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ABSTRACT

Heavy metal-based oxide glasses with composition 30Li2O�20PbO�xBi2O3-

(50 - x)SiO2 (where, x = 0 to 50 mol%) were prepared by standard melt-quench

procedure at temperature 1150 �C for 30 min. The amorphous nature of the

prepared samples was confirmed by the low-intensity broad hump in XRD

analysis. Fourier transform infrared spectroscopy predicts the role of Bi2O3 as

network former as well as modifier due to the existence of BiO3 and BiO6

structural units. The Archimedes principle was used to compute the density of

samples, which was found to increase with the bismuth concentration. The

optical properties of synthesized samples were measured using UV–VIS–NIR

spectroscopy. With increasing bismuth content, optical parameters such as cut-

off wavelength, theoretical optical basicity, oxide ion polarizability, and molar

refractivity increase, whereas the optical energy bandgap decreases. The large

values of refractive index and smaller metallization criterion for all the samples

(ranges from 0.310 to 0.395) suggest that studied glasses can be explored for

non-linear optical applications.

1 Introduction

Numerous studies on heavy metal-based oxide glas-

ses containing PbO, Bi2O3, and other heavy metals

have revealed substantial non-resonant optical

infrared transmission up to about 7 lm [1–3]. Glass

materials have various advantages like as effortlessly

molded in multiple shapes, smoothly constructed

and manufactured, transparent, to be thermally

stable and chemically robust, and cover vast com-

positional range [4–6], as compared to other

materials. Due to its higher absorption of dopants in

an amorphous state, glassy materials provide new

opportunities for the fabrication of compact, high-

power devices [7]. Silicates are generally considered

to be necessary glassy host materials for a variety of

opto-dielectric applications. SiO2 is one of the most

complex and diverse material families, occurring

naturally as a composite of multiple minerals and a

synthesized material (glass former) [7, 8]. The

mechanical, chemical, optical, and luminous proper-

ties of silicate glasses are outstanding. Silicates are
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essential components in industrial and domestic

glassware [9]. It is employed in structural materials,

microelectronics (as an electrical insulator), thermal

and dielectric sectors, and components. Nanoparticle-

doped silicate glasses can be used for various

biomedical applications [10]. High density, optical

absorption, and tunable refractive index are the out-

standing features of bismuth-based glasses [11]. Bis-

muth has a number of important applications in glass

and glass ceramics, thermal and mechanical detec-

tors, reflecting windows, and optical and optoelec-

tronic devices [12, 13]. Bismuth oxide can be used to

synthesize glass materials, but glass formation is not

easy. However, other compounds, such as PbO and

SiO2, can be used to grow glass materials by a simple

synthesis pathway; these materials show structural

units that are similar to BiO3 and BiO6. In BiO3, the

pyramidal structural unit is represented as a glass

former in which the bismuth ion is attached to three

oxygen atoms and the outermost lone pair of elec-

trons 6s2 is present at the top. BiO6 octahedral units

act as modifiers and induce structural defects in the

amorphous form [14–16]. It has been predicted that in

glasses, bismuth oxide has dual role as a glass net-

work and a modifier and this could be because of

high polarizability and smaller ionic size of Bi3?.

Bismuth can also exist in different ionic states, such

as Bi?, Bi4?, and Bi5?, depending on its concentration

and chemical composition [11, 17, 18]. When Bi2O3 is

added to a silicate glass host, it transforms into a

rigid, stretchy, non-corrosive, and thermally

stable material. Because of their significant thermally

stimulated luminescence, Bi2O3 dopant silicate glas-

ses are commonly used as dosimeters for radiation

therapy and protection. The addition of Bi2O3 to sil-

icate glasses is suggested to enhance strength and

provide gamma radiation protection [19]. PbO is

another heavy metal oxide with a high atomic num-

ber, high refractive index, and low melting point [20].

Lead Oxide can be used as a filler/loading material in

the matrix of various materials because it has an

octahedral structure in its PbO6 form, which can be

used to improve material qualities; however, it has a

covalent bond structure in its PbO4 form, which can

be used to grow glass materials [21–23]. Further, a

high atomic weight of PbO and Bi2O3 in glass mate-

rial expands the FTIR spectrum range and reveals

different structural units [24]. Lithium ions, in

addition to bismuth, have important applications due

to their small size and ionic radii (&0.76 Å), electro-

positive nature, lightweight, ability to be used at high

voltage, and high energy density [25, 26]. Lithium

containing glasses can be utilized in solid-state

lithium batteries and solid electrolytes because they

have the highest ionic conductivity [27, 28]. Recently,

Menazea et al. have reported the ac conductivity of

lithium containing nanocomposite and found the

suitability of material to be used in rechargeable

battery applications [29]. Glass networks made of

Bi2O3 and SiO2 have been employed recently and the

properties of these composites have been improved

by adding lithium ions into a mixed matrix of Bi2O3

and SiO2 [24, 30, 31]. All of the oxides mentioned

above are commonly used to make high-resistance

silicate-based compound glasses. Silicate-based glas-

ses have a narrow cut-off wavelength and a large

transmitting window, making them ideal for a vari-

ety of applications. Also, bismuth silicate glasses

have essential applications, such as low-loss optical

fibers, optical amplifiers, oscillators and IR transmit-

ting materials [32, 33]. In the recent literature, there

are several studies done on the glass systems Bi2O3-

SiO2 [34], ZnO�Bi2O3�SiO2 [11], PbO�SiO2 [35], Bi2O3-

TiO2�SiO2 [36], Li2O�Bi2O3�SiO2 [37], BaO�Bi2O3�SiO2

[38], Li2O�PbO�SiO2 [24], Fe2O3�Bi2O3�SiO2 [39], SiO2-

B2O3�ZnO�Bi2O3 [19], Li2O�ZnO�Bi2O3�SiO2 [40], and

Li2O�CdO�Bi2O3�SiO2 [41]. However, work on the

physical, structural, and optical aspects of lithium

lead bismuth silicate glass system has been not

reported. Therefore, in the present research work, we

synthesized 30Li2O�20PbO�xBi2O3�(50-x)SiO2

(where, x = 0 to 50 mol%) glasses and investigated

the influence of bismuth oxide on the structural fea-

tures of the samples by employing X-ray diffraction

(XRD) and Fourier Transform Infrared (FTIR) Spec-

troscopy. In order to examine the role of different

structural units spectra have been deconvoluted

using origin software. A correlation between the

physical and structural properties has been made.

Further, for more insight optical properties viz., cut-

off wavelength (kC), energy bandgap (Eg), Urbach

energy (DE), theoretical optical basicity (Kth), oxide

ions polarizability (a0
2-), refractive index (n), reflec-

tion loss (RL), molar refractivity (Rm), and metalliza-

tion criterion (M), using the UV–VIS–NIR

spectroscopy have also been analyzed.

12372 J Mater Sci: Mater Electron (2022) 33:12371–12383



2 Experimental details

2.1 Synthesis of glasses

The chemicals required Li2CO3, PbCO3, Bi2O3, and SiO2

in the synthesis of desired samples were purchased

from high media chemicals with 99.5% purity and

analytical-grade mark. The glass samples were made

using the melt-quenching technique with the compo-

sition 30Li2O�20PbO�xBi2O3�(50-x)SiO2 (where x = 0,

10, 20, 30, 40, and 50 mol%). The prepared mixture of

chemicals was placed in a porcelain crucible and then

heated in an electric muffle furnace at a temperature of

1150 �C. As obtained melt was occasionally stirred in

between during the entire procedure of 30 min and we

obtained homogeneous mixture. Finally, the resultant

mixtures were splashed onto a stainless steel plate and

pressed immediately with another stainless steel plate.

The obtained samples were annealed below the glass

transition temperature (Tg) for 3 h to remove thermal

stress occurred during quenching. The prepared sam-

ples were labeled as S0, S1, S2, S3, S4, and S5.

2.2 Characterization techniques

The X-ray diffractograms of powdered samples were

recorded at room temperature using a Rigaku Mini-

flex-II X-ray diffractometer. The glass transition tem-

perature was recorded using a Differential Scanning

Calorimeter (ModelMettler ToledoQ20)maintainedat

a temperature of 10 �C/min. For exploring the

molecular bonding properties, Fourier transformation

infrared spectroscopy was employed through Perki-

nElmer (BX-II) spectrometer at room temperature. For

the FTIR measurements, acceptable glass powder

samplesweremixedwithKBr in theproportion of 1:20.

After preparing the thin pellets, the infrared spectra

were recorded quickly to avoid moisture. The optical

absorption spectra of the polished glass samples were

recorded in the wavelength range of 190–3300 nm

using a Shimadzu spectrometer (UV-3600 Plus).

3 Results and discussion

3.1 Structural and molecular bonding
measurements

Figure 1a represents the XRD spectra of present glass

samples (S0–S5). The XRD patterns of prepared

samples were recorded between the angles 10 to 80�.
Because of the highly short-range disordering of

atoms in glasses, the XRD pattern of all the samples

has a large hump around * 27� which confirms that

the glass samples are amorphous in nature. Also, the

variation is observed in the broad hump when

loading takes place which confirms the fact of inter-

action between bismuth and silicate particles.

As shown in Fig. 1b, molecular bonding measure-

ments were performed using FTIR in the

Fig. 1 a XRD patterns of different

30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glass compositions.

b FTIR spectra of different 30Li2O�20PbO�xBi2O3

(50 - x)�SiO2 glasses at room temperature
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wavenumber range 400–2000 cm-1 at room temper-

ature. This region of mid-infrared spectrum is the

fingerprint region, where IR vibrations are most

active. The FTIR spectra of present samples contain a

number of fundamental bonds that confirm the

desired samples growth. Due to the abundance of the

heavy metal bismuth oxide (Bi2O3) and modifier

cations (Li2O, PbO), the position of absorption bands

in the spectra of these glasses is similar to the usual

ranges of lithium zinc bismuth silicate and borate

glasses [40, 41]. Two absorption bands are identified

in the wavelength range 750–1250 cm-1 centered at

981 cm-1 and 400–600 cm-1 centered at 498 cm-1,

respectively. From Fig. 1b, it is also observed that in

the presence of a modifier, when the SiO2 is replaced

by an unusual glass former (Bi2O3) the intensity as

well as the position of these bands changes. FTIR

spectra in band range from 400 to 600 cm-1 infer that

the band presents around wavenumber * 425 cm-1

as a result of symmetric oxygen bending-rock mode

(R) BO’s bonding and around * 450 cm-1 ascribed

to the vibration of Pb–O in the PbO4 structural unit

[42, 43]. Furthermore, the Li–O–Li and Bi–O bending

and stretching vibrations of bonds can be linked to

the bands located between 400 and 600 cm-1 [44, 45].

Stalin et al. have assigned the band in this region to

Li? and Bi–O–Bi linkage in BiO6 octahedral unit [46].

Similarly, Kaur et al. have also linked the bands in

region\ 650 cm-1 to vibrations of the BiO6 and in

region 420–460 cm-1 to lithium cation vibration [47].

A sharp peak at 624 cm-1 is also observed behind

this range, which shifts toward lower wavenumber

when Bi2O3 percentage in glass composition increa-

ses and owing to Bi–O stretching vibrations in the

BiO6 octahedral unit [48]. A combined broad valley

peak is observed in the wavenumber range

750–1250 cm-1. To identify all present peaks in this

region, this wavenumber range was deconvoluted

into five components using Lorentzian and Gaussian

curve fitting for all the samples. It is observed that the

area under all of the bands change when the doping

concentration of component increases, as shown in

Fig. 2a–f. The calculated parameters such as peak

position (Xc), amplitudes (A), the full width at half

maxima (W), and the corresponding IR band assign-

ments are tabulated in Tables 1 and 2, respectively.

Figure 2a shows the deconvoluted FTIR spectra of

pure (x = 0) samples, which consists of four peaks,

whereas deconvoluted spectra of composite (10 B x

B 50) samples contain five peaks indicating the

development of a new peak when loading concen-

tration is introduced in the matrix of the pure sample.

In the deconvoluted spectra, the band at

around * 868 cm-1 is attributed with the vibration

of PbO6 structural units and Bi–O stretching vibra-

tions of Bi–O bonds in BiO3 units [37, 45, 49], while

band * 944 cm-1 is associated with O–Si–O bonds in

[SiO4]
4- units (Q0) stretch asymmetrically without

bridging oxygen ions per silicon [35, 50]. Similarly,

bands at 1029 cm-1 and 1104 cm-1 can be assigned to

asymmetrical stretching vibrations of O–Si–O bonds

in SiO4 tetrahedral units in a pure sample. Peaks

situated at around * 969 cm-1 may be assigned to

the combined vibrations of PbO6 structural units and

asymmetric stretching vibrations of [SiO4]
3- units

(Q1; with one bridging oxygen ions per silicon)

[51, 52]. Moreover, another band at

around * 1035 cm-1 is due to the asymmetric

stretching vibrations of [SiO4]
2- units (Q2; with two

bridging oxygen ions per silicon). However, another

band observed at around * 1055 cm-1 is ascribed to

the asymmetric stretching vibrations of [SiO4]
- units

(Q3; with three bridging oxygen ions per silicon).

Also, the band situated at * 1105 cm-1 can be

assigned to the linkage vibrations of Bi(3)–O–Bi(6)

associated with NBOs and can be connected to the

asymmetric stretching vibrations of [SiO4] tetrahedral

units (Q4; with four bridging oxygen ions per silicon)

[52–54].

3.2 Physical properties

3.2.1 Density measurements

The density of the prepared samples was determined

using the Archimedes principle at room temperature.

Xylene was employed as the buoyant fluid in this

technique. The adequate molar volume (Vm) for all

the samples was estimated using the formula given

below [11]

Vm ¼ M=D; ð1Þ

where M is the molar mass, and D is the density of

glass samples (D for xylene is 0.861 g/cm3). The

expressive crystalline volume (VC) of samples was

computed using the expression [11]

VC ¼
X

xiVi; ð2Þ

Here xi is the molar fraction and Vi is the crystalline

molar volume for each constituents. For Li2O, PbO,
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Bi2O3, and SiO2 crystalline molar volume is 14.84,

23.42, 52.36, and 22.68 cm3, respectively [22].

Figure 3 illustrates that the density and the molar

volume of the studied glasses show an increasing

trend with the rise in concentration of Bi2O3. The

values of density increase from 3.54 to 5.39 (g/cm3)

with the concentration of Bi2O3 (Table 3). Molar vol-

ume and crystalline volume show similar

Fig. 2 a–f Deconvoluted FTIR spectra of 30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses

J Mater Sci: Mater Electron (2022) 33:12371–12383 12375



variations. The large molecular mass of bismuth

(465.98 a.m.u) in comparison to silicate (60.08 a.m.u)

entailed this increase in density and molar volume.

Similar trends have been observed by Meena for

bismuth containing glasses [9]. Also, there is no much

variation in the density values after x = 30 shows

some sort of structural changes occurring at this

compositions. Further, for all glass compositions, Vm

values exceed VC values, indicating the existence of

excess structural volume, i.e., the potential of glass

formation rather than crystallization.

3.2.2 Differential scanning calorimetry (DSC)

The DSC thermographs of prepared glass samples

are shown in Fig. 4. From these curves glass transi-

tion temperature for each composition was deter-

mined and values are listed in Table 3. The intensity

of the chemical bond and the density of crosslinks in

the glass matrix are hypothesized to affect the glass

transition temperature [55]. The glass transition

temperature increases with the bismuth concentra-

tion at the expense of silicate, as shown in Table 3.

From density measurements, it can be predicted that

as Bi2O3 content rise structure becomes more denser

causing an increase in Tg. A slight decrease in the

value of glass transition temperature for the S4

sample is due to the effect of Bi2O3 as a modifier

usually weakening the glass structure, also confirmed

by the FTIR spectra.

Table 1 Peak position (Xc), Amplitude (A), and full width at half maxima (W) of deconvoluted peaks of FTIR spectra of different

compositions of 30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glass system

Peak S0 S1 S2 S3 S4 S5

XC A W XC A W XC A W XC A W XC A W XC A W

No cm-1 a.u cm-1 cm-1 a.u cm-1 cm-1 a.u cm-1 cm-1 a.u cm-1 cm-1 a.u cm-1 cm-1 a.u cm-1

1 1104 04 17 1107 03 04 1109 03 04 1108 02 04 1105 0.2 04 1109 0.4 04

2 1029 107 10 1040 24 10 1057 11 08 1054 07 07 1019 2.6 12 1042 1.7 10

3 944 217 13 959 37 10 969 25 11 992 09 07 934 1.6 09 964 1.9 09

4 868 58 09 889 20 08 892 07 07 934 10 07 870 1.5 07 889 02 08

5 834 12 07 849 02 04 854 11 09 831 0.3 04 840 0.4 04

Table 2 Data of FTIR spectra of 30Li2O�20PbO�xBi2O3�(50-x)SiO2 glasses (band position are in cm-1)

S0 S1 S2 S3 S4 S5 IR band assignments

868 834 – – 831 – PbO6 bonds/Bi–O stretching vibration of Bi–O bonds in BiO3 units [31, 40, 41]

– – 849 854 – 840 Symmetric stretching vibration of Bi–O bonds in BiO3 units [34]

– 889 892 – 870 889 The total symmetrical stretching vibrations of the [BiO3] and [BiO6] polyhedral [7, 41]

– – – 934 934 – PbO6 structural units [40]

944 – – – – – Asymmetric stretching vibrations of [SiO4]
4- units (Q0; without bridging oxygen ions per

silicon) [29, 42]

– 959 969 992 – 964 PbO6 structural units/asymmetric stretching vibrations of [SiO4]
3- units (Q1; with one

bridging oxygen ions per silicon) [43, 44]

1029 1040 – – 1019 1042 Asymmetric stretching vibrations of [SiO4]
2- units (Q2; with two bridging oxygen ions per

silicon)

– – 1057 1054 – – Asymmetric stretching vibrations of [SiO4]
- units (Q3; with three bridging oxygen ions per

silicon [44, 46]

1104 1107 1109 1108 1105 1109 Linkage vibrations of Bi(3)–O–Bi(6) [45]/asymmetric stretching vibrations of [SiO4] units

(Q4; with four bridging oxygen ions per silicon) [44, 46]

12376 J Mater Sci: Mater Electron (2022) 33:12371–12383



3.3 UV–VIS–NIR spectroscopy

3.3.1 Optical absorption spectra

In the present study, the optical bandgap and

absorption coefficient, a(m) of glass samples were

measured by studying the optical absorption spectra.

The Beer–Lambert law is used to compute the

absorption coefficient a(m),

aðmÞ ¼ A

t
; ð3Þ

where A is the absorbance and t is the thickness of

glass sample. A relationship between absorption

coefficient a(m) and the role of photon energy (hm)
gives the direct and indirect optical transitions as

well as optical bandgap energy and is known as

Tauc’s relation [56].

a vð Þ ¼
B hv� Eg
� �

hv

n

; ð4Þ

where B is a constant and known as the band tailing

parameter. The energy of photon is hm that is incident
on glass materials and n is depending on the type of

glass transition. The value of n = 2, 1/2, 3, and 1/3

depends upon the electronic transition of the

absorption factor. For n = 2 and 3, transitions are

considered as indirectly allowed and indirect for-

bidden, whereas for n = 1/2 and 1/3 transitions are

directly allowed and direct forbidden, respectively

[57]. Indirect optically allowed transition is possible

in solid amorphous glass material. There are three

regions found in the absorption coefficient. The first

region is the high absorption region which is known

as the ‘‘Tauc region’’ and depicted in Fig. 5. The

energy gap of optical band was estimated from the

linear section of the curve toward the energy axis at

ðahmÞ1=2 ¼ 0 and obtained values are listed in Table 3.

It is clear from Fig. 6, that with an increase in the

concentration of Bi2O3 in the glass system, both the

optical absorption spectra and the cut-off wavelength

are observed to be red shifted. Similarly, the bandgap

energy is seen to decrease from S0 (3.11 eV) to S5

(1.92 eV). This trend shows that when the concen-

tration of bismuth ion rises (0 to 50 mol%), the non-

bridging oxygen ion (NBO) rises, lowering the

bandgap energy. Large difference in Vm and VC

values with increase in bismuth concentration also

supports this assumption. The spectral investigations

also revealed that NBOs are associated with asym-

metrical stretching vibration in the SiO4 tetrahedral

unit. Because when a metal–oxygen bond breaks,

bond energy is released. The highest energy state of

the valence band model consists of O(2p) orbitals,

whereas the lowest energy level is made up of the

conduction band, which is made up of M(nS) orbitals.

The non-bridging oxygen atoms have higher energy

than bonding orbital. As a result, the increase in non-

bridging oxygen (NBOs) concentration results in an

Fig. 3 Compositional dependency of density, molar volume, and

crystalline volume for all the samples of

30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses

Table 3 Physical and optical parameters of

30Li2O�20PbO�xBi2O3�(50 - x)SiO2 glasses

Parameter S0 S1 S2 S3 S4 S5

D (g/cm3) 3.54 4.43 4.51 4.94 5.24 5.39

Vm (cm3/mol) 23.63 28.04 36.55 41.58 46.95 53.17

VC (cm3/mol) 20.48 23.44 26.41 29.38 32.35 35.32

Tg (�C) 268 380 392 420 415 427

kC (nm) 358 410 418 446 482 539

Eg (eV) n = 2 3.11 2.68 2.48 2.30 2.12 1.92

DE (eV) 0.56 0.55 0.64 0.61 0.52 0.32

Kth *(10
-24 cm3) 0.75 0.82 0.89 0.95 1.02 1.09

a0
2-(Eg) 1.77 1.94 2.11 2.31 2.56 2.87

n 2.38 2.51 2.56 2.66 2.71 2.77

RL 0.17 0.18 0.19 0.20 0.21 0.22

Rm (cm3/mol) 14.30 17.77 23.67 27.47 31.65 36.68

am 5.67 7.04 9.38 10.89 12.55 14.54

M 0.395 0.366 0.352 0.339 0.326 0.310

J Mater Sci: Mater Electron (2022) 33:12371–12383 12377



increased VBM, lowering the optical bandgap energy

[58]. Initially, polarization due to Bi3? ions in the

glass structure is modest at low content of Bi2O3

resulting in a small shift in the bandgap energy Eg.

However, after adding Bi2O3, substantial polarization

occurs owing to Bi3? ions, leading to a large decrease

in the bandgap energy Eg (Table 3). Thus, Bi2O3

enters the interstitial sites as a modifier upto 30 mol%

that produces maximum NBOs. Bismuth ionic bonds

are developed with NBOs at the place of covalent

bonds. When the bismuth concentration is increased

at 40 to 50 mol%, it enters in the network as a former.

These results are also supported by the structural

variation depending upon the composition in the

present glasses.

The second region, known as the ‘‘Urbach region,’’

appears as a result of structural disorientation of the

materials. It depends on various factors, like thermal

vibration in the lattice, temperature, statics, and

induced disorder, and photon energy. The slope of

the linear region curve drawn between ln(a) and hm,
as illustrated in Fig. 7, was used to calculate the

Urbach energy. The relationship can be expressed as,

100 200 300 400 500 600 700 800

S0

S1

S2

S3

S4

Temperature (0C)

H
ea

t 
F

lo
w

 (
A

.U
.)

100 300 500 700

S5

Temperature (0C)

H
ea

t 
F

lo
w

 (A
.U

.) (b)

(a)

Fig. 4 DSC thermographs for different compositions of 30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses

Fig. 5 Tauc’s plot for all the compositions of

30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses for n = 2

Fig. 6 Optical absorbance spectra as a function of wavelength for

all compositions of 30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses
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ln aðmÞ ¼ hm
DE

þ constant: ð5Þ

The obtained values of DE are presented in Table 3

and it was concluded that the value of DE decreases

as the concentration of Bi2O3 content increases and

the minimum value of Urbach energy is observed for

S5. It may be due to the decrease in broadening that is

correlated with the static disorder [59, 60]. The value

of DE is consistent with the width of the band tail of

the electron state. Due to phonon-assisted indirect

electronic transition between localized states, the

small value of DE generates the exponential tail [61].

Similarly, the significant value of DE reveals that

defects are maximum and reduce the long-range

order. In addition, as compared to other composi-

tions, low values of Urbach energy at a high value of

Bi2O3 suggest the possibility of long-range order

locally developing the defect concentration [62].

The third region in UV spectra arises due to weak

absorption. The values of refractive index increases

and becomes maximum (Fig. 8) at a concentration of

50 mol% due to the maximum concentration of both

modifier and former oxides of lead and bismuth.

Also, a decrease in bandgap energy which causes an

increase in refractive index is due to electronic band

structure, as illustrated in Eq. (6)

n2 � 1

n2 þ 2

� �
¼ 1�

ffiffiffiffiffi
Eg

20

r
: ð6Þ

3.3.2 Optical parameters

The value of theoretical optical basicity ðKthÞ for the

prepared glasses has been calculated by acid–base

properties that represent in terms of electron density

carries by oxygen using the expression (7) [63, 64].

Kth ¼ KLi2O :XLi2O þ KPbO:XPbO þ KBi2O3 :XBi2O3

þ KSiO2
:XSiO2

; ð7Þ

where XLi2O,XPbO,XBi2O3 , and XSiO2
are equivalent

fraction of different oxides and

KLi2O ;KPbO;KBi2O3
; and KSiO2

are their optical basici-

ties. The optical basicity values KLi2O = 0.87, KPbO =

1.18, and KBi2O3
= 1.19,KSiO2

= 0.50 are taken from the

literature [65].

Simultaneously, it gives us a relationship between

oxide ion polarizability (a2�0 ) and the optical basicity

of the oxide medium,

Kth ¼ 1:67 1� 1

a2�0

� �
: ð8Þ

The value of theoretical optical basicity increases

with the concentration of Bi2O3 content, as seen in

Table 3. The polarizability of the Bi3? cation is high,

and it has a lone pair in the outermost shell. As a

result, when the concentration of Bi2O3 increases, the

NBOs and theoretical optical basicity increase. From

Table 3 it can be seen that oxide ion polarizability also

increases. The electron donor ability of the oxide ions

is thought to be much more vital in these samples.

The molar refractivity (Rm) is related to the polariz-

ability of constituent ions of the glass and can beFig. 7 Urbach’s Plot for all the compositions of

30Li2O�20PbO�xBi2O3�(50 - x)�SiO2 glasses

Fig. 8 The variation of bandgap energy and refractive index with

different concentrations of Bi2O3
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computed from the Eg values, using the relation

given as [66],

Rm ¼ Vm 1�
ffiffiffiffiffi
Eg

20

r" #
¼ n2 � 1

n2 þ 2

� �
cm3

mol

� �
: ð9Þ

The value of Rm increases with the increasing

concentration of bismuth from 0 to 50 mol% rapidly

and the reverse trend is observed in bandgap energy.

The molar polarizability (am) is also related to molar

refractivity as given by the relation [67],

am ¼ 3

4pNA

� �
Rm: ð10Þ

The reflection loss is also calculated by the given

equation [62],

RL ¼ n� 1

nþ 1

� �2

: ð11Þ

The metallization criterion (M) of oxide based

on its bandgap energy is given as [68],

M ¼ 1� Rm

Vm

: ð12Þ

Metallization criterion provides us the information

on nature of the material. When the ratio of Rm/Vm-

C 1, the material is metallic in nature, and when the

value of Rm/Vm\ 1 material is of non-metallic nat-

ure. Table 3 shows that the reported values of M are

less than 1, indicating that our samples are non-

metallic in nature and may possess non-linear optical

properties.

4 Conclusion

A study on the effect of substitution of SiO2 by Bi2O3

on the physical and structural properties of Li2-
O�PbO�Bi2O3�SiO2 glasses has been carried out. The

diffused XRD patterns * 27� confirm the amorphous

nature of the as-prepared glass samples. The density,

molar volume, and crystalline volume were increased

with concentration of bismuth oxide. FTIR structural

analysis reveals that Bi2O3 acts as network former

and modifier and can exist in the structural units as

BiO3 and BiO6. The indirect-allowed optical transi-

tion is possible in glass sample. For the present

studied glass composition cut-off wavelength

increases from 358 to 539 nm and bandgap energy

decreases from 3.11 to 1.92 eV due to increase in

bismuth concentration that increase the number of

non-bridging oxygen ions which result in decrease of

bandgap energy. The Urbach formula is used to

determine Urbach energy. Smaller value DE at high

Bi2O3 content shows the possibility of long-range

order arising locally as the defect concentration

grows. The values of metallization criterion for all the

samples are less than 1 (0.395–0.310), which indicate

that studied glasses can be explored for non-linear

optical applications.
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