

Construction of $ZnFe_2O_4/g-C_3N_4$ heterojunction as reusable visible-light photocatalyst and the boosted photocatalytic efficiency by photo-self-Fenton effect for organic pollutant degradation

Xiang Li¹, Hongna Xing¹, Xianfeng Yang¹, Dan Wang¹, Juan Feng^{1,*}, Yan Zong¹, Xiuhong Zhu^{1,*} , Xinghua Li¹, and Xinliang Zheng¹

¹ School of Physics, State Key Laboratory of Photon-Technology in Western China Energy, Northwest University, Xi'an 710127, China

Received: 23 February 2023 Accepted: 13 May 2023 Published online: 24 May 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

ABSTRACT

Designing reusable visible-light photocatalysts and understanding the catalytic mechanism are of great significance in environmental remediation. Herein, $ZnFe_2O_4/g-C_3N_4$ heterojunctions were constructed by decorating g-C₃N₄ nanosheets with tiny ZnFe₂O₄ nanoparticles, and their photocatalytic activity, recyclability and degradation mechanism were investigated. Compared to the onefold $g-C_3N_4$ or $ZnFe_2O_4$, the $ZnFe_2O_4/g-C_3N_4$ heterojunction shows boosted photocatalytic activities for degradation of three different dyes. The heterojunction construction can greatly improve the visible-light absorption capacity and photo-induced electron-hole separation, resulting in boosted photocatalytic activities. The ultrathin layered $g-C_3N_4$ nanosheets and tiny ZnFe₂O₄ nanoparticles in heterojunction can sufficiently contact with each other, which can improve the specific surface area, provide abundant active sites and enhance the photocatalytic efficiency. The degradation efficiencies of $ZnFe_2O_4/g-C_3N_4$ heterojunction are 96.27% for Methylene Blue (MB), 73.17% for Methyl Orange (MO) and 92.4% for Rhodamine B (RhB). The corresponding kinetic constant of $ZnFe_2O_4/g-C_3N_4$ are 0.019, 0.007 and 0.015 min⁻¹, which are nearly 2.4, 3.5 and 1.7 times higher than that of the single $g-C_3N_4$, respectively. The capacity of MB by $ZnFe_2O_4/g-C_3N_4$ remains 88.09% after four cycles. Free radical trapping experiment demonstrates that the ZnFe₂O₄/g-C₃N₄ heterojunction is a photoself-Fenton system, which can spontaneously produce H₂O₂, resulting in the formation of OH radicals during the photocatalytic process. The synergistic effect of \cdot OH and \cdot O₂⁻ radicals is responsible for degradation organic pollutants. In addition, the $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts can be easily separated by an applied magnet, behaving reused capacity.

Address correspondence to E-mail: fjuan5479@nwu.edu.cn; zhuxh@nwu.edu.cn

1 Introduction

The emission of various non-biodegradable and persistent pollutants in industrial processes and household wastewater pose a serious threat to the ecological environment and human health [1-4]. Researchers have adopted various methods to solve the above problems. Among them, homogeneous Fenton reaction or heterogeneous sulfate radicals based advanced oxidation processes (AOPs) have been widely applied in eliminating the organic pollutants through the efficient generation of reactive oxygen species (e.g., ·OH, ·SO₄⁻ and singlet oxygen $(^{1}O_{2})$, etc.) [5, 6]. However, the degradation efficiency is usually limited by the following aspects: (1) The sluggish regeneration (Fe^{3+} to Fe^{2+}) and narrow pH adaptability limit the practical applications of homogeneous Fenton reaction. Previous studies show that the oxyhydroxides is formed by co-precipitation of Fe^{3+} and Fe^{2+} at pH > 3 [7]; (2) Additional hydrogen peroxide (H₂O₂) or persulfates (peroxymonosulfate (PMS) and peroxydisulfate (PDS)) are required [8, 9]. The H_2O_2 solution is a typical hazardous chemical, and persulfates have strong oxidation property. They all may pose a risk of secondary environmental pollution; (3) The utilization and activation efficiency of H₂O₂ and persulfates are usually low [10, 11]. Nowadays, many efforts focus on improving the degradation efficiency by improving Fenton reaction, which can be realized by adding cocatalysts (such as carbon materials, nonmetallic elements) or using external techniques (including UV, ultrasound or heat) [12–16]. However, some problems still exist, such as the toxicity, instability, high cost and complex preparation process. Therefore, an efficient, affordable and environmentally friendly treatment approach is urgently desired.

Graphite carbon nitride (g-C₃N₄), as a metal-free polymeric photocatalyst, has earned increasing attention because of its non-toxicity, suitable electronic band gap (ca. 2.7 eV) and reliable stability [17–19]. However, the limited visible light absorption and rapid complexation efficiency of photogenerated electron–hole pairs significantly restrict the applications of g-C₃N₄ [20]. Constructing heterostructures is an effective strategy, in which g-C₃N₄ was coupled by other semiconductors with suitable band structure [21]. The heterojunction structures can effectively enhance the separation efficiency of photogenerated charge carriers, broaden the visible-light absorption range and improve the photocatalytic activity. Besides, for practical applications, the separation of catalyst without loss during the recycling process is also an important hotspot to be considered [22].

Zinc ferrite (ZnFe₂O₄) has attracted widespread attention in photocatalysis due to its broad visible spectrum, narrow band gap (ca. 1.9 eV), magnetic recyclability and photochemical stability [23, 24]. Doped zinc ferrite and zinc ferrite-based heterojunctions have been constructed for photocatalytic applications [25–28]. Coupling $g-C_3N_4$ nanosheets with magnetic ZnFe₂O₄ nanoparticles can overcome several drawbacks of g-C₃N₄ monomer, such as low recycle ability, fast photogenic charge carriers recombination, poor redox ability and so on [29, 30]. Researchers have reported that the ZnFe₂O₄/g-C₃N₄ heterojunction shows high photocatalytic degradation activity under visible light irradiation, during which H₂O₂ was added to induce photo-Fenton reaction [31, 32]. The addition of $ZnFe_2O_4$ can accelerate the electron-hole separation and migration efficiency. However, a careful study and analysis is still required to answer these questions: (1) whether additive H₂O₂ is prerequisite during the photocatalytic process; (2) the relationship between H_2O_2 concentration and catalytic efficiency; (3) the generation path of free radicals; (4) the mechanism of improved photocatalytic performance.

Herein, magnetic ZnFe₂O₄/g-C₃N₄ heterojunctions with different ZnFe₂O₄ contents were constructed as reusable visible-light photocatalysts. The g-C₃N₄ component promotes the spontaneous production of H₂O₂, inducing photo-self-Fenton reaction for boosting the photocatalytic performance, that can overcome the shortcomings of traditional Fenton technology during which additional H₂O₂ is needed. Furthermore, the generation path of free radicals and photo-self-Fenton enhanced photocatalytic mechanism are systematically studied. This work not only provide a method for the design of magnetic g-C₃N₄ based heterojunctions as reusable visible-light photocatalysts, but also gives a new sight to enhance the photocatalytic efficiency through photo-self-Fenton reaction.

2 **Experiments**

2.1 Synthesis of ZnFe₂O₄/g-C₃N₄ heterojunctions

g-C₃N₄ nanosheets and ZnFe₂O₄ nanoparticles were prepared by calcination process and solvothermal method, respectively. The detailed experiments are shown in the supporting information. $ZnFe_2O_4/g_-$ C₃N₄ heterojunctions were synthesized by a reflux route. In a typical process, 200 mg g-C₃N₄ was dispersed into 60 mL EG by ultrasonic treatment for 1 h. Then 20 mg ZnFe₂O₄ nanoparticles were dissolved in the g-C₃N₄-containing solution, followed by ultrasonic treatment for another 1 h. Finally, the mixture solution was refluxed at 200 °C for 2 h under magnetic stirring. The obtained $ZnFe_2O_4/g-C_3N_4$ heterojunctions were centrifuged at 10,000 rpm, and washed with water and ethanol for several times. The products were dried at 60 °C in air. By changing the $ZnFe_2O_4$ content to be 5, 10, 20, 30 and 40 mg, the samples were named as ZFO/CN-X (X = 5, 10, 20, 30and 40). The materials and characterizations can be seen in the supporting information.

2.2 Photocatalytic activity evaluation

The photocatalytic activity of $ZnFe_2O_4/g-C_3N_4$ heterojunctions was evaluated by photodegradation of methylene blue (MB) under visible light irradiation (300 W Xenon lamp with a cut-off filter of 420 nm) in a photocatalytic reactor. 50 mg of the ZnFe₂O₄/g-C₃N₄ heterojunctions were dispersed in 50 mL of MB (20 ppm) water solution. Prior to the light irradiation, the suspension of mixtures were agitated in dark for 30 min. The suspension solutions were exposed under visible light irradiation for 180 min. 3 mL aliquots of the reaction mixture suspensions were taken at certain intervals, and subjected to centrifugation to remove the $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts from the filtrate. The clear solution containing MB were analyzed by UV-vis spectrophotometer at an absorbance of 664 nm.

2.3 Detection experiment of H₂O₂

The concentration of H_2O_2 produced during photocatalysis was determined by iodometry. The detection experiment of H_2O_2 is consistent with the photocatalytic experiment (Sect. 2.2) without MB. 50 mL water solution containing 50 mg ZnFe₂O₄/g- C_3N_4 heterojunctions were exposed under visible light irradiation for 180 min. At certain intervals, 3 mL aliquots were taken, and centrifuged to remove the $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts. Then, 1 mL potassium hydrogen phthalate (C₈H₅KO₄) aqueous solution (0.1 M) and 1 mL potassium iodide (KI) aqueous solution (0.4 M) were added to the above 3 mL solution, and kept for 30 min. C₈H₅KO₄ and KI are used to provide hydrogen ion (H^+) and iodide ion (I^-) , respectively. Under acidic condition, the H₂O₂ molecules react with I⁻, generating I_3^- (H₂O₂ + 3I⁻+ $3H^+ \rightarrow I_3^- + 2H_2O$). The amount of I_3^- was measured by UV-vis spectrometer at its characteristic absorbance peak (350 nm), and then the amount of H_2O_2 generated in the reaction was obtained.

3 Results and discussion

3.1 Characterization of as-prepared photocatalysts

Figure 1a schematically illustrates the fabrication process of ZnFe₂O₄/g-C₃N₄ (ZFO/CN) heterojunctions. g-C₃N₄ nanosheets and ZnFe₂O₄ nanoparticles were prepared by calcination process and solvothermal method, respectively. Then ZFO/CN heterojunctions were obtained by a refluxed route. Figure 1b shows the XRD patterns of g-C₃N₄ nanosheets, ZnFe2O4 nanoparticles and ZFO/CN heterojunctions with different amount of ZnFe₂O₄ nanoparticles. The bare g-C₃N₄ nanosheets show two characteristic peaks at about 13.01° and 27.45°, belonging to the (100) and (002) crystalline planes, which were related to the in-plane structure of tri-striazine units and the interlayer stacking reflection of conjugated aromatic segments, respectively [33, 34]. For the $ZnFe_2O_4$ nanoparticles, the diffraction peaks at 18.18°, 29.91°, 35.23°, 42.82°, 53.11°, 56.61° and 62.15° are attributed to the (111), (220), (222), (400), (422), (511) and (440) planes of cubic $ZnFe_2O_4$ (JCPDS No. 82-1049). The characteristic peaks of both $ZnFe_2O_4$ and $g-C_3N_4$ can be observed in the ZFO/CN heterojunctions without other impurity phases. This indicates that ZFO/CN heterojunctions were successfully synthesized.

Figure 1c shows the typical FTIR spectra of $g-C_3N_4$ nanosheets, $ZnFe_2O_4$ nanoparticles and ZFO/CN-20. For the pure $g-C_3N_4$ nanosheets, the broad absorption

Fig. 1 a Schematic illustration of the preparation of $ZnFe_2O_4/g-C_3N_4$ heterojunctions; b XRD patterns and c FTIR spectra of $g-C_3N_4$ nanosheets, $ZnFe_2O_4$ nanoparticles and $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts

bands from 3000 to 3400 cm^{-1} is attributed to the – NH stretching vibration modes and -OH of surface adsorbed hydroxyl species. A series of characteristic peaks located in the region of 1200–1600 cm⁻¹ are due to the typical stretching vibration of C-N and C=N bonds (heterocycle) in the tri-s-triazine units of g-C₃N₄. The characteristic peak at 805 cm^{-1} is observed for pristine $g-C_3N_4$, which is related to the bending vibration of tri-s-triazine units [35-37]. The stretching vibrations of Zn-O and Fe-O modes for $ZnFe_2O_4$ are observed at 547 and 423 cm⁻¹ [24, 38]. The band positioned at 1636 $\rm cm^{-1}$ signifies the O–H bending vibration of surface adsorbed hydroxyl group. No significant differences are observed between $g-C_3N_4$ and ZFO/CN-20, suggesting that the addition of ZnFe2O4 didn't change the chemical structure of g-C₃N₄.

TEM image (Fig. 2a) and AFM image (Fig. 2b) of $g-C_3N_4$ suggest the two-dimensional sheet-like structure with micro size. The thickness is measured to be about 3.3 nm (Inset of Fig. 2b). The interlayer

spacing of $g-C_3N_4$ is 0.36 nm [39], indicating that the g-C₃N₄ nanosheets are about nine molecular layers in thickness. TEM image of ZnFe₂O₄ nanoparticles (Fig. S1) reveals that the particles are well-distributed with an average diameter of approximately 8.4 nm. Figure S2 shows the SEM image of g-C₃N₄ sheets and $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts with different amounts of ZnFe₂O₄. Obviously, the ZnFe₂O₄ nanoparticles are uniformly deposited on the surface of g-C₃N₄ sheets, which increases by increasing the ZnFe₂O₄ contents. We consider that the EG solvent with multiple hydroxyl functional groups plays an important role during the formation of heterojunctions. During the reflux process, ZnFe₂₋ O₄ nanoparticles were surrounded by EG molecules with multiple hydroxyl groups, which can anchor on the surface of g-C₃N₄ nanosheets. Besides, EG is relatively viscous, which can improve the dispersity of ZnFe₂O₄ nanoparticles and g-C₃N₄ nanosheets. The good contact recombination is conducive to constructing heterojunction, which is beneficial to

Fig. 2 a TEM image and b AFM image of $g-C_3N_4$ nanosheets; c TEM image, d HRTEM image, e STEM image and f EDS spectrum of ZFO/CN-20 heterojunction

improve the photocatalytic performance of monomer $g-C_3N_4$. The typical TEM image (Fig. 2c) and STEM image (Fig. 2e) of ZFO/CN-20 further suggest that tiny ZnFe₂O₄ nanoparticles are uniformly anchored on the $g-C_3N_4$ nanosheets. HRTEM image (Fig. 2d) shows that the lattice spacing distances are 0.243 and 0.253 nm, which are ascribed to the (222) and (311) planes of ZnFe₂O₄. EDS spectrum of ZFO/CN-20 (Fig. 2f) revealed the existence of C, N, Zn, Fe and O elements in the heterostructure without other element, indicating that the composites are of high purity.

XPS technique was performed to study the surface functional groups and electronic environment of elements in the samples, as shown in Fig. 3. The survey XPS spectra of g-C₃N₄, ZnFe₂O₄ and ZFO/ CN-20 (Fig. 3a) indicate that C, N, Zn, Fe and O as existed in the ZFO/CN, which is accordant with the XRD data and EDS analysis. The C 1s spectrum of g-C₃N₄ nanosheets (Down in Fig. 3b) can be fitted into two peaks at about 284.8 and 288.2 eV, which are

attributed to C-C/C=C and N-C=N in g-C₃N₄ lattice, respectively [40]. In comparison, an additional peak at 285.6 eV can be found in ZFO/CN-20, corresponding to the C=O groups. The presence of C=O groups suggest that ZnFe₂O₄ nanoparticles are chemically bonded on the surface of g-C₃N₄ nanosheets in the heterojunction. N 1 s spectra of both g-C₃N₄ and ZFO/CN-20 (Fig. 3c) can be fitted by four peaks, about 398.7 and 399.3 eV for the C=N-C involved in triazine rings and the tri-coordinated N-(C)₃, about 400.8 eV for amino groups (C-N-H), and about 404.6 eV for the typical π -excitation in the N–C heterocycles [39]. The Zn 2p spectra of ZnFe₂O₄ nanoparticles and ZFO/CN-20 (Fig. 3d) show two peaks at about 1021.2 and 1044.4 eV, associated to the Zn $2p_{3/2}$ and Zn $2p_{1/2}$ of Zn²⁺, respectively. Figure 3e shows the Fe 2p spectra. The Fe $2p_{3/2}$ peak can be fitted into two peaks at about 710.6 and 712.8 eV, which are attributed to the Fe3+ in octahedral and tetrahedral sites, respectively. The peak located at about 724.85 eV is attributed to Fe $2p_{1/2}$ of spinel

Fig. 3 a Survey XPS spectra of $g-C_3N_4$ nanosheets, $ZnFe_2O_4$ nanoparticles and ZFO/CN-20; **b** C 1s and **c** N 1s spectra of $g-C_3N_4$ and ZFO/CN-20; **d** Zn 2p, **e** Fe 2p and **f** O 1s spectra of $ZnFe_2O_4$ and ZFO/CN-20

ZnFe₂O₄. The other peaks at about 718.5 and 732.0 eV are identified as the shake-up satellite structure. Compared to bare ZnFe₂O₄, the satellite peaks of Fe 2p in ZFO/CN-20 composite are slightly shift to lower binding energy, which suggests that defects may exist in the heterojunction. In the O 1s spectra (Fig. 3f), the broad curve exhibit two fitting peaks located at about 529.6 and 532.0 eV, ascribed to the lattice oxygen (denoted as Fe-O and Zn-O) and surface absorbed oxygen species (such as H₂O), respectively [40–42]. The peak parameters of $g-C_3N_4$, ZnFe₂O₄ and ZFO/CN-20 are summarized in Table S2. Compared with binding energies of monomers ($ZnFe_2O_4$ or $g-C_3N_4$), the binding energies of C 1s and N 1s of ZFO/CN-20 slightly shift toward higher values, while the binding energies of Zn 2p and Fe 2p shift toward lower values. The shift to higher binding energy suggests the elements lose electrons, while the shift to lower binding energy suggests the elements get electrons [27, 43]. The opposite shift indicate that the electron transfer from g-C₃N₄ nanosheets to ZnFe₂O₄ nanoparticles at the interface of ZFO/CN heterojunction, which is beneficial for the electron migration during photocatalytic process.

Specific surface area is also an important factor that can affect the photocatalytic activity. Figure S3 shows the N₂ adsorption-desorption isotherms and pore size distribution curves of g-C3N4 nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN-20. The isotherms of both bare g-C₃N₄ nanosheets and ZFO/ CN-20 show the similar shape with classical type IV, indicating the mesoporous structure [44]. The BET specific surface area, pore diameter and pore volume of the three samples are summarized in Table S1. ZFO/CN-20 reveals the highest specific surface area, about 1.7 times larger than g-C₃N₄ nanosheets. The enhanced specific surface area of ZFO/CN-20 is probably due to that the anchoring tiny ZnFe₂O₄ nanoparticles can avert the aggregation of g-C₃N₄ nanosheets. Large specific surface areas could provide abundant active reaction sites and facilitate the adsorption of pollutant molecules [44, 45].

3.2 Optical and photoelectrochemical properties

The photocatalytic activity is affected by the optical absorption performance. Figure 4a displays the UV–vis absorption spectra of $g-C_3N_4$ nanosheets, $ZnFe_2O_4$ nanoparticles and ZFO/CN heterojunctions. The bare

g-C₃N₄ nanosheets show a strong absorption just at wavelength shorter than around 460 nm. Pure ZnFe₂O₄ nanoparticles show significant absorption both in the ultraviolet and visible regions. Upon the formation of heterojunctions, The ZFO/CN heterojunctions possess increased optical absorption especially in the visible region, and the absorption edge shows red-shift compared to the pure g-C₃N₄ nanosheets. Generally, the band gap energy (E_g) of semiconductor can be obtained by the Kubelka– Munk method [46]:

$$(\alpha hv)^n = A(hv - E_g) \tag{1}$$

where α , *h*, *v* and *A* represent the absorption coefficient, Planck constant, light frequency and constant, respectively. The optical band gaps of g-C₃N₄ (*n* = 0.5 for indirect transition) and ZnFe₂O₄ (*n* = 2 for direct transition) were determined by a Tauc plot with a linear extrapolation, as shown in Fig. 4b. The E_g of g-C₃N₄ nanosheets and ZnFe₂O₄ nanoparticles are calculated to be 2.36 and 1.80 eV, respectively. Based on the E_g values, the valence band energy (E_{VB}) and conduction band energy (E_{CB}) of g-C₃N₄ nanosheets and ZnFe₂O₄ nanosheets and ZnFe₂O₄

$$E_{\rm CB} = X - E_{\rm e} - 0.5E_{\rm g} \tag{2}$$

$$E_{\rm VB} = E_{\rm CB} + E_{\rm g} \tag{3}$$

where *X* is the absolute electronegativity of semiconductor and E_e is the energy of free electrons on hydrogen scale (about 4.5 eV) [48]. The E_{CB} and E_{VB} of g-C₃N₄ nanosheets are calculated to be - 0.95 and 1.41 eV, respectively. The E_{CB} and E_{VB} of ZnFe₂O₄ are - 0.35 and 1.45 eV, respectively.

The separation and transfer ability of photogenerated electron-hole pairs is a crucial factor for photocatalysis. Photoluminescence (PL) spectra are applied to examine the photo-induced charge carrier excitation, migration, transfer and recombination processes of semiconductor photocatalysts. Figure 4c shows the PL spectra of g-C₃N₄ nanosheets and ZFO/CN heterojunctions. An obvious emission peak can be seen at approximately 460 nm, which is related to the band gap recombination of photogenerated carriers for g-C₃N₄ nanosheets. The lower PL intensity represents higher electron-hole separation efficiency, resulting in higher photocatalytic activity [49, 50]. Compared to the pure g-C₃N₄ nanosheets, ZFO/CN (except ZFO/CN-5) show lower PL intensity, revealing efficient suppression of the recombination between photogenerated electron-hole pairs. The PL spectrum of ZFO/CN-20 possesses the lowest intensity, indicating the excellent carriers separation and photocatalytic activity [51, 52]. The efficient interfacial charge migration and separation can be further investigated through the photoelectrochemical properties. Figure 4d shows the transient photocurrent (PC) response of g-C₃N₄ nanosheets and ZFO/CN-20. ZFO/CN-20 shows the highest photocurrent density. The larger photocurrent response reveals the higher electrons and holes separation efficiency. Therefore, the photoexcited carriers in ZFO/CN-20 are separated effectively and the photoexcited charge carriers have an improved lifetime during the photocatalytic degradation reaction. Electrochemical impedance spectroscopy (EIS) was performed to provide the evidence of the faster transportation of photoexcited electrons. Generally speaking, a higher mobility and separation of photoexcited electronhole pairs would result in a smaller arc radius. As seen in Fig. 4e, g-C₃N₄ nanosheets display an arc radius value than ZFO/CN-20. The PC and EIS results indicate that the combination of ZnFe₂O₄ nanoparticles could greatly inhibit the recombination of electron-hole pairs in g-C₃N₄ nanosheets, and efficiently facilitate the separation of photogenerated charges at the interface between ZnFe₂O₄ nanoparticles and g-C₃N₄ nanosheets. These results were consistent with the PL analysis, which further validates that the introduction of ZnFe₂O₄ nanoparticles can enhance the photocatalytic performance.

Figure 4f reveals the M-H curves of $g-C_3N_4$ nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN-20 measured at room temperature. The corresponding zoomed *M*–*H* curves are displayed in Fig. S4. Obviously, the M-H curve of g- C_3N_4 nanosheets shows a linear shape, displaying nonmagnetic characteristic. The M-H curves of ZnFe₂O₄ and ZFO/CN-20 reveal S-like shape, and the coercivity (*Hc*) values are only about 13 and 15 Oe, respectively. These results suggest that ZnFe₂O₄ and ZFO/CN-20 show magnetic behavior at room temperature. The magnetization saturation (Ms) value of ZFO/CN-20 is 0.85 emu/g, than that of ZnFe₂O₄ nanoparticles smaller (14.2 emu/g). This is owing to the non-magnetic g-C₃N₄. Inset of Fig. 4f shows the photograph of magnetic separation tests of ZFO/CN-20. The transparent solution indicates that the magnetic ZFO/CN heterojunctions can be easily collected by an applied

Fig. 4 a UV–vis absorption spectra of g-C₃N₄ nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN heterojunctions; b Kubelka–Munk plots of g-C₃N₄ nanosheets and ZnFe₂O₄ nanoparticles; c PL spectra of g-C₃N₄ nanosheets and ZFO/CN;

d Transient photocurrent response and **e** EIS Nyquist spectra of $g-C_3N_4$ nanosheets and ZFO/CN-20; **f** *M*–*H* curves of $g-C_3N_4$ nanosheets, ZnFe₂O₄ nanosheets and ZFO/CN-20. Inset shows the photo of magnetic separation tests of ZFO/CN-20

magnet. These findings suggest that ZFO/CN heterojunctions have an excellent magnetic property, which brings convenience for recycling in wastewater management.

3.3 Photocatalytic performance

Methylene Blue (MB) is a typical cationic organic pollutant, which is widely found in various industrial and domestic wastewater. Besides, MB is generally used to evaluate the photocatalytic performance of semiconductor photocatalyst. Photocatalytic properties of the samples were evaluated by degradation of MB solution (20 ppm) under visible-light ($\lambda > 420$ nm) irradiation. Figure 5a shows the UV–vis absorption spectra of MB solution after photodegradation by ZFO/CN-20 at different time. The absorption intensity of characteristic peak for MB (around 664 nm) decreased gradually by increasing the irradiation time, indicating that MB was gradually photodegraded. Figure 5b shows the comparison of photocatalytic activities curves for different photocatalysts. The ZFO/CN heterojunctions show greatly enhanced synergetic photocatalytic activities compared to the ZnFe₂O₄ and g-C₃N₄ monomers. The photocatalytic activities of ZFO/CN heterojunctions are sensitive to the content of ZnFe₂O₄ nanoparticles, which increase first and then decrease by increasing the amount of ZnFe₂O₄. Especially, ZFO/CN-20 shows the highest and fastest photocatalytic activity, in which 96.27% of MB was degraded in 3 h. The enhanced photocatalytic capacity of ZFO/CN heterojunctions is possibly due to that moderate amount of ZnFe2O4 nanoparticles could induce

Fig. 5 Degradation of MB solution by $g-C_3N_4$ nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN heterojunctions: **a** UV–vis absorption spectra of MB solution by ZFO/CN-20 at different time; **b** Time profiles of the photocatalytic degradation of MB by

different samples, error bars represent one standard deviation; c Pseudo-first-order kinetics fitted curves of different photocatalysts; d Recycling tests of ZFO/CN-20

abundant heterostructure interfaces and endow higher separation efficiency of photo-induced electron-hole pairs. Continuously increasing the amount of $ZnFe_2O_4$ nanoparticles may result in the aggregation of $ZnFe_2O_4$ on the surface of $g-C_3N_4$ nanosheets, reducing the amount of active sites and heterostructure interfaces.

Pseudo-first-order kinetics model was used to estimate the reaction kinetics of photocatalysts [46]:

$$-\ln(C_t/C_0) = kt \tag{4}$$

where C_0 is the initial concentration, C_t is the remaining concentration at different irradiation time, t is the irradiation time, and k (min⁻¹) is the apparent first-order rate constant. Figure 5c shows the pseudofirst-order kinetics fitted curves of different photocatalysts. Compared to g-C₃N₄ and ZnFe₂O₄ monomers, the ZFO/CN heterojunctions show enhanced degradation rates due to the synergistic effect, which increases first and then decreases by increasing the content of ZnFe₂O₄ nanoparticles. Among them, ZFO/CN-20 exhibits the highest degradation rate of 0.019 min^{-1} , which is nearly 2.4 and 6.3 times higher than that of $g-C_3N_4$ (0.008 min⁻¹) and ZnFe₂O₄ (0.003 min^{-1}) , respectively. These results suggest that ZFO/CN-20 shows significantly enhanced photocatalytic performance for MB degradation, which is attributed to the unique heterojunction structure.

The reusability is another crucial factor for the practical applications of catalysts. Recycling experiments of optimal ZFO/CN-20 is shown in Fig. 5d. The degradation rate of ZFO/CN-20 has no apparent deactivation after four repeated cycles, suggesting good chemical stability and reusability. 88.09% of MB was still degraded after four cycles. The slight decline after cycles is probably due to the photocatalyst loss during the collection. To further confirm the stability, the ZFO/CN-20 heterojunctions after four cycles were characterized by XRD, SEM and XPS techniques, as shown in Fig. S5. After four cycling, XRD patterns (Fig. S5a) of ZFO/CN-20 remains the phase without discrepancy, implying that ZFO/CN-20 shows great structure stability during the photocatalytic process. Besides, the XPS spectra (Fig. S5c-h) confirm that the chemical composition and electric states of all the elements in ZFO/CN-20 are similar to the fresh samples, further suggests the stability. The SEM image (Fig. S5b) suggests that the morphology of the recycled photocatalyst is a little different from the fresh ZFO/CN-20 (Fig. S2d). This is mainly due to that photo-induced electron-hole migration may slightly damage the microstructure of photocatalyst during the multiple photocatalytic recycling, which can reasonably explain the slightly loss of 8.2% for ZFO/CN-20 photocatalyst after four cycles. The characterizations of recycled photocatalyst (Fig. S5) suggest that the recycling can gently change the morphology, but has little influence on the phase, chemical composition and electric states of ZFO/CN heterojunction.

The universal suitability of ZFO/CN heterojunctions was further studied by photodegradation of rhodamine B (RhB, another typical cationic organic pollutant) and methyl orange (MO, a typical anionic organic pollutant), as shown in Fig. S6. Compared to the g-C₃N₄ monomer, ZFO/CN-20 shows improved photocatalytic efficiency. The photodegradation efficiencies of RhB and MO by ZFO/CN-20 are 92.4 and 73.17%, respectively, much higher than those values by $g-C_3N_4$ monomer (81.22% for RhB and 25.76% for MO), as shown in Fig. S6a-d. The kinetic constants of ZFO/CN-20 for degradation of RhB and MO are 0.015 and 0.007 min^{-1} , respectively, which are about 1.7 and 3.5 times higher than the g-C₃N₄ monomer $(0.009 \text{ min}^{-1} \text{ for RhB}, 0.002 \text{ min}^{-1} \text{ for MO})$, as displayed in Fig. S6e and f. Table S3 compares the photocatalytic performance between ZnFe₂O₄/g- C_3N_4 and other g- C_3N_4 based materials. Obviously, the ZnFe₂O₄/g-C₃N₄ heterostructures show excellent photocatalytic performance at a relatively short time and large pollutant concentration. These results suggest that ZFO/CN heterojunctions show high-efficient photocatalytic degradation performance to different kinds of organic pollutants.

3.4 Mechanism analysis

The light-harvesting capacity, photoelectrochemical properties and PL properties of $g-C_3N_4$, $ZnFe_2O_4$, and $ZnFe_2O_4/g-C_3N_4$ were studied to deeply understand the photocatalytic mechanism of ZFO/CN. The photo-induced reactive species, including photogenerated holes (h^+), e^- , hydroxyl radicals (\cdot OH) and superoxide radicals (\cdot O_2⁻) are involved in the photocatalytic degradation process. It is necessary to study the roles through the trapping experiment of the photo-induced reactive species. Four trapping agents, including EDTA-2Na, AgNO₃, BQ and IPA were employed as the scavengers of h^+ , e^- , \cdot O₂⁻ and \cdot OH, respectively [23, 37]. The reactive species capture

experiments were carried out by g-C₃N₄ and ZFO/ CN-20. During all the trapping experiments, the amount of trapping agents was kept to be 1 mM. As shown in Fig. 6a and b, the photocatalytic efficiencies of MB by ZFO/CN-20 were decreased from original 96.27% (without trapping agent) to 82.25% (with IPA), 85.61% (with BQ) and 55.76% (with AgNO₃), respectively. For g-C₃N₄ monomer (Fig. S7), the photocatalytic efficiencies of MB were also reduced from original 76.42% (without trapping agent) to 71.29% (with IPA), 45.65% (with BQ) and 49.04% (with AgNO₃), respectively. The capture experiments show that the $\cdot OH$, $\cdot O_2^-$ and e^- species improve the photocatalytic activity for MB degradation. Among them, photogenerated electrons (e^{-}) play a crucial role in the photocatalytic system of g-C₃N₄-based materials, while $\cdot OH$ and $\cdot O_2^-$ are involved in the photocatalytic process. The addition of EDTA-2Na can greatly improve the photocatalytic efficiency of g-C₃N₄ monomer, in which the photocatalytic efficiency is boosted from 76.42 to 98.98% (Fig. S7). According to the mechanism of semiconductor photocatalytic reaction, e^- can reduce O_2 to O_2^- by a reduction reaction, but there is a serious recombination phenomenon between e^- and h^+ [53]. EDTA-2Na, as the scavenger of h^+ , plays a role in improving the separation efficiency of photogenerated electronhole pairs. When EDTA-2Na was added, the main reason for the excessive increase of photocatalytic efficiencies is due to the improved separation efficiency (e^- and h^+), resulting in the increased quantity of $\cdot O_2^-$ involved in the degradation of MB. For ZFO/ CN-20 (Fig. 6a), the degradation efficiencies of MB reach 96.21% in 90 min and 96.99% in 180 min after

Fig. 6 a, b Capture experiments of photodegradation of MB solution by ZFO/CN-20 after adding different trapping agents, error bars represent one standard deviation; ESR spectra of c

 $DMPO-O_2^-$ and **d** DMPO-OH for $g-C_3N_4$ nanosheets, $ZnFe_2O_4$ nanoparticles and ZFO/CN-20 under dark condition and visible light irradiation

introducing EDTA-2Na, while the degradation efficiencies are 74.46% in 90 min and 96.27% in 180 min without EDTA-2Na. The introducing EDTA-2Na has little influence on the final photocatalytic efficiency, but greatly boosts the photocatalytic rate. This suggests that $ZnFe_2O_4$ nanoparticles can improve the separation efficiency of photogenerated electron-hole pairs in ZFO/CN heterojunctions and avoid the rapid recombination in g-C₃N₄ monomer. The capture experiment results of g-C₃N₄ and ZFO/CN-20 indicated that ZFO/CN heterojunction behaves higher separation efficiency of photogenerated electron-hole pairs and faster photocatalytic rate than g-C₃N₄ monomer.

To determine if $\cdot OH$ and $\cdot O_2^-$ radicals are generated during the photocatalytic process, ESR technique is carried out under dark condition and visible light irradiation for comparison, as shown in Fig. 6c and d. During the detection, 5,5-Dimethyl-l-pyrroline N-oxide (DMPO) was used to trap ·OH in aqueous solution and $\cdot O_2^-$ in methanol solution, which can produce the adducts of DMPO- \cdot OH and DMPO- \cdot O₂, respectively [39]. Under the darkness environment, no ESR signals are detected in the DMPO-containing aqueous solution or methanol solution with g-C₃N₄ nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN-20. When the solutions were irradiated by visible light, the characteristic peaks of DMPO-O₂⁻ adduct (Fig. 6c) and DMPO-OH adduct (Fig. 6d) can be detected in the solutions with g-C₃N₄ nanosheets, ZnFe₂O₄ nanoparticles and ZFO/CN-20. These results demonstrate that active species of O_2^- and ·OH radicals are definitely generated by photogenerated electrons under visible light irradiation.

As described in Fig. 6, the active species trapping experiment and ESR analysis demonstrates that $\cdot O_2^-$ and $\cdot OH$ radicals are produced in the photocatalytic reaction system. However, the calculated CB potentials of g-C₃N₄ (- 0.95 eV vs. Normal Hydrogen Electrode (NHE)) and ZnFe₂O₄ (- 0.35 eV vs. NHE) are more negative than the standard redox potentials of O₂/ $\cdot O_2^-$ (- 0.33 eV vs. NHE). Besides, the standard redox potentials of H₂O/ $\cdot OH$ (2.72 eV vs. NHE) and OH⁻/ $\cdot OH$ (1.99 eV vs. NHE) are more positive than the VB potentials of g-C₃N₄ (1.41 eV vs. NHE) and ZnFe₂O₄ (1.45 eV vs. NHE). This implies that the photoexcited holes in the VB of g-C₃N₄ and ZnFe₂O₄ cannot directly oxidize the adsorbed H₂O molecules or surface hydroxyl group to form $\cdot OH$ [54, 55].

Therefore, an indirect way for the formation of $O_2^$ and \cdot OH radicals is proposed. The photogenerated electrons on the CB of g-C₃N₄ and ZnFe₂O₄ react with the resolved O₂, forming $\cdot O_2^-$ radical species. Then the photogenerated electrons would react with $\cdot O_2^$ and H⁺ to produce H₂O₂, which could be further reduced to \cdot OH radicals. The process is speculated as follows [56, 57]:

$$O_2 + e^- \to O_2^- \tag{5}$$

$$e^- + \cdot O_2^- + 2H^+ \to H_2O_2 \tag{6}$$

$$e^- + H_2 O_2 \to \cdot OH + OH^- \tag{7}$$

As described above, if the active species of $\cdot O_2^{-1}$ and OH radicals are generated according to the Eqs. (5-7), H_2O_2 should be also spontaneously produced during the photocatalytic process. In order to verify this hypothesis, we further carried out the H₂O₂ detection experiments under UV-vis illumination. Figure S8a shows the UV-vis absorption spectra of aqueous solution with different contents of H_2O_2 . Obviously, the absorption intensity of characteristic peak for H₂O₂ (around 350 nm) increases by increasing the H₂O₂ content. Figure 7a displays the fitted curve of the relationship between H₂O₂ contents and absorbency in UV-vis region, which is obtained from Fig. S8a. The H₂O₂ contents and absorbency shows typical linear relationship. Figure S8b-d reveals the UV-vis absorption spectra of aqueous solution containing $g-C_3N_4$, $ZnFe_2O_4$ and ZFO/CN-20 photocatalysts, which were irradiated at different time. Under ultra-voilet illumination, the characteristic absorption peak for H₂O₂ can be obviously observed in the aqueous solutions containing g- C_3N_4 , ZnFe₂O₄ and ZFO/CN-20 photocatalysts. Besides, the absorption intensity of characteristic peak for H₂O₂ increased gradually as the irradiation time increases. These phenomena demonstrate that a certain amount of H₂O₂ is spontaneously generated during the photocatalytic process, verifying the about hypothesis. Figure 7b shows the concentration of spontaneously produced H₂O₂ species by g-C₃N₄, ZnFe₂O₄ and ZFO/CN-20 at different illumination time, which is simulated according Figs. 7a and S8. Obviously, the $g-C_3N_4$ monomer shows the highest yield of H₂O₂ (327.8 µM). However, the photocatalytic performance is lower than ZFO/CN-20, as described before. This is mainly due to the high recombination electron-hole rate in $g-C_3N_4$

Fig. 7 a Fitted curve of the relationship between H_2O_2 contents and absorbency in UV–vis region; b The concentration of spontaneously produced H_2O_2 species by g-C₃N₄, ZnFe₂O₄ and ZFO/CN-20 at different illumination time

nanosheets. The photogenerated electrons in g-C₃N₄ nanosheets rapidly recombine with the holes, and cannot adequately react with H₂O₂, resulting in the accumulation of H₂O₂. Meanwhile, OH radicals were slowly generated by g-C₃N₄ monomer upon photoexcitation and the increasing concentration of H₂O₂ leads to the production of a new radical (OOH), which shows a considerably lower oxidation potential than that of OH radicals [31, 58]. On the contrary, although ZFO/CN-20 shows a lower yield of H₂O₂ (116.9 µM), but the separation of photogenerated electron-hole pairs is effectively promoted. The spontaneously produced H₂O₂ species can adequately react with the photogenerated electrons, resulting in abundant active species of $\cdot O_2^-$ and $\cdot OH$ radicals for photocatalysis. The H2O2 yield of $ZnFe_2O_4$ monomer is only 7.2 μ M, which can be negligible (Fig. 7b). g-C₃N₄ and ZnFe₂O₄ can continuously supply H₂O₂ and iron ions, respectively. Self-Fenton reaction wouldn't happen in the ZnFe₂O₄ monomer.

Based on the above investigations, the photocatalytic mechanism of ZFO/CN heterojunctions is proposed, as depicted in Fig. 8. Under visible-light irradiation, the g-C₃N₄ and ZnFe₂O₄ components generate electron–hole pairs. The photogenerated electrons generated from VB migrate to CB, leaving holes in the VB. According to the results of XPS characterization, we consider that the photogenerated electrons produced in g-C₃N₄ nanosheets transferred to the CB of ZnFe₂O₄ nanoparticles, and the holes produced in the ZnFe₂O₄ migrated from ZnFe₂O₄ to g-C₃N₄. This is due to the lower valence

Fig. 8 Band structure and photocatalytic mechanism of the ZFO/ CN heterostructures

band potential and more negative conduction band potential of g-C₃N₄. The photo-induced charge pairs effectively migrate from the opposite direction, promoting the separation efficiency and enhancing the photocatalytic activity. The responsibilities of the photogenerated electrons (e^{-}) mainly have the following aspects: (1) e^- was favored for the generation of active species (\cdot OH and \cdot O₂⁻) and H₂O₂ (Eqs. (5– 7)); (2) The self-redox reaction process of Fe ions was realized by using the reducibility of e^- , accelerating the regeneration from Fe^{3+} to Fe^{2+} . On one hand, some transferred electrons in the CB combine with adsorbed O_2 , yielding O_2^- radicals for photocatalytic reaction. On the other hand, some electrons react with O_2 and resolved H⁺ to produce H₂O₂, which will be further reduced into OH radicals. The ironbased nanomaterials show photo-Fenton reaction, due to that the ferric ions in the crystal lattice can absorb the chemical oxidants (H_2O_2) and create highly reactive \cdot OH radicals for photocatalytic reaction. However, in photo-self-Fenton system, the degradation efficiency is usually higher than the Fenton reaction and photo-Fenton reaction because of the fast conversion of Fe³⁺ into Fe²⁺ ions, high utilization and activation efficiency of self-production H_2O_2 [30, 42]. A self-redox reaction process of the Fe ions induces the H_2O_2 to give \cdot OH radicals. Fe³⁺ can not only participate in the photo-self-Fenton reaction, but also promote the separation of photogenerated electron-hole pairs via gains electrons. Finally, the pollutants are gradually decomposed by \cdot O₂⁻ and \cdot OH into degraded products.

4 Conclusions

In summary, magnetic ZnFe₂O₄/g-C₃N₄ heterojunctions were constructed as visible-light-driven photocatalyst. In the heterojunctions, tiny ZnFe₂O₄ nanoparticles were anchored on the g-C₃N₄ nanosheets, which can sufficiently contact with each other, inducing a higher specific surface area and plentiful active sites for photocatalysis. The specific structure and synergistic effect make ZnFe2O4/g-C3N4 heterojunctions behave improved photocatalytic properties in comparison with the onefold g-C₃N₄ nanosheets or ZnFe₂O₄ nanoparticles, which can efficiently photodegradate three different pigments of methylene blue, methyl orange and rhodamine B. The loading tiny ZnFe₂O₄ nanoparticles can greatly enhance the visible-light absorption capacity and accelerate the photo-induced electron-hole separation of g-C₃N₄ nanosheets, leading to boosted photocatalytic performance. Photocatalytic mechanism studies show that photogenerated electrons play a crucial role in the photocatalytic system. Besides, the $ZnFe_2O_4/g_-$ C₃N₄ heterojunctions are a photo-self-Fenton system, which can spontaneously produce H₂O₂ under illumination, forming active species of $\cdot O_2^-$ and $\cdot OH$ radicals. The synergistic effect of \cdot OH and \cdot O₂⁻ radicals is responsible for degradation organic pollutants. In addition, the $ZnFe_2O_4/g-C_3N_4$ heterojunction photocatalysts show excellent stability after cycling, and can be easily separated by an applied magnet, which is important for practical applications.

We thank the support of Scientific Research Program Funded by Shaanxi Provincial Education Department (20JK0946).

Author contributions

XL: date curation, investigation and paper writing. HX and XY: characterization. DW, YZ: investigation. JF: methodology, resources. XZ, XL: methodology, reviewing, editing. XZ: supervision and methodology.

Funding

Funding was provided by Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant no. 20JK0946).

Data availability

Data will be made available upon reasonable academic request within the limitations of informed consent by the corresponding author upon acceptance.

Declarations

Conflict of interest The authors reported no conflict of interest.

Ethical approval The authors claim that this work described has not been published previously, that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out.

Supplementary Information: The online version contains supplementary material available at http s://doi.org/10.1007/s10854-023-10640-2.

References

1. Q. Wang, Z.M. Yang, Industrial water pollution, water environment treatment, and health risks in China. Environ. Pollut.

218, 358–365 (2016). https://doi.org/10.1016/j.envpol.2016. 07.011

- Y.S. Zhou, G. Chen, Y.G. Yu, L.C. Zhao, J.X. Sun, F. He, H.J. Dong, A new oxynitride-based solid state z-scheme photocatalytic system for efficient Cr (VI) reduction and water oxidation. Appl. Catal. B 183, 176–184 (2016). https://doi. org/10.1016/j.apcatb.2015.10.040
- A. Alsbaiee, B.J. Smith, L.L. Xiao, Y.H. Ling, D.E. Helbling, W.R. Dichtel, Rapid removal of organic micropollutants from water by a porous beta-cyclodextrin polymer. Nature 529, 190–194 (2016). https://doi.org/10.1038/nature16185
- S.D. Richardson, T.A. Ternes, Water analysis: emerging contaminants an-d current issues. Anal. Chem. 86, 2813–2848 (2014). https://doi.org/10.1021/ac500508t
- B. Jain, A.K. Singh, H. Kim, E. Lichtfouse, V.K. Sharma, Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction pro-cesses. Environ. Chem. Lett. 16, 947–967 (2018). https://doi.org/10.1007/s10311-01 8-0738-3
- G. Zhao, W.C. Li, H.Y. Zhang, W. Wang, Y.P. Ren, Single atom Fe-dispersed graphitic carbon nitride (g-C₃N₄) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chem. Eng. J. 430, 132937 (2022). https://doi.org/10.1016/j.cej.2021.132937
- Y.P. Zhu, R.L. Zhu, L.X. Yan, H.Y. Fu, Y.F. Xi, H.J. Zhou, G.Q. Zhu, J.X. Zhu, H.P. He, Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl. Catal. B 239, 280–289 (2018). https://doi.org/10.1016/ j.apcatb.2018.08.025
- L.J. Xu, J.L. Wang, Fenton-like degradation of 2,4dichlorophenol using Fe₃O₄ magnetic nanoparticles. Appl. Catal. B **123–124**, 117–126 (2012). https://doi.org/10.1016/j.a pcatb.2012.04.028
- Y.B. Ding, X.R. Wang, L.B. Fu, X.Q. Peng, C. Pan, Q.H. Mao, C.J. Wang, J.C. Yan, Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): recent advances a-nd perspective. Sci. Total Environ. **765**, 142794 (2021). https://doi.org/10.1016/j. scitotenv.2020.142794
- X.D. Zhang, J. Wang, B.B. Xiao, Y.J. Pu, Y.C. Yang, J.S. Geng, D.Y. Wang, X.J. Chen, Y.X. Wei, K. Xiong, Y.F. Zhu, Resin-based pho-to-self-Fenton system with intensive mineralization by the synergistic effect of holes and hydroxyl radicals. Appl. Catal. B 315, 121525 (2022). https://doi.org/10.1016/j.apcatb.2022.121525
- D.L. Yuan, C. Zhang, S.F. Tang, X. Li, J.C. Tang, Y.D. Rao, Z.B. Wang, Q.R. Zhang, Enhancing CaO₂ fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater

treatment. Water Res. **163**, 114861 (2019). https://doi.org/10. 1016/j.watres.2019.114861

- J. Li, Y.J. Wan, Y.J. Li, G. Yao, B. Lai, Surface Fe(III)/Fe(II) cycle pr-omoted the degradation of atrazine by peroxy-monosulfate activation in the presence of hydroxylamine. Appl. Catal. B 256, 117782 (2019). https://doi.org/10.1016/j.apcatb.2019.117782
- Y.X. Qin, G.Y. Li, Y.P. Gao, L.Z. Zhang, Y.S. Ok, T. An, Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Res. 137, 130–143 (2018). h ttps://doi.org/10.1016/j.watres.2018.03.012
- H.Y. Zhou, J.L. Peng, J.Y. Li, J.J. You, L.D. Lai, R. Liu, Z. Ao, G. Yao, B. Lai, Metal-free black-red phosphorus as an efficient heterogeneous reductant to boost Fe³⁺/Fe²⁺ cycle for peroxymonosulfate activation. Water Res. **188**, 116529 (2021). https://doi.org/10.1016/j.watres.2020.116529
- S.O. Ganiyu, M.H. Zhou, C.A. Martínez-Huitle, Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B 235, 103–129 (2018). https://doi.org/10.1016/j.apcatb.2018.04.044
- D.Q. Tian, H.Y. Zhou, H. Zhang, P. Zhou, J.J. You, G. Yao, Z.C. Pan, Y. Liu, B. Lai, Heterogeneous photocatalyst-driven persulfate activation process under visible light irradiation: from basic catalyst design principles to novel enhancement strategies. Chem. Eng. J. 428, 131166 (2022). https://doi.org/ 10.1016/j.cej.2021.131166
- X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 271–275 (2009). https://doi.org/ 10.1038/nmat2317
- B.C. Zhu, P.F. Xia, Y. Li, W.K. Ho, J.G. Yu, Fabrication and photoc-atalytic activity enhanced mechanism of direct z-scheme g-C₃N₄/Ag₂WO₄ p-hotocatalyst. Appl. Surf. Sci. **391**, 175–183 (2017). https://doi.org/10.1016/j.apsusc.2016. 07.104
- V. Hasija, V.H. Nguyen, A. Kumar, P. Raizada, V. Krishnan, A.A.P. Khan, P. Singh, E. Lichtfouse, C.Y. Wang, P.T. Huong, Advanced activation of persulfate by polymeric g-C₃N₄ based photocatalysts for environmental remediation: a review. J. Hazard. Mater. **413**, 125324 (2021). https://doi.org/10.101 6/j.jhazmat.2021.125324
- Z.W. Zhao, Y.J. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015). http s://doi.org/10.1039/c4nr03008g
- X.X. Yang, Y.L. Ye, J.D. Sun, Z.J. Li, J.F. Ping, X.L. Sun, Recent Advances in g-C₃N₄-Based Photocatalysts for Pollutant degradation and bacterial disinfection: design strategies,

mechanisms, and applications. Small **18**, 2105089 (2022). h ttps://doi.org/10.1002/smll.202105089

- S. Kumar, B. Kumar, A. Baruah, V. Shanker, Synthesis of magnetically separable and recyclable g-C₃N₄-Fe₃O₄ hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. J. Phys. Chem. C **117**, 26135–26143 (2013). https://doi.org/10.1021/jp409651g
- B. Palanivel, S.D.M. Perumal, T. Maiyalagan, V. Jayarman, C. Ayyappan, M. Alagiri, Rational design of ZnFe₂O₄/g-C₃N₄ nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance. Appl. Surf. Sci. **498**, 143807 (2019). https://doi.org/10.1016/j.apsusc.2019.143807
- P.L. Liang, L.Y. Yuan, H. Deng, X.C. Wang, L. Wang, Z.J. Li, S.Z. Luo, W.Q. Shi, Photocatalytic reduction of uranium(VI) by magnetic ZnFe₂O₄ under visible light. Appl. Catal. B 267, 118688 (2020). https://doi.org/10.1016/j.apcatb.2020.118688
- Y. Jiang, L.D. Sun, N. Li, L. Gao, K. Chattopadhyay, Metaldoped ZnFe₂O₄ nanoparticles derived from Fe-bearing slag with enhanced visible-light photoactivity. Ceram. Int. 46, 28828–28834 (2020). https://doi.org/10.1016/j.ceramint.202 0.08.048
- K.V. Savunthari, S. Shanmugam, Effect of co-doping of bismuth, copper and cerium in zinc ferrite on the photocatalytic degradation of bisphenol A. J. Taiwan Inst. Chem. Eng. **101**, 105–118 (2019). https://doi.org/10.1016/j.jtice.2019.04.042
- Q. Gao, Z. Wang, J.X. Li, B. Liu, C.G. Liu, Rational design of direct z-scheme magnetic ZnIn₂S₄/ZnFe₂O₄ heterojunction toward enhanced photocatalytic wastewater remediation. Environ. Sci. Pollut. Res. **30**, 16438–16448 (2023). https://d oi.org/10.1007/s11356-022-23236-w
- V.S. Kirankumar, S. Sumathi, A review on photodegradation of organic pollutants using spinel oxide. Mater. Today Chem. 18, 100355 (2020). https://doi.org/10.1016/j.mtchem.2020. 100355
- E. Prabakaran, T. Velempini, M. Molefe, K. Pillay, Comparative study of KF, KCl and KBr doped with graphitic carbon nitride for superior photocatalytic degradation of methylene blue under visible light. J. Mater. Res. Technol. 15, 6340–6355 (2021). https://doi.org/10.1016/j.jmrt.2021.10. 128
- J. Liu, G. Liu, C.Y. Yuan, L. Chen, X.Y. Tian, M. Fang, Fe₃O₄/ZnFe₂O₄ micro/nanostructures and their heterogeneous efficient Fenton-like visible-light photocatalysis process. New J. Chem. 42, 3736–3747 (2018). https://doi.org/10.1039/c 7nj04548d
- S. Borthakur, L. Saikia, ZnFe₂O₄@g-C₃N₄ nanocomposites: An efficient cat-alyst for Fenton-like photodegradation of environmentally pollutant Rhodami-ne B. J. Environ. Chem. Eng. 7, 103035 (2019). https://doi.org/10.1016/j.jece.2019. 103035

- B. Palanivel, V. Jayaraman, C. Ayyappan, M. Alagiri, Magnetic binary metal oxide intercalated g-C₃N₄: energy band tuned p-n heterojunction towards Z-scheme photo-Fenton phenol reduction and mixed dye degradation. J. Water Process. Eng. **32**, 100968 (2019). https://doi.org/10.1016/j.jwpe. 2019.100968
- 33. T. Xiong, H. Wang, Y. Zhou, Y.J. Sun, W.L. Cen, H.W. Huang, Y.X. Zhang, F. Dong, KCl-mediated dual electronic channels in layered g-C₃N₄ for enhanced visible light photocatalytic NO removal. Nanoscale **10**, 8066–8074 (2018). h ttps://doi.org/10.1039/c8nr01433g
- 34. X.Y. Lu, J. Xie, X.B. Chen, X. Li, Engineering MPx (M = Fe, Co or Ni) interface electron transfer channels for boosting photocatalytic H₂ evolution over g-C₃N₄/MoS₂ layered heterojunctions. Appl. Catal. B 252, 250–259 (2019). http s://doi.org/10.1016/j.apcatb.2019.04.012
- P.F. Xia, B.C. Zhu, B. Cheng, J.G. Yu, J.S. Xu, 2D/2D g-C₃N₄/MnO₂ nanocomposite as a direct z-scheme photocatalyst for enhanced photocataly-tic activity. ACS Sustain. Chem. Eng. 6, 965–973 (2017). https://doi.org/10.1021/acss uschemeng.7b03289
- 36. M. Wu, J. Zhang, B.B. He, H.W. Wang, R. Wang, Y.S. Gong, In-situ construction of coral-like porous P-doped g-C₃N₄ tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B 241, 159–166 (2019). https://doi.org/10.1016/j.apcatb.2018.09.037
- H. Tang, R. Wang, C.X. Zhao, Z.P. Chen, X.F. Yang, D. Bukhvalov, Z.X. Lin, Q.Q. Liu, Oxamide-modified g-C₃N₄ nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chem. Eng. J. **374**, 1064–1075 (2019). https://doi.org/10.1016/j.cej.2019.06.029
- S.W. Zhang, J.X. Li, M.Y. Zeng, G.X. Zhao, J.Z. Xu, W.P. Hu, X.K. Wang, In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl. Mater. Interfaces 5, 12735–12743 (2013). https://doi.org/10.1021/am404123z
- J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Ultrathin 2D/ 2D WO₃/g-C₃N₄ step-scheme H₂ production photocatalyst. Appl. Catal. B 243, 556–565 (2019). https://doi.org/10.1016/ j.apcatb.2018.11.011
- D.S. Lei, J.Q. Xue, X.Y. Peng, S.H. Li, Q. Bi, C.B. Tang, L. Zhang, Oxalate enhanced synergistic removal of chromium(VI) and arsenic(III) ov-er ZnFe₂O₄/g-C₃N₄: Z-scheme charge transfer pathway and photo-Fenton li-ke reaction. Appl. Catal. B 282, 119578 (2021). https://doi.org/10.1016/j.apcatb.2020.119578
- S. Patnaik, K.K. Das, A. Mohanty, K. Parida, Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C₃N₄/ZnFe₂O₄ and its synergism with phenol oxidation

under visible light irradiation. Catal. Today **315**, 52–66 (2018). https://doi.org/10.1016/j.cattod.2018.04.008

- Z.R. Dai, Y. Zhen, Y.S. Sun, L. Li, D.X. Ding, ZnFe₂O₄/g-C₃N₄ S-sch-eme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal. Chem. Eng. J. 415, 129002 (2021). https://doi.org/10.1016/j.cej.2021. 129002
- Y. Guo, Y.H. Ao, P.F. Wang, C. Wang, Mediator-free direct dual-Z-scheme Bi₂S₃/BiVO₄/MgIn₂S₄ composite photocatalysts with enhanced visible-li-ght-driven performance towards carbamazepine degradation. Appl. Catal. B 254, 479–490 (2019). https://doi.org/10.1016/j.apcatb.2019.04.031
- 44. C.Y. Jin, C.H. Xu, W.X. Chang, X.Y. Ma, X.Y. Hu, E.Z. Liu, J. Fan, Bimetallic phosphide NiCoP anchored g-C₃N₄ nanosheets for efficient photocatalytic H₂ evolution. J. Alloys Compd. 803, 205–215 (2019). https://doi.org/10.1016/j.jallc om.2019.06.252
- Y.M. Hunge, M.A. Mahadik, R.N. Bulakhe, S.P. Yadav, J.J. Shim, A.V. Moholkar, C.H. Bhosale, Oxidative degradation of benzoic acid using spray deposited WO₃/TiO₂ thin films. J. Mater. Sci. 28, 17976–17984 (2017). https://doi.org/10.10 07/s10854-017-7740-6
- X. Bai, Y.Y. Du, X.Y. Hu, Y.D. He, C.L. He, E.Z. Liu, J. Fan, Synergy removal of Cr (VI) and organic pollutants over RP-MoS₂/rGO photocatalyst. Appl. Catal. B 239, 204–213 (2018). https://doi.org/10.1016/j.apcatb.2018.08.016
- Y.M. Hunge, A.A. Yadav, S.W. Kang, S.J. Lim, H. Kim, Visible light activated MoS₂/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J. Photochem. Photobiol. A 434, 114250 (2023). https://doi.org/10.1016/j.jphotochem.2022.114250
- X.J. Chen, Y.Z. Dai, J. Guo, T.H. Liu, X.Y. Wang, Novel magneticall-y separable reduced graphene oxide (RGO)/ ZnFe₂O₄/Ag₃PO₄ nanocomposite-s for enhanced photocatalytic performance toward 2,4-Dichlorophenol under visible light. Ind. Eng. Chem. Res. 55, 568–578 (2016). https://doi. org/10.1021/acs.iecr.5b03690
- Z. Li, Y.N. Ma, X.Y. Hu, E.Z. Liu, J. Fan, Enhanced photocatalytic H₂ production over dual-cocatalyst-modified g-C₃N₄ heterojunctions. Chin. J. Catal. 40, 434–445 (2019). https://d oi.org/10.1016/S1872-2067(18)63189-4
- K.L. He, J. Xie, Z.Q. Liu, N. Li, X.B. Chen, J. Hu, X. Li, Multi-functional Ni₃C cocatalyst/g-C₃N₄ nanoheterojunctions for robust photocatalytic H₂ evolution under visible light. J. Mater. Chem. A 6, 13110–13122 (2018). https://doi.org/10. 1039/c8ta03048k
- K. Wang, Y. Li, J. Li, G.K. Zhang, Boosting interfacial charge separation of Ba₅Nb₄O₁₅/g-C₃N₄ photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H₂

generation. Appl. Catal. B **263**, 117730 (2020). https://doi. org/10.1016/j.apcatb.2019.05.032

- D.S. Lei, J.Q. Xue, Q. Bi, C.B. Tang, L. Zhang, 3D/2D direct Z-schem-e photocatalyst Zn₂SnO₄/CdS for simultaneous removal of Cr(VI) and orga-nic pollutant. Appl. Surf. Sci. 517, 146030 (2020). https://doi.org/10.1016/j.apsusc.2020. 146030
- Y.M. Hunge, A.A. Yadav, S.W. Kang, B.M. Mohite, Role of nanotechnology in photocatalysis application. Recent Pat. Nanotechnol. 17, 5–7 (2023). https://doi.org/10.2174/ 1872210516666220304162429
- X.D. Yang, J. Duan, X. Zhang, H.Y. Zhang, X.L. Liu, Y.Q. Feng, M.S. Zheng, Heterojunction architecture of Nb₂O₅/g-C₃N₄ for enhancing photocatalytic activity to degrade organic pollutants and deactivate bacteria in water. Chin. Chem. Lett. 33, 3792–3796 (2022). https://doi.org/10.1016/j.cclet.2021.1 1.031
- C.Y. Xiong, Q.F. Ren, X.Y. Liu, Z. Jin, Y. Ding, H.T. Zhu, J.P. Li, R.R. Chen, Fenton activity on RhB degradation of magnetic g-C₃N₄/diato-mite/Fe₃O₄ composites. Appl. Surf. Sci. 543, 148844 (2021). https://doi.org/10.1016/j.apsusc.2020. 148844
- L.B. Jiang, X.Z. Yuan, G.M. Zeng, Z.B. Wu, J. Liang, X.H. Chen, L.J. Leng, H. Wang, H. Wang, Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B 221, 715–725 (2018). https://doi.org/10.1016/j.apcatb.2017.09.059
- J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Q. Zhang, Z.G. Chen, H. Li, Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B 183, 254–262 (2016). https://doi.org/10.1016/j.apcatb.2015. 10.036
- 58. G. Li, X.Q. Cao, N. Meng, Y.M. Huang, X.D. Wang, Y.Y. Gao, X. Li, T.S. Yang, B.L. Li, Y.Z. Zhang, X.J. Lyu, Y. Liang, Fe₃O₄ supported on water caltrop-derived biochar toward peroxymonosulfate activation for urea degradation: the key role of sulfate radical. Chem. Eng. J. 433, 133595 (2022). https://doi.org/10.1016/j.cej.2021.133595

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

