

Enhanced microwave dielectric properties of Bi₆B₁₀O₂₄ ceramics as ultra-low temperature co-fired ceramics materials

Siqi Sun¹, Qian Zhang¹, Ying Dai^{1,*} ^(b), and Xinmei Pei¹

¹ School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China

Received: 5 March 2022 Accepted: 18 April 2022 Published online: 9 May 2022

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

ABSTRACT

The $Bi_6B_{10}O_{24}$ microwave dielectric ceramics for ultra-low temperature co-fired ceramics application were prepared by solid-state reaction method. The process conditions, phase composition, and microwave dielectric properties of the ceramics were investigated. The results indicated that boron volatilization was effectively avoided by dry ball milling of the raw materials and calcined in sealed environment for the powder preparation and then a single $B_{i_0}B_{i_0}O_{24}$ phase ceramic was successfully obtained. The Bi₆B₁₀O₂₄ ceramics exhibited microwave dielectric properties: $\varepsilon_r = 13.2 \pm 0.1$, $Q \times f = 25,000 \pm 200$ GHz, and $\tau_{\rm f} = -65 \pm 2 \text{ ppm/}^{\circ}\text{C}$. The effect of small excess B₂O₃ on the phase, microstructure, and microwave dielectric properties on the Bi₆B₁₀O₂₄ ceramics were discussed. Bi₆B₁₀O₂₄-xB₂O₃ ceramics (x = 0-0.12 mol%) were sintered at 670–710 °C for 2 h. The XRD patterns of specimens illustrated that only the $Bi_6B_{10}O_{24}$ phase was observed for all the ceramics with varying x. The microwave dielectric properties of the ceramics were found to strongly correlate with the x values and sintering process. The appropriate excess B_2O_3 is beneficial to densification of the ceramics, effectively reducing the dielectric loss and increasing $Q \times f$. The excellent microwave dielectric properties of the Bi₆B₁₀O₂₄ ceramics were obtained for x = 0.1 mol, $\varepsilon_r = 12.5 \pm 0.1$, $Q \times f = 38,200 \pm 300$ GHz, and $\tau_f = -62 \pm 1 \text{ ppm/°C}$. The high-performance Bi₆B₁₀O₂₄ ceramics are promising candidates for ULTCC integration applications.

1 Introduction

With the rapid development of wireless communication, global positioning system (GPS), Internet of Things, and other information industries, the corresponding systems and devices are developing into miniaturization, multi-function, and low cost [1]. Low-temperature co-fired ceramic (LTCC) technology is an important way to realize the miniaturization, integration, and high reliability of components [2, 3]. In practical applications, excellent properties of microwave dielectric materials are required, for

Address correspondence to E-mail: yingdai@whut.edu.cn

example, the appropriate dielectric constant (ε_r), high quality factor ($Q \times f$), and the near-zero temperature coefficient of the resonant frequency (τ_f). The research for LTCCs has accelerated in recent years, and ultralow temperature co-fired ceramics (ULTCC) technology comes up and becomes one of hotspots. ULTCC requires lower sintering to co-firing with other low melting point electrode materials, which is beneficial to reduce energy consumption and improve the compatibility with economical and effective metal electrodes [4].

At current, a large number of excellent microwave dielectric materials have been reported in the literature; however, most of them have high sintering temperatures [5]. Usually, the sintering temperature can be reduced by adding low melting glass, but this method often cause the deterioration of microwave dielectric properties [6]. Therefore, some low melting oxides such as Li₂O-, TeO₂-, B₂O₃-, WO₃-, and MoO₃based compounds with intrinsically low sintering temperature and promising microwave dielectric properties have been extensively studied [4, 7–9]. However, most of these materials have fetal defects, such as hygroscopic, unstable, poisonous, high cost and so on. As we known, B₂O₃-based microwave dielectric materials have stable chemical properties, and there are few researches on them at present. Ohashi et al. [10] prepared Li₃AlB₂O₆ ceramics by conventional solid-phase reaction method and obtained the microwave dielectric properties of ε_{r} . = 4.2, $Q \times f = 13,027$ GHz, and $\tau_f = 10$ ppm/°C. CuO-B₂O₃-Li₂O (CBL) glass-ceramic [11] showed microwave dielectric properties with $\varepsilon_r = 5.84$, $Q \times f = 10,120 \text{ GHz}$ (at 13.44 GHz), and τ_{f} $= -33 \text{ ppm}/^{\circ}\text{C}.$

Until now, borate ceramics with ultra-low sintering temperatures and excellent microwave dielectric properties are limited, so it is necessary to develop new borate ceramics. The B₂O₃–Bi₂O₃ system was a low melting point system, and previous researchers were focus on single crystal and glass materials for the optical properties [12–16]. The research on the ceramics was few. Bi₄B₂O₉ and Bi₆B₁₀O₂₄ ceramics in the B₂O₃–Bi₂O₃ system were firstly prepared as sintering aids by Chen et al. [17] through solid-state reaction and their microwave dielectric properties were reported, $\varepsilon_r = 39$, $Q \times f = 2600$ GHz, and $\tau_f = -203$ ppm/°C for Bi₄B₂O₉ ceramics and $\varepsilon_r = 10$, $Q \times f = 10,800$ GHz, and $\tau_f = -41$ ppm/°C for Bi₆-B₁₀O₂₄ ceramics. Recently, Wang et al. [18]

stoichiometrically weighted Bi₂O₃ and H₃BO₃ as raw powders to prepare Bi₆B₁₀O₂₄ ceramics, but the Bi₄. B₂O₉ phase as second phase was appeared in the Bi₆B₁₀O₂₄ ceramics. The volatile of boron caused the second phase to occur in the ceramics. For this reason, excess boron (over 80% of the stoichiometric amount) was added to compensate for boron volatilization in order to obtain a single-phase Bi₆. B₁₀O₂₄ ceramics. The microwave dielectric properties of the ceramics were $\varepsilon_r = 12.14$, $Q \times f = 14,800$ GHz, and $\tau_f = -72$ ppm/°C. It is obviously that microwave dielectric properties of Bi₆B₁₀O₂₄ ceramics are poor and a high amount of excess boron has to be added.

The Bi₆B₁₀O₂₄ ceramics exhibit low sintering temperature and are potential for ULTCCs. However, the properties obtained from the current researchers are not excellent enough. In this study, the massive volatilization of boron was avoided by dry ball milling and calcined in sealed environment for the powders preparation, making the actual composition of the ceramics to be consistent with the nominal composition. The effect of small excess B_2O_3 on the Bi₆B₁₀O₂₄ ceramics was discussed. The process conditions, microstructures, and microwave dielectric properties of $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0-0.12 mol%) as a microwave dielectric material for ultra-low temperature sintering are investigated.

2 Experimental

 $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0-0.12 mol%) were prepared by the solid-state reaction route. Raw powders of B₂O₃ and Bi₂O₃ (AR grade, Sinopharm Chemical Reagent) were weighed as ratio of Bi₆B₁₀₋ $O_{24}-x B_2O_3$ (x = 0–0.12 mol%). In the ball milling of raw materials, two ball milling methods were used for comparison, wet milling, and dry milling. The wet milling was ball milled for 8 h using agate balls with isopropanol as medium and dried at 85 °C for 8 h. The dry milling was ball milled for 2 h using agate balls without isopropanol as medium. After milling, both powders calcined at 660 °C for 2 h in sealed environment, respectively. The calcined powders were re-milled for 6 h with isopropanol as the dispersive media, dried at 85 °C for 8 h, and pressed into pellets (diameter 12 mm) using 5 wt% PVA as a binder. These pellets were heated at 400 °C for 10 h to

eliminate the PVA and sintered at 660–710 °C for 2 h in air.

The crystalline phase of samples were identified by X-ray diffraction (XRD: PANalytical X'Pert PW3050/ 60 Philips, Netherlands) using Cu K α (λ = 1.54056 A) range of 10° -80° (at a speed of $0.2^{\circ}/s$). The microstructures of samples were observed using a scanning electron microscope (SEM: Zeiss Ultra Plus). The particle size was examined by the analysis of the images obtained using SEM. The FT-IR and Raman spectra were collected through Fourier transform infrared spectrometer (Thermo Nicolet) at room temperature. The bulk densities of the sintered pellets were measured by the Archimedes method. The microwave dielectric properties (the ε_r and the $Q \times f$ value) of samples were measured in the TE011 mode using a network analyzer (Agilent HPB8722ET; Agilent Technologies, Santa Clara, CA) and parallel boards. The temperature coefficient of resonant frequency

$$\tau_{\rm f} = \frac{f_{85} - f_{25}}{60 \times f_{25}} \tag{1}$$

was experimentally measured in the temperature range of 25–85 °C.

3 Results and discussion

Figure 1a shows the XRD pattern of the Bi/B = 3/5powder by wet ball milling calcined in the sealed environment. The main phase of the ceramic is the $Bi_4B_2O_9$ phase (PDF: 01-070-1458), and the $Bi_6B_{10}O_{24}$ (PDF: 01-070-0154) is indexed to the second phase. Figure 1b shows the XRD pattern of the Bi/B = 3/5powder by dry ball milling calcined in the sealed environment, figuring that a single $Bi_6B_{10}O_{24}$ phase occurs without Bi4B2O9 phase. The cell parameters of a = 6.5320 Å, b = 7.7330 Å, $Bi_6B_{10}O_{24}$ are c = 18.5660 Å, $\alpha = \beta = \gamma = 90^{\circ}$, and V = 937.80 Å³ with orthorhombic structure in space group Pnma (62) (PDF: 01-070-0154). This result indicates that the volatilization of B₂O₃ occurs in the drying process after wet ball milling. It reveals that boron volatilization during drying for wet ball milling can effectively avoid by dry ball milling for powders preparation, making the actual composition of the powders to be consistent with the nominal composition, which is an important improvement on previous research results.

Figure 2 shows the XRD patterns for the Bi/B = 3/5 powders calcined for 2 h at 600–680 °C by dry ball milling. At 600–620 °C, Bi₄B₂O₉ and Bi₆B₁₀O₂₄ are observed. With the temperature increasing to 640–680 °C, all the peaks are matched with the Bi₆B₁₀O₂₄, suggesting the following reaction sequence:

 $2Bi_2O_3 + B_2O_3 \rightarrow Bi_4B_2O_9, \tag{2}$

$$3Bi_4B_2O_9 + 7B_2O_3 \to 2Bi_6B_{10}O_{24}.$$
 (3)

It reveals that the pure $Bi_6B_{10}O_{24}$ phase powders can be prepared at suitable calcined temperature. The calcined temperature of powders in this study is chosen at 660 °C.

Figure 3 shows the relative density and microwave dielectric properties of the Bi₆B₁₀O₂₄ ceramics at different sintering temperatures. The ε_r and τ_f are basically stable as the sintering temperature changes, because all samples are with pure Bi₆B₁₀O₂₄ phase and high density. The $Q \times f$ reaches maximum of 25,000 ± 200 GHz at 660–670 °C and decreases significantly as sintering temperature further increasing, indicating that the microwave properties of the ceramics are affected by densification and sintering temperature. As the sintering temperature increases, it is gradually approaching the melting point of Bi₆B₁₀O₂₄, resulting in the appearance of excess glass content, which deteriorates microwave dielectric properties of the ceramics.

By improving the powders preparation processes, i.e., dry ball milling and calcining in sealed environment, single Bi₆B₁₀O₂₄ phase ceramics sintered at 660–670 °C are obtained in the study: $\varepsilon_r = 13.2 \pm 0.1$, $Q \times f = 25,000 \pm 200$ GHz, and $\tau_{\rm f} = -65 \pm 2$ ppm/ °C. In the previous research of the low melting point B_2O_3 - Bi_2O_3 system [18], a high amount of excess B_2O_3 affects the phase composition, microstructure, and microwave dielectric properties of the ceramics. In this work, the low melting point and volatility of B₂O₃ may cause a very small amount of volatilization during the preparation process even if above improved powders preparation processes are adopted to obtain the pure $Bi_6B_{10}O_{24}$ ceramics. Therefore, a small amount of extra B₂O₃ is added to compensate for possible volatilization and as sintering additive to promote sintering process.

The XRD patterns for $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0-0.12 mol%) sintered at 700 °C for 2 h in sealed environment are shown in Fig. 4. All the peaks of the ceramics with the various boron contents are indexed

Fig. 1 The XRD patterns of the Bi/B = 3/5 powders calcined at 660°C for 2 h by different mixture methods. **a** Wet ball milling and **b** dry ball milling

Fig. 2 The XRD patterns of the Bi/B = 3/5 powders calcined for 2 h at various temperatures by dry ball milling

as $Bi_6B_{10}O_{24}$ phase, and no other phases are detected. It reveals that small excess B_2O_3 does not change the phase composition of the ceramics.

Bi₆B₁₀O₂₄–*x*B₂O₃ ceramics (x = 0, 0.1 mol%) were also characterized by FT-IR and Raman spectroscopy. Figure 5 shows the FT-IR absorption spectra and Raman spectra of the Bi₆B₁₀O₂₄ ceramics sintered at 700 °C, respectively. The peaks of both samples are compared with the characteristic peaks of the known materials in Bi₂O₃–B₂O₃ system [19, 20]. All the peaks in the FT-IR and Raman spectrum of Bi₆B₁₀O₂₄–*x*B₂O₃ ceramics (x = 0, 0.1 mol%) are well matched with previous reports, and all agree well with the groups of the Bi₆B₁₀O₂₄ phase. It can be considered that only the $Bi_6B_{10}O_{24}$ phase is formed in both ceramics. These results also agree well with the above XRD analysis.

Figure 6 shows the variations of sintering temperature, ε_r , $Q \times f$, and τ_f of Bi₆B₁₀O₂₄-*x*B₂O₃ ceramics (x = 0-0.12 mol%). As x increases from 0 to 0.12, the variations of the ε_r and τ_f are not significant. The optimal sintering temperature of specimens increases. The $Q \times f$ increases with increasing x values, reaches a maximum of $38,200 \pm 300$ GHz for x = 0.1, and then decreases when x = 0.12. The ε_r and τ_f are mainly determined by the phase composition. According to the above XRD analysis, there is no secondary phase in all the samples. The phase composition of the ceramics is only Bi₆B₁₀O₂₄, therefore the ε_r and τ_f values of the ceramics have little change and are about 12.5 ± 0.1 and -62 ± 1 ppm/°C, respectively. The $Q \times f$ depends on extrinsic and intrinsic factor. The intrinsic losses are associated with lattice vibration modes while the extrinsic losses are associated with density, second phase, and so on [21, 22]. Therefore, higher density means lower porosity and higher $Q \times f$ value. When x = 0, the average grain size of the ceramic is 4.2 µm. With the x increases from 0.03 to 0.1, the average grain sizes of the samples increased from 2.1 to 3.6 μ m, as shown in Fig. 7a-e. Obviously, their average grain sizes are smaller than the size of $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0). The grain size of the ceramics decreased with the content of glass increase in it [23]. The excess of B_2O_3 (x) results in the increase the glass in the ceramics. The average grain size is obviously affected by the *x* and sintering temperature. The appropriate

Fig. 4 The XRD patterns of $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0-0.12 mol%) sintered at 700°C for 2 h

excess B_2O_3 makes porosity decreases and densification of the ceramic at the optimum sintering temperature. The best microwave dielectric properties are obtained when x = 0.1, $\varepsilon_r = 12.5 \pm 0.1$, $Q \times f =$ $38,200 \pm 300$ GHz, and $\tau_f = -62 \pm 1$ ppm/°C. This phenomenon is mainly due to the liquid phase formed by the excess B_2O_3 , which reduces the porosity of the ceramic, promotes the release of stress, and makes the ceramic sintered densely, thereby reducing the dielectric loss and increasing $Q \times f$. Almost all the samples could be densified at their optimal sintering temperature. At x = 0.12, more glasses exist, resulting in the grain size decrease with average size of 1.6 µm and the porosity increase (Fig. 7f) and the $Q \times f$ decrease. The more extra B₂O₃ deteriorates the microwave dielectric properties of the ceramics. It illustrates that an appropriate excess B₂O₃ promotes the densification of ceramics and improves their microwave dielectric properties.

The relative density and microwave dielectric properties of ceramics (x = 0.1) at different sintering temperatures are exhibited in Fig. 8. It shows that the microwave dielectric properties are greatly affected by the sintering temperature. The ceramics can be densified at 700–710 °C, and the microwave dielectric properties is significantly improved. With the sintering temperature from 660 to 710 °C, the average grain sizes increase (Fig. 9a–f), and the average grain sizes are 1.5, 1.5, 1.8, 2.5, 2.5, and 3.6 µm, respectively. The best microwave dielectric properties are obtained for 2 h, $\varepsilon_r = 12.5 \pm 0.1$, $Q \times f = 38,200 \pm 300$ GHz, and $\tau_f = -62 \pm 1$ ppm/°C.

The microwave dielectric properties of the ceramics studied in the $Bi_2O_3-B_2O_3$ system are listed in Table 1. In the previous studies of $Bi_2O_3-B_2O_3$ system, $Bi_6B_{10}O_{24}$ has better microwave dielectric

Fig. 5 a FT-IR absorption spectra and b Raman spectra of $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0, 0.1 mol%) sintered at 700°C for 2 h

properties. However, previous studies have failed to obtain excellent properties of the pure $Bi_6B_{10}O_{24}$ ceramic which limit their applications. The enhanced microwave dielectric properties of the ceramics with pure $Bi_6B_{10}O_{24}$ phase are obtained in this study, with an ε_r of 12.5 ± 0.1 , a high $Q \times f$ of $38,200 \pm 300$ GHz, and a τ_f of -62 ± 1 ppm/°C, and the consistency of

the raw material ratio and the target $Bi_6B_{10}O_{24}$ phase are guaranteed in our work, showing the potential of the $Bi_6B_{10}O_{24}$ ceramics in the field of excellent ULTCC microwave dielectric materials.

Fig. 7 SEM images of fracture surface of the Bi₆B₁₀O₂₄-xB₂O₃ ceramics (x = 0-0.12 mol%) sintered at the optimal temperature. **a** x = 0, **b** x = 0.03, **c** x = 0.06, **d** x = 0.09, **e** x = 0.1, and **f** x = 0.12

Fig. 8 Relative density, ε_{rr} , $Q \times f$, and τ_{f} of Bi₆B₁₀O₂₄-xB₂O₃ ceramics (x = 0.1 mol%) as a function of sintering temperature

4 Conclusion

 $Bi_6B_{10}O_{24}$ ceramics in the Bi_2O_3 - B_2O_3 system with high $Q \times f$ were investigated. The boron volatilization was effectively avoided by dry ball milling of the raw materials and calcined in sealed environment for the powder preparation, and a single Bi₆B₁₀O₂₄ phase ceramic was successfully obtained. Comparing with previous work, the Bi₆B₁₀O₂₄ ceramics exhibited enhanced microwave dielectric properties of $\varepsilon_{\rm r}$ = 13.2 ± 0.1, $Q \times f$ = 25,000 ± 200 GHz, and $\tau_{\rm f}$ = -65 ± 2 ppm/°C. The effect of small excess

Fig. 9 SEM images of fracture surface of $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0.1 mol%) sintering at **a** 660 °C, **b** 670 °C, **c** 680 °C, **d** 690 °C, **e** 700 °C, and **f** 710 °C for 2 h

Table 1Comparison of themicrowave dielectricproperties of the ceramics inthe Bi_2O_3 - B_2O_3 system

Material	Phase	ε _r	$Q \times f$	$\tau_{\rm f}$	References
Bi ₄ B ₂ O ₉	Bi ₄ B ₂ O ₉	39	2600	- 203	Chen et al. [17]
$Bi_6B_{10}O_{24}$	$Bi_6B_{10}O_{24}$	10	10,800	- 41	Chen et al. [17]
$Bi_{3}B_{5+x}O_{12+3x/2}$ (x = 0)	$\mathrm{Bi}_6\mathrm{B}_{10}\mathrm{O}_{24}+\mathrm{Bi}_4\mathrm{B}_2\mathrm{O}_9$	10.4	4600	- 100	Wang et al. [18]
$Bi_{3}B_{5+x}O_{12+3x/2}$ (x = 4)	$\mathrm{Bi}_{6}\mathrm{B}_{10}\mathrm{O}_{24}$	12.1	14,800	- 72	Wang et al. [18]
$Bi_6B_{10}O_{24} - xB_2O_3 \ (x = 0)$	$\mathrm{Bi}_{6}\mathrm{B}_{10}\mathrm{O}_{24}$	13.2	25,000	- 65	This work
$Bi_6B_{10}O_{24} - xB_2O_3 \ (x = 0.1)$	$\mathrm{Bi}_{6}\mathrm{B}_{10}\mathrm{O}_{24}$	12.5	38,200	- 62	This work
Bi ₂ O ₃	Bi ₂ O ₃	33.5	18,700	- 235	Zhou et al. [24]

 B_2O_3 on the $Bi_6B_{10}O_{24}-xB_2O_3$ ceramics (x = 0-0.12 mol%) was discussed. As *x* changed from 0 to 0.12, the excess B_2O_3 does not change the phase composition of the ceramics, while the microwave dielectric properties of Bi₆B₁₀O₂₄ ceramics changed significantly. Appropriate excess B₂O₃ promotes the densification of ceramics and improves their microwave dielectric properties. When x = 0.1, sintered at 710 °C for 2 h, Bi₆B₁₀O₂₄ ceramics possess excellent microwave dielectric properties of $\varepsilon_r = 12.5 \pm 0.1$, $Q \times f = 38,200 \pm 300$ GHz, and $\tau_{\rm f} = -62 \pm 1$ ppm/ °C. The ultra-low sintering temperature and excellent properties reveal the potential of Bi₆B₁₀O₂₄ ceramics for applications as a new ULTCC material.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51772225).

Author contributions

SS and QZ contributed to all the experimental work, completed the data analysis, and wrote the manuscript. YD guided all the experimental design and led the manuscript revision work. XP approved the final manuscript.

Funding

The authors have not disclosed any funding.

Data availability

All data analyzed are used to support this study and are included in the submitted article.

Declarations

Conflict of interest The authors declared that they have no competing financial interests.

References

- J. Xi, G.H. Chen, F. Liu, F. Shang, J.W. Xu, C.R. Zhou, C.L. Yuan, Synthesis, microstructure and characterization of ultralow permittivity CuO–ZnO–B₂O₃–Li₂O glass/Al₂O₃ composites for ULTCC application. Ceram. Int. 45, 24431–24436 (2019)
- 2. J. Dhanya, E.K. Suresh, R. Naveenraj, R. Ratheesh, Synthesis and characterization of $Na_5M(MoO_4)_4$ (M = Y, Yb) microwave ceramics for ULTCC applications. Ceram. Int. 44, 6699–6704 (2018)
- J. Zhou, Towards rational design of low-temperature co-fired ceramic (LTCC) materials. J. Adv. Ceram. 1, 89–99 (2012)
- H.C. Xiang, Y. Bai, J. Varghese, C.C. Li, L. Fang, H. Jantunen, Ultralow temperature cofired BiZn₂VO₆ dielectric ceramics doped with B₂O₃ and Li₂CO₃ for ULTCC applications. J. Am. Ceram. Soc. **102**, 1218–1226 (2018)
- M.T. Sebastian, H. Wang, H. Jantunen, Low temperature cofired ceramics with ultra-low sintering temperature: a review. Curr. Opin. Solid State Mater. Sci. 20, 151–170 (2016)
- D. Zhou, L.X. Pang, H.D. Xie, J. Guo, B. He, Z.M. Qi, T. Shao, X. Yao, C.A. Randall, Crystal structure and microwave dielectric properties of an ultralow-temperature-fired (AgBi)_{0.5}WO₄ ceramic. Eur. J. Inorg. Chem. **2014**, 296–301 (2014)
- H.D. Xie, H.H. Xi, F. Li, C. Chen, X.C. Wang, D. Zhou, Microwave dielectric properties of Pb₂MoO₅ ceramic with ultra-low sintering temperature. J. Eur. Ceram. Soc. 34, 4089–4093 (2014)
- H.T. Yu, J.S. Liu, W.L. Zhang, S.R. Zhang, Ultra-low sintering temperature ceramics for LTCC applications: a review. J. Mater. Sci. Mater. Electron. 26, 9414–9423 (2015)
- 9. M.Y. Yu, Y. Tang, J. Li, W.S. Fang, L. Duan, L. Fang, Microwave dielectric properties and chemical compatibility with alumina electrode of two novel ultra-low temperature firing ATeMoO₆ (A = Mg, Zn) ceramics. Ceram. Int. **46**, 25619–25625 (2020)

- M. Ohashi, H. Ogawa, A. Kan, E. Tanaka, Microwave dielectric properties of low-temperature sintered Li₃AlB₂O₆ ceramic. J. Eur. Ceram. Soc. 25, 2877–2881 (2005)
- M.S. Ma, Z.Q. Fu, Z.F. Liu, Y.X. Li, Fabrication and microwave dielectric properties of CuO–B₂O₃–Li₂O glass ceramic with ultra-low sintering temperature. Ceram. Int. 43, S292–S295 (2017)
- P. Becker, Thermal and optical properties of glasses of the system Bi₂O₃-B₂O₃. Cryst. Res. Technol. 38, 74–82 (2003)
- M. Burianek, M. Mühlberg, Crystal growth of boron sillenite Bi₂₄B₂O₃₉. Cryst. Res. Technol. **32**, 1023–1027 (1997)
- N.M. Bobkova, Properties and structure of bismuth–borate glasses (review). Glass Ceram. 72, 360–365 (2016)
- G.M. Kuzmicheva, T.I. Mel'nikova, Structural features of bismuth borates in the system nBi₂O₃-mB₂O₃. Russ. J. Inorg. Chem. 54, 73–80 (2009)
- A. Bajaj, A. Khanna, B.H. Chen, J.G. Longstaffe, U.W. Zwanziger, J.W. Zwanziger, Y. Gomez, F. Gonzalez, Structural investigation of bismuth borate glasses and crystalline phases. J. Non-Cryst. Solids 355, 45–53 (2009)
- X.Y. Chen, W. Zhang, B. Zalinska, I. Sterianou, S. Bai, I.M. Reaney, Low sintering temperature microwave dielectric ceramics and composites based on Bi₂O₃–B₂O₃. J. Am. Ceram. Soc. 95, 3207–3213 (2012)
- K.G. Wang, T.T. Yin, H.F. Zhou, X.B. Liu, J.J. Deng, S.X. Li, C.M. Lu, X.L. Chen, Bismuth borate composite microwave ceramics synthesised by different ratios of H₃BO₃ for ULTCC technology. J. Eur. Ceram. Soc. 40, 381–385 (2020)
- A.V. Egorysheva, V.I. Burkov, Y.F. Kargin, V.G. Plotnichenko, V.V. Koltashev, Vibrational spectra of crystals of bismuth borates. Crystallogr. Rep. 50, 127–136 (2005)
- A.V. Egorysheva, V.I. Burkov, V.S. Gorelik, Y.F. Kargin, V.V. Koltashev, V.G. Plotnichenko, Raman scattering in monocrystal Bi₃B₅O₁₂. Phys. Solid State 43, 1655–1658 (2001)
- C.F. Tseng, P.J. Tseng, C.M. Chan, Y.C. Kao, Novel temperature stable Li₂MnO₃ dielectric ceramics with high Q for LTCC applications. J. Am. Ceram. Soc. 97, 1918–1922 (2014)
- A.V. Trukhanov, N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Baykal, D.I. Tishkevich, D.A. Vinnik, M.G. Vakhitov, D.S. Klygach, M.V. Silibin, Peculiarities of the microwave properties of hard–soft functional composites SrTb_{0.01}. Tm_{0.01}Fe_{11.98}O₁₉–AFe₂O₄ (A = Co, Ni, Zn, Cu, or Mn). RSC Adv. **10**, 32638–32651 (2020)
- D.S. Liu, C.W. Zhong, T.Y. Qin, Q. Yang, B. Tang, S.R. Zhang, Low-temperature sintering of CaMgSi₂O₆–KBS

composites with ultralow dielectric constant. Ceram. Int. 46, 17818–17824 (2020)

 D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, Microwave dielectric ceramics in Li₂O–Bi₂O₃–MoO₃ system with ultra-low sintering temperatures. J. Am. Ceram. Soc. 93, 1096–1100 (2010) **Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.