials at different pH were obtained by the laser 
particle analyzer (ZetasizerNanoZS). The metal con-
tents of Zr and Cu were determined with inductively 
coupled plasma mass spectroscopy (ICP-MS, Agilent 
7900). The electron spin resonance (ESR) spectrum was 
characterized with a Bruker a300 spectrometer. The 
light source was provided by 300 W xenon lamp (CEL-
HXF300). The concentrations of the TC solutions were 
monitored by a double-beam ultraviolet spectropho-
tometer (UV-vis, Persee, TU-1901). CHI-650E electro-
chemical workstation (Shanghai Chenhua Instrument, 
China) was employed to examine the photoelectro-
chemical properties of the samples. For obtaining the 
photocurrents and electrochemical impedance spectra 
(EIS), a standard three-electrode detection system was 
used, in which a Pt wire was served as the counter 
electrode, Ag/AgCl (saturated KCl) was the reference 
electrode and an FTO slice was the working electrode. 
The operating electrolyte employed in the photoelec-
trochemical study was 0.1 M  Na2SO4.

2.2  Synthesis of the photocatalyst

2.2.1 �Synthesis�of�UiO‑66‑NH2

The preparation method for UiO-66-NH2 referred to 
the literature reported previously [28]. Firstly, 2-ami-
noterephthalic acid  (NH2-BDC)(4.5 mmol, 0.81 g) was 
completely dissolved in 40 mL N,N-dimethylforma-
mide (DMF) under condition with ultrasonic. Subse-
quently,  ZrCl4 (4.5 mmol, 1.05 g) and 17 mL HAc were 
added to the above solution. HAc was chosen as the 
modulator to synthesize UiO-66-NH2. Then, the mix-
ture was transferred to a 100 mL Telton-lined stainless 
steel autoclave and maintained the temperature at 120 
℃ for 24 h under autogenous pressure. After natural 
cooling, the sample was obtained by centrifuging and 
washing with ultra-pure water three times. The prod-
uct was placed in the vacuum oven at 60 ℃ overnight 
for the next use.

2.2.2 �Synthesis�of�UiO‑66‑NH2‑CA

The post-synthesis modification (PSM) of UiO-
66-NH2 was implemented according to the previ-
ous method [29]. Briefly, DCC (4 mmol, 0.83 g) was 
added to a solution of CA (4 mmol, 0.84 g) in 25 
mL  CH3CN, in which DCC as a dehydrating agent 
could help citric acid convert to citric anhydride 
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under mild conditions. After that, UiO-66-NH2 (1 
mmol, 1.75 g) was dispersed into the solution and the 
resultant suspension was kept at 80 ℃ under reflux 
for 24 h. The introduction of citric acid to the UiO-
66-NH2 framework provided the chelating group for 
the following installation of catalytic metal ion. The 
product was centrifuged, rinsed with  CH3CN several 
times and dried at 60 ℃ overnight.

2.2.3 �Synthesis�of�UiO‑66‑NH2‑CA‑Cu

The as-prepared UiO-66-NH2-CA (0.4 g) was dis-
persed to a solution of  CuCl2·2H2O (0.17 mmol, 
0.029 g) in 20 mL EtOH, then the mixture was heated 
to 40℃ and kept stirring for 24 h. The catalytic center 
 Cu2+ would be immobilized into UiO-66-NH2-CA by 
forming a coordinate chelate complex. Further, the 
final solid was acquired after centrifugation, washing 
with ethanol three times and thereafter drying under 
vacuum at 60℃ for 12 h.

2.2.4 �Synthesis�of�g‑C3N4

According to the reported paper [30], g-C3N4 was 
synthesized through the direct pyrolysis of mela-
mine. Typically, 10 g melamine was added into a 
crucible covered with a lid and then placed in a muf-
fle furnace. The temperature was heated to 550 °C 
staying for 4 h with a heating rate of 3 °C/min−1. The 
yellow powder was obtained after cooling down to 
room temperature.

2.2.5 �Synthesis�of�UiO‑66‑NH2‑CA‑Cu/g‑C3N4

The heterostructured UiO-66-NH2-CA-Cu/g-C3N4 
nanocomposite was prepared by the facile methods 
[31] as follows: As-synthesized UiO-66-NH2-CA-Cu 
(10 mg) and g-C3N4 with different mass (namely, 
100 mg/200 mg/300 mg) were thoroughly ground and 
dispersed in 50 mL methanol with ultra-sonification 
for 1 h, and then the solvent was gradually evapo-
rated at 70 °C under magnetic stirring. The obtained 
sample was further calcined at 300 °C for 2 h (Heat-
ing rate: 3 °C/min−1) in a tubular furnace within  N2 
atmosphere. The final heterojunction composites 
with different g-C3N4 mass (100 mg/200 mg/300 mg) 
were labeled as UCC 1/CN10, UCC 1/CN20 and UCC 1/
CN30, respectively. The composite UCC 1/CN20 was 
used as a representative sample and its synthetic 
route was illustrated in Scheme 1.

2.3  Photocatalytic experiments

A batch of experiments for tetracycline hydrochlo-
ride (TC) degradation under simulated solar light 
irradiation (300 W xenon lamp without cut-off filter) 
with the help of potassium peroxydisulfate (PDS) 
were carried out to evaluate the photocatalytic activ-
ity of the target product. Typically, 5 mg of the pho-
tocatalyst was added to 50 mL of tetracycline hydro-
chloride aqueous solution with initial concentration 
being 20 mg/L (pH = 3.0) in a reactor. After estab-
lishing an adsorption-desorption equilibrium in dark 
for 30 min, 1.0 mM of  K2S2O8 was added into the 
reactor under magnetic stirring, and then irradiated 

Scheme 1  The synthetic route of the heterostructured UCC 1/CN20 nanocomposite
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with xenon lamp. The distance between the Xe lamp 
and the reactor was 10 cm. Next, 3 mL solution was 
extracted from the reactor every 5 min and then fil-
tered with 0.45 μm filter membranes. The residual 
concentration of TC was determined by a double-
beam ultraviolet spectrophotometer with the maxi-
mum absorption wavelength at 356 nm. Moreover, 
the initial pH values of the solutions were adjusted 
using 0.1 M HCl or 0.1 M NaOH solutions. As to 
the cycling tests, the used catalyst was collected by 
centrifugation, washing with deionized water, and 
drying for the next round.

3  Results and discussion

3.1  Characterization

3.1.1 �XRD�patterns�of�photocatalysts

The crystallographic structures of pure UiO-66-NH2, 
UiO-66-NH2-CA and UiO-66-NH2-CA-Cu were tested 
by the X-ray diffraction (XRD). As shown in Fig. 1a, the 
characteristic peaks of as-prepared UiO-66-NH2 match 
well with the simulated XRD pattern [32], indicating 
the perfect synthesis of UiO-66-NH2 with high phase 
purity. After undergoing the post-synthetic modifica-
tion, the corresponding products UiO-66-NH2-CA and 
UiO-66-NH2-CA-Cu exhibit the similar XRD spectra 
to the parent MOF UiO-66-NH2. Their crystallinity is 
still maintained after the PSM steps, which demon-
strates UiO-66-NH2 possesses an excellent chemical 
stability. Moreover, the successful introduction of  Cu2+ 
to UiO-66-NH2-CA was verified by ICP-MS analysis. 

The result shows Zr : Cu ratio of UiO-66-NH2-CA-Cu 
is 30.1: 1, and accordingly the copper ion loading is 
0.78 wt%.

The XRD patterns of pristine g-C3N4, nanocom-
posites UCC 1/CN10, UCC 1/CN20 and UCC 1/CN30 are 
displayed in Fig. 1b. The diffraction peaks at 12.9° 
(100) and 27.4° (002) for g-C3N4 are accord with those 
reported previously [30]. No obvious characteristic 
peak belong to UiO-66-NH2-CA-Cu is found in the 
XRD pattern of UCC 1/CN30, which may be attributed 
to the low content of UiO-66-NH2-CA-Cu. Following 
the increasement of relative loading of UiO-66-NH2-
CA-Cu, the diffraction peaks caused by UiO-66-NH2-
CA-Cu in composites UCC 1/CN20 and UCC 1/CN10 
become clearly compared with those in UCC 1/CN30. 
Two-phase composition of UiO-66-NH2-CA-Cu and 
g-C3N4 in these composites reflect the heterostruc-
tured materials are obtained successfully.

3.1.2 �FTIR�spectra�of�photocatalysts

The successful introduction of citric acid to UiO-
66-NH2 framework by forming amide bond was 
also proved by Fourier transform infrared (FTIR) 
spectroscopy. In Fig. S1a, both the decreasing inten-
sity of the N–H stretching vibration (v = 3420  cm−1 
and v = 3371  cm−1) and a newly appeared peak at 
1700  cm−1 [33] confirm the actual formation of amide 
(CO–NH) group. The typical absorption regions of 
g-C3N4 is depicted in Fig. S1b. The peaks located at 
3000–3400  cm−1 and 1200–1700  cm−1 are associated 
with the stretching vibration of N–H and C–N hetero-
cycles [34], respectively. Besides, a peak at 808  cm−1 is 
imputed to the triazine units in g-C3N4. As for the FTIR 

Fig. 1  XRD patterns of a 
UiO-66-NH2, UiO-66-NH2-
CA and UiO-66-NH2-CA-Cu 
and b g-C3N4, UCC 1/CN10, 
UCC 1/CN20 and UCC 1/CN30
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spectroscopy of nanocomposites UCC 1/CN10, UCC 1/
CN20 and UCC 1/CN30 (Fig. S1b), the absorption peak 
at 808  cm−1 display a slight decrease, which suggests 
there is interaction [34] between UiO-66-NH2-CA-Cu 
and g-C3N4 in the heterostructured composites.

3.1.3 �Morphological�analysis�of�photocatalysts

The morphologies of UiO-66-NH2 and the two 
UiO-66-NH2-based MOFs prepared in this work 
were examined by SEM measurements. The SEM 
images of UiO-66-NH2-CA-Cu (Fig. 2a) and UiO-
66-NH2-CA (Fig. S2b) show that they inherite the 
octahedron morphology with uniform size from 
UiO-66-NH2 (Fig. S2a) after accomplishing the 
post-synthetic routes. And the pure g-C3N4 shows 
a micron sized layer structure with multiple stacked 
sheets (Fig. 2b). From the SEM image of UCC 1/CN20 
in Fig. 2c, UiO-66-NH2-CA-Cu particle distributes 
randomly on the surface of g-C3N4 and the close 
combination between them in the composite is 
observed [35], which indicates the heterojunction 
is fabricated successfully by employing the simple 
experimental operation. The TEM image of UCC 1/
CN20 (Fig. S2c) also could be an evidence for the for-
mation of the heterostructured composite. Addition-
ally, the as-prepared UCC 1/CN20 was analysed by 
the EDS elemental mappings. As shown in Fig. 2d, 
the uniformly distributed elements C, N, O, Zr and 
Cu within the binary structure further affirm the 
acquisition of the nanocomposite.

3.1.4 �X‑ray�photoelectron�spectroscopy�of�photocatalysts

The surface element composition and their chemical 
state of nanocomposite UCC 1/CN20 were explored 
using XPS technology. As presented in Fig. 3a, there 
are C, O, N, Zr and Cu coexisting in the as-synthe-
sized sample, which agrees with the result of EDS 
measurement. The high-resolution spectrum of C 
1s (Fig. 3b) is divided into three peaks with binding 
energies of 288.4 eV, 285.7 eV and 284.7 eV, which are, 
respectively, attributed to the  sp2 hybridized carbon 
in the N-containing aromatic ring (N–C=N) [36], the 
C–N bond of the organic ligand [37] and the  sp2 car-
bon in the benzoic ring [36]. Figure 3c displays the 
high-resolution spectra of N 1s. The peaks at 401.6 eV, 
400.2 eV and 398.8 eV are mainly due to the groups 
of –NH, –NH2 [38] and the  sp2 hybridized aromatic 
nitrogen in C=N–C [36], respectively. In order to 
examine whether there is a charge transfer after deco-
rating the UiO-66-NH2-CA-Cu onto the g-C3N4, the 
XPS data of the g-C3N4 was also checked. As shown 
in Fig. S3, the N 1s spectrum of bare g-C3N4 exhib-
its three species, namely N–C=N (397.5 eV), N–(C)3 
(398.2 eV) and –NH2 (400.1 eV). The –NH2 binding 
energy at 400.1 eV shifts to 400.2 eV after mixing the 
UiO-66-NH2-CA-Cu with it, which suggests that the 
lone pair of electrons transfer from –NH2 of g-C3N4 
to Zr–O group to form  NH2–Zr–O bond. In the high-
resolution spectrum of O 1s (Fig. 3d), the first peak 
located at 532.5 eV [34] is caused by the existence of 
–COOH group while the second one at 531.5 eV [34] is 
assigned to the Zr–O bond from UiO-66-NH2-CA-Cu. 

Fig. 2  SEM micrographs of a UiO-66-NH2-CA-Cu, b g-C3N4, c UCC 1/CN20 and d EDS mapping micrographs of the UCC 1/CN20
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The Zr 3d XPS spectrum (Fig. 3e) presents two obvi-
ous peaks appearing at 184.8 and 182.5 eV, which are 
ascribed to Zr  3d3/2 and Zr  3d5/2 [39], respectively. The 
result reveals  Zr4+ oxidation state occur in the hetero-
structured composite. From the Cu 2p high-resolution 
spectra in Fig. 3f, the binding energies of 954.0 eV (Cu 
 2p1/2) and 934.2 eV (Cu  2p3/2) are the typical values for 
 Cu2+ in Cu(II)-CA [40].

3.2  Photocatalytic performances

3.2.1 �Photocatalytic�TC�degradation

To evaluate the photocatalytic performances of the 
as-synthesized samples, a batch of control experi-
ments with various reactive conditions, including 
UiO-66-NH2+PDS, UiO-66-NH2-CA+PDS, UiO-66-
NH2-CA-Cu+PDS, g-C3N4+PDS, UCC 1/CN10+PDS, 
UCC 1/CN20+PDS, UCC 1/CN30+PDS, UCC 1/CN20, 
PDS and UCC 1/CN20+PDS (dark), were employed. 
TC being one of the most usual antibiotics was cho-
sen as the target contaminant, and the changes of 
its concentration following photocatalytically deg-
radation were detected by UV–Vis spectroscopy. As 
shown in Fig. 4a, PDS can be activated in varying 

degrees with white light irradiation when different 
photocatalyst exists. Concretely, the system of UiO-
66-NH2-CA-Cu+PDS exhibits a higher TC removal 
efficiency (70.5%) when compared with those of 
UiO-66-NH2+PDS (59.5%) and UiO-66-NH2-CA+PDS 
(42.0%) system. Correspondingly, the reaction kinet-
ics (Fig. 4b, c) obtained from pseudo-first-order 
model (− ln[C/C0] = kt) show the order of UiO-
66-NH2-CA-Cu + PDS (k = 0.03783  min−1) > UiO-66-
NH2+PDS (k = 0.02824  min−1) > UiO-66-NH2-CA+PDS 
(k = 0.01693  min−1). The above results distinctly indi-
cate that the photodegradation ability of the as-pre-
pared UiO-66-NH2-CA-Cu is improved after suffering 
the two-step post-modification. In UiO-66-NH2-CA-
Cu, the introduction of the chelating agent CA can 
effectively prevent the precipitation of  Cu2+ in the 
process of photocatalytic degradation [41], and simul-
taneously the coordinated copper ion can immensely 
boost the migration of charge carriers [42]. Thus, this 
microenvironment tailoring towards UiO-66-NH2 is 
a rational way to enhance its original photocatalytic 
ability.

The TC degradation efficiency by the system of 
g-C3N4+PDS reaches up to 65.5% with k = 0.03573  min−1 
within 30 min. Specifically, the best photocatalytic 

Fig. 3  XPS of the UCC 1/CN20: a survey, b C 1s, c N 1s, d O 1s, e Zr 3d and f Cu 2p spectra
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activity towards TC (removal efficiency: 94.0%, 
k = 0.08669  min−1) is acquired when the photocatalyst 
composite UCC 1/CN20 is used as a PDS activator in the 
UCC 1/CN20+PDS system. The excellent performance of 
UCC 1/CN20 can be ascribed to the effectively inhibition 
for the recombination of electron-hole pairs within the 
heterogeneous binary structure, which will be dem-
onstrated in the text below. Although the degrada-
tion performance of composites UCC 1/CN10 (removal 
efficiency: 76.0%, k = 0.04589  min−1) and UCC 1/CN30 
(removal efficiency: 74.5%, k = 0.04315  min−1) is infe-
rior to that of UCC 1/CN20, their photocatalytic ability 
still better than pure UiO-66-NH2-CA-Cu or g-C3N4. 
When the single UCC 1/CN20 or PDS is employed in 
the photodegradation system, the removal efficiency 
respectively declines to 42.5% (k = 0.01858  min−1) and 
45.0% (k = 0.01838  min−1), which further indicates that 
the combination of photocatalyst UCC 1/CN20 and PDS 
in the coexistence system plays the synergistic effect 
on efficiently removing TC from water. In the sys-
tem of UCC 1/CN20+PDS (dark), both the degradation 

efficiency (13.5%) and its reaction rate (0.00314  min−1) 
are far less than those in the UCC 1/CN20+PDS system, 
implying that light-induced carriers and/or radicals 
significantly contribute to the degradation of tetra-
cycline. Furthermore, compared with the TC degra-
dation system involved in the recent reports [43–46] 
(Table S1), UCC 1/CN20+PDS system shows relative 
ascendancy over them.

3.2.2 �Influence�of�PDS�concentration�on�TC�degradation

PDS dosage is a key parameter in TC degradation pro-
cess as it can directly affect the generation of free radi-
cals. Thus, the degradation performance of the UCC 
1/CN20+PDS system with different PDS concentration 
was studied. As illustrated in Fig. 4d and Fig. S4a, only 
74.0% of the degradation efficiency (k = 0.04627  min−1) 
is received when 0.2 mM PDS is added to the system, 
and along with the PDS concentration increases to 1.0 
mM, the degradation efficiency accordingly reaches 

Fig. 4  a Photodegradation of tetracycline hydrochloride (TC) 
under simulated solar  light. Condition: (photocatalyst) = 0.1 g/L, 
(PDS) = 1.0 mM, pH = 3.0 and. (TC) = 0.02  g/L; b Pseudo-first-
order kinetics curves over different conditions; c The correspond-
ing k values over different conditions; d Effect of PDS concentra-
tion on the TC degradation. Condition: (photocatalyst) = 0.1 g/L, 

pH = 3.0 and (TC) = 0.02  g/L; e Effect of photocatalyst concen-
tration on the TC. degradation. Condition: (PDS) = 1.0 mM, 
pH = 3.0 and (TC) = 0.02 g/L and f Effect of initial pH on the TC 
degradation. Condition: (photocatalyst) = 0.1  g/L, (PDS) = 1.0 
mM and (TC) = 0.02 g/L
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up to 94.0% and simultaneously its reaction rate is 
enhanced to 0.08669  min−1 (about 1.87 times higher 
than that of the UCC 1/CN20+PDS system with 0.2 mM 
PDS). In general, the more PDS is involved in the deg-
radation system, the more amount of reactive oxygen 
species (such as  SO4

·− and ·OH) will be produced, 
which are closely connected with the advanced oxi-
dation process [47]. Consequently, the best degrada-
tion performance is gained when 1.0 mM of the PDS 
concentration is used in the system. Also, 1.0 mM is 
treated as the optimal PDS concentration for the next 
experiments.

3.2.3 �Influence�of�photocatalyst�concentration�on�TC�
degradation

Figure 4e and Fig. S4b displayed the change of the 
TC degradation efficiency and corresponding k values 
accompanied by the increase of UCC 1/CN20 concen-
tration under a certain amount of PMS (1.0 mM). TC 
removal rates show a slight decrease when the photo-
catalyst dosage increases from 5 to 15 mg. Specifically, 
the removal efficiency is 94.0%, 86.0% and 88.5% with 
the dosage of UCC 1/CN20 at 5 mg, 10 mg and 15 mg, 
respectively. The reason is that excessive catalyst will 
not only enlarge the scattering activity of the system 
towards light [48] but also lead to the tardiness in mass 
transfer [49]. Thus, 5 mg is considered as the optimal 
concentration of photocatalyst used in the degradation 
experiments.

3.2.4 �Influence�of�initial�pH�on�TC�degradation

The pH value of the system is a vital contributing 
factor for the TC removal as it can make a impact on 
the generation of free radicals. Four initial pH values 
respectively at 3.0, 4.6 (the unadjusted one), 7.0 and 
9.0 were chosen to explore the influence on photoca-
talysis degradation over UCC 1/CN20+PDS system. As 
shown in Fig. 4f and Fig. S4c, the best degradation 
effect (removal efficiency: 94.0%, k = 0.08669  min−1) is 
obtained with the environmental pH being 3.0, and 
the removal rate of TC gradually decreases as the solu-
tion pH increase from 3.0 to 9.0. More specifically, 
the TC removal rate drops to 79.0% within 30 min at 
pH = 9.0. The reason for this phenomenon is mainly to 
blame [50] that the system with an acidic condition is 
favorable for the formation of  SO4

·− free radical, which 
refers to Eqs. (1) and (2). Thus, all the degradation 

experiments are conducted with the pH pre-adjusting 
to 3.0. Throughout the removal rates got under dif-
ferent pH values, the least desirable result (pH = 9.0) 
still maintains higher than 79%, which reveals that the 
decomposition of TC over UCC 1/CN20 + PDS system 
can work universally with a wide pH range.

3.2.5 �Influence�of�co‑existing�anions�on�TC�degradation

Several typical anions  (NO3
−,  Cl− and  H2PO4

−) 
were added to the photoreactor to exam-
ine the practical application about the UCC 1/
CN20+PDS system. Fig. S5a, b illustrate that the 
introduction of all inorganic anions has a nega-
tive effect on TC degradation. The removal rates 
and k values obey the order of no anions (94.0%, 
0.08669  min−1) >  Cl− (83.0%, 0.05504  min−1) >  NO3

− (82.0%, 
0.05186  min−1) >  H2PO4

− (80.0%, 0.04878  min−1). The 
inorganic anions may act as radical scavengers to 
consume reactive oxygen species, or transform the 
free radicals to less active ones [51], thus weakening 
the degradation ability of the UCC 1/CN20+PDS sys-
tem. However, the fall of degradation performance is 
always kept in an acceptable range after adding the 
inorganic anions, suggesting the UCC 1/CN20+PDS sys-
tem possesses a significant ability against interference.

3.2.6 �Reusability�and�stability�
of�MIL‑125(Ti)‑NH2‑Sal‑Fe

Besides the photocatalytic activity, the stability of cata-
lyst is equally important for the practical application. 
As displayed in Fig. 5a, the removal efficiency drops 
from 94.0% (the first run) to 83.0% (the fourth run), the 
reason for the decrease may lie in the active sites of 
the catalyst are covered by the intermediates from TC 
decomposition during the degradation process [52]. 
Furthermore, the XRD pattern, FTIR spectra and SEM 
image of the used UCC 1/CN20 were examined. The 
results presented in Fig. 5b, d show an insignificant 
change compared with those of the fresh UCC 1/CN20, 
implying the catalyst UCC 1/CN20 still keeps its stabil-
ity after the repeated reactions.
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3.3  The possible mechanism for photocatalytic 
reaction

 The optical and photoelectrochemical properties of 
the photocatalysts were investigated to get a deep 
understanding of the generation and transfer of the 
photo-induced carriers within photocatalysts. As 
seen in Fig. 6a, the as-synthesized UiO-66-NH2-CA-
Cu displays a strong absorption with the range of 
200–450 nm, and the absorption edge of the pristine 
g-C3N4 is at around 500 nm. As for the composites 
UCC 1/CN10, UCC 1/CN20 and UCC 1/CN30, their absorp-
tion edges show the slight red shift compared with that 
of UiO-66-NH2-CA-Cu, indicating the light absorption 
of the composites are marginally enhanced [53, 54]. 
Additionally, the Eg values of UiO-66-NH2-CA-Cu and 

g-C3N4 are respectively at 2.84 eV and 2.74 eV accord-
ing to the approach of Tauc plot (Fig. 6b). The flat-
band potential (EFB) is confirmed by the Mott–Schottky 
plots (Fig. 6c, d), specifically, the EFB locates at − 0.82 V 
for UiO-66-NH2-CA-Cu and − 1.16 V for g-C3N4. 
Therefore, their flat-band potential vs. NHE is respec-
tively − 0.21 V and − 0.55 V according to the conver-
sion formula [55, 56] [EFB (vs. NHE) = EFB (vs. Ag/
AgCl) + EAg/AgCl (vs. NHE) + 0.0591 × pH]. In general, 
EFB is higher than the conduction band potential (ECB) 
by 0.2 V with regard to n-type semiconductor [55, 56], 
hence the ECB of UiO-66-NH2-CA-Cu and g-C3N4 is 
− 0.41 V and − 0.75 V, respectively. Combining with 
the Eg values acquired by UV–Vis DRS spectra, the 
corresponding valence band potential  (EVB) for UiO-
66-NH2-CA-Cu and g-C3N4 can be calculated as 2.43 V 

Fig. 5  a  Reusability experiments over UCC 1/CN20+PDS sys-
tem for TC degradation. Condition: (photocatalyst) = 0.1  g/L, 
(PDS) = 1.0 mM, pH = 3.0 and (TC) = 0.02  g/L; b PXRD pat-

terns; c FTIR spectras of the UCC 1/CN20 after the cyclic experi-
ments and d SEM micrograph of the UCC 1/CN20 after the cyclic 
experiments
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and 1.99 V with the formula of EVB = ECB + Eg. Further-
more, Bader charge analysis based on DFT calculations 
was employed to investigate the interfacial charge 
redistribution after the formation of the heterojunc-
tion. As shown in Fig. S6, the electrons are transferred 
from g-C3N4 to UiO-66-NH2 within the composite and 
the electron transfer value is calculated as 0.5, thus, the 
as-obtained UCC 1/CN20 composite can form a type-II 
heterojunction.

The photongenerated carrier separation efficiency 
of the photocatalysts were evaluated by photolumines-
cence (PL) spectra, electrochemical impedance spec-
troscopy (EIS) and transient photocurrent response. 
In Fig. 7a, PL analysis indicates that the photolumi-
nescence intensities of any composites are reduced 
obviously compared with that of the single component 
(UiO-66-NH2-CA-Cu and g-C3N4), and the composite 

UCC 1/CN20 shows the lowest fluorescence intensity 
among them, which demonstrates electron-hole pair 
recombination is effectively suppressed within the 
heterojunction thus resulting to the longest lifetime 
of the photogenerated carrier [57]. From the result 
of EIS (Fig. 7b), the Nyquist radius of the as-pre-
pared materials follow the order: UiO-66-NH2-CA-
Cu > g-C3N4 > UCC 1/CN30 > UCC 1/CN10 > UCC 1/CN20, 
directly suggesting the lowest resistance over UCC 1/
CN20 during the process of charge transfer [58]. Fig-
ure 7c presents that the UCC 1/CN20 composite owns 
the highest photocurrent value of any photocatalyst 
obtained in this work, indicating that the fabrication 
of UCC 1/CN20 is conducive to boosting the migration 
rate of photo-generated carriers [59]. All of the above-
mentioned results are well in accordance with the deg-
radation performances of the photocatalysts.

Fig. 6  a UV–Vis DRS spectras of the photocatalysts; b Band gap energy of UiO-66-NH2-CA-Cu and g-C3N4; Mott–Schottky plots of c 
UiO-66-NH2-CA-Cu and d g-C3N4



 J Mater Sci: Mater Electron (2023) 34:17391739 Page 12 of 17

Quenching experiments were carried out to check 
the main active species over the UCC 1/CN20+PDS sys-
tem for TC degradation. In general, t-butanol (TBA) 
[60] and chloroform [61] are respectively served 
as the scavenger for ·OH and ·O2

−, while EtOH can 

simultaneously quench ·OH and  SO4
·− due to its high 

rate constants towards ·OH (k·OH = 1.9 ×  109  M−1  s−1) 
and  SO4

·− (kSO4·− = 1.6 ×  107  M−1  s−1) [62, 63]. As shown 
in Fig. 8a, b, quenching tests reveal that the TC 
removal efficiency respectively drops from 94.0% 

Fig. 7  a Photoluminescence spectras; b Nyquist impedance plots and c Transient photocurrent responses of the photocatalysts

Fig. 8  a The quenching experiments for TC degradation over the 
UCC 1/CN20+PDS system; b The corresponding k values in the 
quenching experiments; electron spin resonance (ESR) spectras 

of c DMPO-·OH, DMPO-SO4
·− and d DMPO-·O2

− in the UCC 1/
CN20+PDS system
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(k = 0.08669  min−1) to 62.0% (k = 0.03096  min−1), 42.5% 
(k = 0.01674  min−1) and 83.0% (k = 0.05435  min−1) after 
adding the scavenger TBA, EtOH and chloroform, 
which illustrates that the three active species ·OH, 
 SO4

·− and ·O2
− are involved in the TC decomposition 

with the contribution order of ·OH >  SO4
·− > ·O2

−. For 
verifying the results of quenching experiments, elec-
tron spin resonance (ESR) measurements were further 
applied to detect the signals of free radicals during 
the degradation process. Figure 8c, d show that the 
signals for ·OH,  SO4

·− and ·O2
− are barely captured in 

the dark condition, while the intensity of characteris-
tic peaks for DMPO-·OH, DMPO-SO4

·− and DMPO-
·O2

− becomes stronger as the irradiation time prolongs 
in the ESR tests. The results also prove that the com-
posite UCC 1/CN20 has an excellent photocatalytic acti-
vation ability within the UCC 1/CN20+PDS system.

Based on the above experimental results, the pho-
tocatalytic mechanism over the UCC 1/CN20+PDS sys-
tem was tentatively inferred and presented in Fig. 9. 
The photogenerated electrons and holes are formed 
within the composite UCC 1/CN20 under white light 
illumination according to the Eq. (3). Subsequently, 
the photoexcited electrons located in the CB of g-C3N4 
(− 0.75 V vs. NHE) move to the lowest unoccupied 
molecular orbital (LUMO) of UiO-66-NH2-CA-Cu 
(-0.41 V vs. NHE) by the means of interface electron 
behavior. Considering the LUMO of UiO-66-NH2-
CA-Cu is more negative than the redox potential of 
 O2/·O2

− (− 0.33 V vs. NHE) [64], thus the dissolved oxy-
gen can be converted to the free radical of ·O2

− after 
obtaining the excited electrons (Eq. 4). At the same 
time, the excited electrons are captured by PDS, which 
directly causes the formation of  SO4

·− free radical by 

Eq. (5). The PDS activation not only conduces to the 
decomposition of TC but also restrains the recombi-
nation of electron-hole pairs within the photocatalyst 
[65]. Besides, the photo-excited electrons can transfer 
to the  Cu2+ centers in the UCC 1/CN20 (Eq. 6) through 
the way of ligand to metal charge transfer (LMCT) 
[51, 66]. The obtained  Cu+ ions can further activate 
PDS following Eq. (7), then the reaction product  Cu2+ 
ions are used to support the photocatalytic cycles and 
the another product, namely  SO4

·− free radicals, are 
employed to generate the active species of ·OH (Eq. 8) 
[67]. Ultimately, the active oxygen species of ·OH, 
 SO4

·− and ·O2
− together participate in the degradation 

process, and the efficient TC removal owes to the syn-
ergistic effects between photocatalysis and persulfate 
activation occurred in the UCC 1/CN20 + PDS system.
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4  Conclusions

In summary, the heterogeneous photocatalyst UCC 
1/CN20 was successfully fabricated to activate PDS 
for the efficient removal towards TC under white 
light irradiation. The formation of nanocomposite 
facilitates the migration and separation of photo-
generated carriers, thus boosting the degradation 
performance over the UCC 1/CN20+PDS system. The 
key factors that influenced the degradation efficiency 
including PDS dosage, photocatalyst dosage, initial 
pH and co-existing anions was explored systemati-
cally. Moreover, the UCC 1/CN20 composite main-
tained its stability well after the cycle experiments, 
demonstrating that the photocatalyst had the pos-
sibility of practical application. The findings in this 
work provide a novel insight into rational design for 
MOFs/g-C3N4 hybrid photocatalysts, which broad-
ens the application of the combination between pho-
tocatalysis and PDS activation for the water environ-
ment remediation.
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