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ABSTRACT

Rare earth-doped phosphor materials have always remained in focus for

excellent luminescence properties. Herein we have synthesized Yb3? and Er3?-

doped BaWO4 nanophosphor via facile hydrothermal method with red and

green region emissions by 980 nm excitation. Red and green region emissions

were observed due to 4F9/2 ?
4I15/2 and 2H11/2/

4S3/2 ?
4I15/2 transitions,

respectively, of Er3?, where Yb3? acts as a sensitizer. The sample characteriza-

tion was done using X-Ray Diffraction (XRD), Fourier Transform Infrared

Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and X-ray

Photoelectron Spectroscopy (XPS) techniques. The consequences of different

concentrations of activator ion (Er3?) in BaWO4: Yb
3?, Er3? were studied from

luminescence perspective in detail. The intensity of overall emission varied with

altering the power of excitation that influences the photon transfer pathways. It

was found that two-photon processes control both red and green emissions in

the upconversion process. Decay behavior for both the emission was investi-

gated. Thus, the tunable photoluminescence property suggests its potential in

optoelectronic applications.

1 Introduction

Research on trivalent lanthanide-doped upconver-

sion (UC) phosphor materials have attracted broad

attention during the past decade for their widespread

application in diverse areas, like solid-state lighting

[1], solar cells [2–4], temperature sensors [5], anti-

counterfeiting security inks [6–9], modern display

devices [10], and biomedical imaging [11–13]. The

lanthanides show characteristic visible emissions
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because well-shielded 4f electrons show sharp intra-

4f transitions [14, 15]. An important criterion of

obtaining efficient phosphor lies in careful selection

of the host compound. UC luminescence intensity is

greatly enhanced by host materials having lower

phonon energy as they decrease non-radiative energy

transfers [10]. Among numerous inorganic materials,

tungstates have drawn significant attraction due to

their easy synthesis method [16, 17], chemical stabil-

ity [18], yield and lower phonon energy [19]. Com-

pared to the sol–gel and co-precipitation method,

hydrothermal synthesis uses water as the reaction

medium. The synthesis cost is low and reaction

conditions are more controllable which cause

advantages of producing crystal of better purity and

uniform dispersion [8]. For UC phosphors, Yb3? ion

(sensitizer) has large absorption around the com-

monly used 980 nm excitation source [20, 21]. Yb3?

ions transfer the absorbed radiation to activator ions

and the activators show different characteristic

emissions from their step-like energy levels. Among

various rare earth elements, Er3? ion is well known

due to its characteristic green (2H11/2/
4S3/2 ?

4I15/2)

and red (4F9/2 ?
4I15/2) emission [22–25]. These

emissions are utilized to prepare phosphors with

visible emissions [26, 27].

Herein, we have explored the consequences of

varying Er3? concentrations on UC luminescence

properties of Yb, Er codoped BaWO4 synthesized via

hydrothermal method. XRD, FTIR, TEM, and XPS

studies were done for structural characterization.

2 Experimental

For BaWO4: Yb
3?, Er3? phosphor synthesis, barium

nitrate [(Ba(NO3)2) (purity 99.99%, Merck)], sodium

tungstate [(Na2WO4.2H2O) (purity 99.99%, Merck)],

ytterbium oxide [(Yb2O3) (purity 99.99%, Merck)],

and erbium oxide [(Er2O3) (purity 99.99%, Merck)]

were taken as precursors. Amounts of the cations

were as follows: (1-x–y)Ba2?: xYb3?: yEr3?, where

x = 0.05 and y = 0.01, 0.02, 0.03, and 0.04. Firstly,

Yb2O3 and Er2O3 were separately taken into small

quantity of dilute nitric acid followed by simultane-

ous heating and stirring. Ba(NO3)2 and Na2WO4-

2H2O were added into deionized water in a beaker.

This aqueous solution was heated and stirred

simultaneously (* 30 min) until the solution chan-

ged into white flocculent liquid. Next, the well

dissolved rare earth solutions prepared initially were

mixed thoroughly with the white flocculent liquid by

30 min of stirring and pH was raised to 9 by careful

addition of ammonium hydroxide solution. The

solution was then sealed in Teflon-lined stainless

steel autoclave and put at 190 �C for 18 h followed by

natural cooling to ambient temperature. Washing of

the precipitate was done with ethanol and deionized

water for impurity removal and dried for * 12 h at

80 �C.

3 Characterization

The crystal structure determination was done using

Bruker D8 ADVANCE ECO diffractometer with

monochromatic Cu Ka radiation (k = 1.5406 Å). The

tube current and voltage during the experiment were

25 mA and 40 kV, respectively. The microscopic

images of nanophosphors were taken by JEOL TEM

(FEG-TEM, JEOL-JEM 2100F). FTIR characterization

was performed by Shimadzu IRAffinity-1S. XPS

measurement was recorded using OMICRON X-ray

photoelectron spectrometer (serial number: 0571)

with Al Ka X-ray source. Photoluminescence (PL)

property was investigated by Edinburgh FLS 980

Photoluminescence Spectrometer with a 980 nm

excitation source. Chromaticity coordinates were

calculated using the 1931 CIE chromaticity theory.

4 Results and discussion

4.1 Structural analysis

The XRD graphs of BaWO4: Yb, Er is represented in

Fig. 1a. The diffraction patterns of both pure and

doped samples have shown well-matched peaks with

standard JCPDS data card number 85–0588, which

belongs to tetragonal scheelite-like BaWO4 with space

group I41/a [28, 29]. Due to the small size difference

of Yb3? and Er3? with the Ba2? ions, all the dopant

elements are expected to reside in the Ba2? sites in

BaWO4 (Fig. 1c) [30]. This is evident from the

diffraction patterns, where no extra peak corre-

sponding to dopant ions is present. The diffraction

patterns suggest effective incorporation of dopants

up to the concentration of 5% Yb3? and 4% Er3?

without any significant effect on the host crystal

structure.
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The Williamson–Hall (W–H) plot is used to calcu-

late the crystallite size and the micro-strain present in

the materials. The W–H equation can be given by

bcosh ¼ 4esinhþ Kk
D

ð1Þ

where b signifies the FWHM measured for different

XRD lines corresponding to different planes, e is the

micro-strain inside the material, and D is the crys-

tallite size. The exact value of K is not known for the

present materials system, hence K = 1 was used and

D value obtained from the intercept are only esti-

mates. Equation 1 represents a straight line between

4sinh (X-axis) and bcosh (Y-axis). The slope of the line

gives the strain (e) and the intercept (k/D) of this line

on the Y-axis gives grain size (D) [29]. From the

intercept of W–H plot, crystallite size was found to be

around 79 nm (Fig. 1b).

Particle morphology and size of synthesized

phosphors are illustrated in Fig. 2. Distorted spheri-

cal-type particles with size * 50–100 nm were found

for BaWO4: Yb, Er as indicated in Fig. 2a. The lattice

image of the nanophosphor showing different arrays

of atoms is presented in Fig. 2b.

Figure 3 shows the FTIR spectra of pure BaWO4

and BaWO4: Yb, Er. The sharp absorption peak

observed around 800 cm-1 is attributed to the anti-

symmetric stretching of the W–O bonds present in

WO4
2- groups [29]. Small peak near 1500 cm-1 is due

to carboxylate groups coming from citrate ions used

during synthesis.

XPS is a useful surface characterization technique

to confirm presence of dopant elements in the host

material. XPS data taken for BaWO4: 5% Yb, 3% Er

sample are presented in Fig. 4. The survey spectrum

(Fig. 4a) confirms the presence of Ba, W, O, Yb, and

Er in the sample. High-resolution spectrum of Ba 3d

(Fig. 4b) reveals two peaks at 778.7 and 794.1 eV

corresponding to Ba 3d5/2 and Ba 3d3/2, respectively.

For W 4f (Fig. 4c) there are two peaks at 34.2 and

36.4 eV due to W 4f7/2 and W 4f5/2, respectively. Peak

fitting for Yb 4d leads to identification of four main

peaks in the range of 174–202 eV (Fig. 4d). Fitting for

Er 4d shows a peak at 168 eV (Fig. 4e). All the peaks

are in well accordance with previously reported data

[31].

4.2 Photoluminescence study

As shown in Fig. 5a, emission peaks were observed

in the regions of 515–575 nm and 625–685 nm for

BaWO4: Yb, Er. For constant Yb3? concentration of

5 mol %, Er3? was taken from 1 mol% to 4 mol%. As

shown in Fig. 5, the emission intensity gradually

increases from 1 mol% up to 3 mol% and decreases at

4 mol% of Er3?. With increasing Er3? concentration

from 1 mol% to 4 mol% and invariable Yb3? con-

centration (5 mol%), the variation tendency of UC

intensities is presented in Fig. 5a and b. The optimum

dopant concentration was found to be 5 mol% Yb3?

and 3 mol% Er3? for the BaWO4: Yb, Er phosphors.

If luminescence quenching is due to the energy

transfer among identical lanthanide ions, the deter-

mination of critical distance (Rc) can be done by the

Blasse equation (Eq. 2) [29]

Fig. 1 a XRD patterns of BaWO4: Yb, Er. b Williamson–Hall plot of BaWO4: 5%Yb, 3%Er. c Schematic crystal structure of BaWO4
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RC ¼ 2ð 3V

4pXcN
Þ1=3 ð2Þ

where ‘V’ = unit cell volume, ‘Xc’ = activator ion’s

mole fraction beyond which quenching occurs (criti-

cal concentration) and ‘N’ = crystallographic sites

possessed by Er3? in unit cell. For optimized 3 mol%

Er3? (Xc = 0.03)-doped phosphors tetragonal system,

a = b = 5.613 Å, c = 12.72 Å, Z = 4, V = abc = 400.75

Å3, and N = Z, Rc is calculated to be 18.54 Å. Since Rc

is greater than 5 Å, it is concluded that exchange

interaction among Er3? ions is not the reason behind

concentration quenching, but rather multipolar

interaction is involved in it [29, 32].

Chromaticity coordinates calculated using the 1931

CIE chromaticity theory are shown in Fig. 6. CIE

coordinates of different phosphors are tabulated in

Table 1.

4.2.1 Photoluminescence mechanism

The UC photoluminescence mechanism consists of

different processes, like ground-state absorption

(GSA), excited-state absorption (ESA), energy trans-

fer (ET), and non-radiative transfer (NRT). Upon

excitation with 980 nm laser, energy was mostly

absorbed by the sensitizer Yb3? as Yb3? (* 11.7 X

10–21 cm2) has almost 7 times higher absorption cross-

section area than Er3? (* 1.7 X 10–21 cm2) around

980 nm [33]. This GSA process causes the transition

from ground level 2F7/2 to the excited level 2F5/2 in

Yb3?. While returning to ground level, the Yb3? ions

transfer their energy via different ET processes to the

Er3? ions from where further processes for lumines-

cence take place as presented in Fig. 7. For green

emissions, two sequential ET processes populate the
4F7/2 excited state from ground 4I15/2 as presented

below:

4I15=2 þ ET� 1ðGSA) ! 4I11=2 þ ET� 2 ðESAÞ ! 4F7=2

Two different non-radiative energy transfers from

the excited 4F7/2 level populate the 2H11/2 and 4S3/2
levels. Subsequent relaxation to 4I15/2 level gives rise

to two green emission bands, i.e., green1 (527 nm)

and green2 (541 nm) due to the transitions 2H11/2

? 4I15/2 and
4S3/2 ?

4I15/2, respectively.

Green1: 4I15=2 þ ET - 1(GSA) ! 4I11=2 + ET - 2 (ESA)

! 4F7=2 ! 2H11=2 ! 4I15=2

Fig. 2 a TEM micrographs of

BaWO4: 5%Yb, 3%Er.

b Lattice image of the

nanophosphor

Fig. 3 FTIR spectra of BaWO4: 5%Yb, 3%Er and pure BaWO4
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Green2: 4I15=2 þ ET - 1(GSA) ! 4I11=2 + ET - 2 (ESA)

! 4F7=2 ! 2S3=2 ! 4I15=2

For red emission, electrons from the excited 4I11/2
state populate the 4I13/2 state via an NRT process. An

ESA from this 4I13/2 state populate the 4F9/2 state.

Relaxation from this excited 4F9/2 level to ground

4I15/2 level is accompanied by red emission between

640 and 690 nm. Whole process is outlined below:

4I15=2 þ ET - 1(GSA) ! 4I11=2 ! 4I13=2 þ ET - 3 (ESA)

! 4F9=2 ! 4I15=2

Relation between pump power (P) of laser source

and UC emission intensity (Iem) is given by: Iem a Pn,

Fig. 4 XPS spectrum of a BaWO4: 5% Yb, 3% Er and high-resolution spectra of b Ba 3d, c W 4f, d Yb 4d, and e Er 4d

Fig. 5 a PL emission spectra of BaWO4: Yb, Er. b Relative intensities of the 655 nm and 541 nm emissions for different Er3?

concentrations

J Mater Sci: Mater Electron (2022) 33:9641–9649 9645



where ‘n’ represents the number of photons involved

for a particular emission [27]. Value of ‘n’ is found

from slope by plotting logarithm of pump power vs

logarithm of emitted intensity (lnP vs lnIem graph in

Fig. 8 inset). The values of ‘n’ measured by curve

fitting for 655 nm and 541 nm are 1.63 and 1.57,

respectively. The slopes for both emissions prove

two-photon processes occur both in 655 nm and

541 nm UC emissions. The values of n obtained are

lower than the theoretical value of 2, which indicates

the saturation of the upconversion process [1].

To further explore the mechanism, the decay

curves of red 4F9/2 ?
4I15/2 (655 nm) and green

4S3/2 ?
4I15/2 (541 nm) in BaWO4: 5%Yb3?, 3%Er3?

were recorded under pulsed laser excitation of

980 nm.

Figure 9 shows the decay curves of 655 nm and

541 nm emissions of the nanophosphor that were

fitted into a mono-exponential and bi-exponential

function, respectively, which is in well accordance

with the available literature [23]. The bi-exponential

decay indicates that more than one decay channel

(both radiative and non-radiative) is involved in the

total decay process, whereas mono-exponential decay

indicate only one kind (radiative) of luminescent

center dominates the PL emission. The bi-exponential

decay equation (Eq. 3) and the mono-exponential

decay equation (Eq. 4) are given below:

IðtÞ ¼ A1exp
� t

s1

� �
þ A2exp

� t
s2

� �
ð3Þ

I tð Þ ¼ I0 þ A1exp
�t

sð Þ ð4Þ

where I0 is the initial luminescence intensity, s1 and s2
represent fast and slow luminescence lifetime,

Fig. 6 CIE diagram of BaWO4: 5% Yb, x% Er, x = 1, 2, 3, 4 (in

inset 1, 2, 3, 4 are representing the mole % of Er3?)

Fig. 7 Schematic representation of energy levels in Yb3? and

Er3? along with proposed mechanism for green and red emissions

(Color figure online)

Fig. 8 UC emission intensity with varying pump powers for the

BaWO4: 5%Yb3?, 3%Er3?. Inset figure shows lnP vs lnIem plot

with linear fittingTable 1 CIE coordinates of BaWO4: Yb, Er phosphors

Sl. No Phosphor x coordinate y coordinate

1 BaWO4: 5% Yb, 1% Er 0.37375 0.61239

2 BaWO4: 5% Yb, 2% Er 0.36944 0.61619

3 BaWO4: 5% Yb, 3% Er 0.36704 0.61867

4 BaWO4: 5% Yb, 4% Er 0.37434 0.61189

9646 J Mater Sci: Mater Electron (2022) 33:9641–9649



respectively, and A1 and A2 are the constants

(Table 2) [23, 34]. The average lifetime for bi-expo-

nential decay curve is calculated using the equation

below (Eq. 5).

savg ¼
A1s21 þ A2s22
A1s1 þ A2s2

ð5Þ

The average lifetime for 541 nm emission was cal-

culated using Eq. 5 and observed lifetime of 655 nm

(red) emission and 541 nm (green) emissions was

502.95 ls and 388.22 ls, respectively.

5 Conclusion

We have reported BaWO4: Yb, Er nanophosphor

prepared via hydrothermal route. The phosphors

have shown green and red emissions corresponding

to the transitions 2H11/2/
4S3/2 ?

4I15/2 and 4F9/2 ?
4I15/2 of Er

3?, respectively. The concentration of Er3?

was optimized to be 3 mol % for the highest lumi-

nescence intensity. It was determined that two-

photon processes control both red and green emis-

sions. The average decay time was detected to be in

the microsecond region. Overall PL mechanism was

discussed accordingly. The results signify that the

discussed phosphor may be a suitable option for UC-

based lighting applications.
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