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ABSTRACT

This paper reports the effect of chromium’s substitution in magnetic oxides with

perovskite structure La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0, 0.1, 0.15 and 0.2) com-

pounds which have been produced with the glycine-nitrate process (GNP). The

four compounds have an orthorhombic crystal structure with ‘Pnma’ space

group. We note that they undergo a second-order paramagnetic-ferromagnetic

(PM-FM) phase transition. Substitution manganese by chromium leads to a drop

of the Curie temperature TC from 278 K (x = 0) to 205 K (x = 0.2). Their mag-

netocaloric effect has been evaluated by their magnetic entropy change

�DSmax
M

� �
under a magnetic field change up to 5 T. All relative cooling power

(RCP) suggests that these compounds are suitable candidates for magnetic

refrigeration.

1 Introduction

Magnetic refrigeration (MR) based on the magne-

tocaloric effect (MCE) is an environment-friendly

cooling technology with low energy consumption

[1–3]. Its application has drawn attention not only at

room temperature but even lower (e.g., gas lique-

faction as helium, hydrogen, and natural gas). The

MCE is an inherent property of magnetic materials,

and it is the result of exposing the magnetic material

to an external magnetic field or to removing it [4].

This property enables us to determine whether a

magnetic material can be regarded as a good mag-

netic refrigerant or not. MCE can be evaluated

through the calculation of magnetic entropy changes

(DSM) based on the isothermal magnetization data

and using the Maxwell equation [5].
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DSM T;Hð Þ ¼ SM T;H1ð Þ � SM T;H2ð Þ ¼
Z H2

H1

oM

oT

� �
dH:

ð1Þ

For industrial applications, the efficiency of a good

magnetocaloric material destined for magnetic

refrigeration is evaluated in terms of a high value of

magnetic entropy change (- DSMmax) and a large

relative cooling power (RCP) [6]. RCP is the heat

transfer between the hot and cold reservoirs in the

ideal refrigeration cycle, which is generally assessed

using the following relation [7]:

RCP ¼ ð�DSmax
M Þ

�� ��� dTFWHM; ð2Þ

where ð�DSmax
M Þ

�� �� is the absolute value of the maxi-

mum magnetic entropy change and dTFWHM is the

temperature difference at the full width at half

maximum (FWHM) of (DSM) curve, with

dTFWHM ¼ T2 � T1:.

A lot of research work has been done to find the

best refrigerants with potential applications at RT

magnetic refrigeration, such as the study of Gd5(Ge1-

xSix) [8], MnAs1-xSbx [9], MnFeP1-xAsx, [10], LaFe13-

xSix [11], and Ni–Mn–Ga [12]. Currently, the per-

ovskite manganite oxide with the chemical formula

Ln1-xAxMnO3 (Ln = trivalent rare earth, A = diva-

lent alkaline earth) has attracted much attention due

to its wide range of properties such as (MCE) [7]. The

principal advantages of this type of compounds over

Gd and GdSiGe alloys are low cost, high chemical

stability (no oxidation), tunable TC, low coercivity,

and high electric resistance [13]. Consequently,

manganites oxides have been considered as promis-

ing candidates for MR [14]. Several reports are

addressing magnetic and MCE properties of a per-

ovskite with A-site substitutions such as Pr1/2Sr1/

2MnO3 [15], La0.6Pb0.4MnO3 [16], Nd1-xSrxMnO3 [17],

La1-xCaxMnO3 [18], Ln0.67Sr0.33MnO3 (Ln = La, Pr

and Nd) [19], and Pr-doped La0.67Ca0.33MnO3

nanoparticles [20]. Among these materials, Lan-

thanum manganites have attracted the attention of

many researchers, thanks to the very rich phase dia-

gram observed in La1-xCaxMnO3 and La1-xSrxMnO3

samples. Lanthanum manganites are characterized

by multi-phase transitions [21–23]. In particular, La1-

xSrxMnO3 perovskite manganite is an important

member in the manganite family due to its significant

physical properties and potential applications in

high-performance magneto-resistive sensors and

magnetic heads [24]. The highest Curie temperature

was detected in La0.7Sr0.3MnO3 which was about

360 K. To be used for magnetic refrigeration near

room temperature, it is important to use appropriate

alternative methods to reduce its TC. In general, a

partial replacement of non-magnetic ion La3? with a

smaller sized rare-earth magnetic ion (Sm, Nd, Gd…)

leads to a decrease in the Curie temperature [25]. In

other hand, research has also been carried out on the

replacement of Mn site with transition elements (eg

Fe, Co, Ga, Cr, etc.) [26–33]. The Cr substitution is

notably interesting, since Cr3? is isoelectronic with

Mn4? (t32ge
0
g) and is a non-Jahn–Teller ion [34]. A lit-

erature overview highlights that the ionic radius of

Cr3? is closely the same as that of the Mn3?; there-

fore, it can easily substitute Mn in the manganites

system. Cr substitution in the B-site of manganites

affects the Mn3? –O– Mn4? network because it will

influence the double exchange, which leads to change

the physical properties of the material [35]. For an

industrial achievement, a major interest is focusing

on the design of simple, greener, economic, and

scalable synthesis process of magnetic materials [36].

Magnetic materials have been prepared using several

synthesis techniques (e.g., solid-state reaction, ball

milling, sol–gel). In the recent time, auto-combustion

method of glycine-nitrate precursors is considered to

be the easiest, the fastest process for formation of

homogeneous crystalline particles, and low external

Fig. 1 Details of the auto-combustion process
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energy consumption. We study in this article the

effect of Cr doping on the structural, magnetic, and

magnetocaloric properties of La0.5Sm0.2Sr0.3Mn1-xCrx-

O
3

(x = 0.00, 0.10, 0.15, and 0.20) prepared by auto-

combustion method.

2 Experimental procedure

2.1 Synthesis method

La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0.00, 0.10, 0.15 and

0.20) powders were prepared using the auto-com-

bustion method (See Fig. 1). Stoichiometric amount of

La(NO3)3, 6 H2O, Sm(NO3)3, 6 H2O, Sr(NO3)2,

Mn(NO3)2, 4 H2O, Cr(NO3)3, and 9 H2O (99.995% in

purity, ‘‘Sigma Aldrich’’) were dissolved in distilled

water. Then we add the Glycine nitrate (C2H5NO2,-

* 99.995% ‘‘Sigma Aldrich’’) to the solution which is

used as a fuel. The molar ratio of glycine-nitrate was

fixed on 1 in the present work. The solution was

heated on a hot plate at 100 �C for 1 h with stirring.

The water evaporation converted the solution to a

viscous transparent gel. The auto-ignition started

when the temperature reached 350 �C, the burning

lasted only a few seconds, and a large amount of fine

‘‘ash’’ was produced. The obtained ‘‘ash’’ was pre-

heated at 350 �C for 4 h to eliminate any carbon

remainder in the powder and to form a pure-crystal

structure. The calcined powder was pressed at 4

tons/cm2 to form pellets with a thickness of 1 mm

and then sintered at 600 and 800� C for 12 h.
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Fig. 2 X-ray diffraction pattern of La0.5Sm0.2Sr0.3Mn1-xCrxO3

(x = 0.00, 0.10, 0.15, and 0.20)

Table 1 Refinement results

for the samples

La0.5Sm0.2Sr0.3Mn1-xCrxO3

(x = 0.00, 0.10, 0.15 and 0.20)

determined from XRD patterns

measured at room temperature

Parameters x = 0.00 x = 0.10 x = 0.15 x = 0.20

Symmetry Orthorhombic Orthorhombic Orthorhombic Orthorhombic

Space group Pnma Pnma Pnma Pnma

a (Å) 5.5019 (2) 5.496 (5) 5.491 (4) 5.489 (9)

b (Å) 7.7321 (3) 7.718 (6) 7.713 (7) 7.717 (9)

c (Å) 5.4696 (2) 5.462 (6) 5.459 (9) 5.460 (8)

V (Å 3) 232.68 (6) 231.752 (4) 231.27 (6) 231.376 (8)

dMn�O1
(Å) 1.939 (5) 1.950 (4) 1.949 (4) 1.955 (4)

dMn�O2
(Å) 2.11 (3) 1.99 (3) 1.86 (6) 1.87 (3)

dMn�O2
(Å) 1.82 (3) 1.92 (3) 2.02 (6) 2.03 (3)

dMn�O(Å) 1.958 (5) 1.955 (4) 1.947 (1) 1.953 (8)

hMn�O1�Mn(�) 170.6 (2) 163.36 (17) 163.37 (16) 161.44 (15)

hMn�O2�Mn(�) 162.4 (12) 165.2 (14) 170. (3) 166.4 (12)

hMn�O�Mn(�) 166.51 (6) 164.28 (7) 166.835 (8) 163.926 (7)

Rp (%) 3.32 3.19 3.39 3.74

Rwp (%) 4.21 4.04 4.25 4.79

Rexp (%) 3.67 3.61 3.73 4.16

Brag R-Factor (%) 1.83 1.78 1.59 1.57

RF-Factor (%) 3.86 4.34 3.33 3.19

v2 (%) 1.31 1.25 1.30 1.33
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2.2 Characterization techniques

2.2.1 X-ray powder diffraction

The phase purity, crystal structure, and lattice

parameters have been examined using the X-ray

powder diffraction (XRD) at room temperature. XRD

patterns were collected by a Phillips powder

diffractometer PW 1710 using Cu Ka radiation

(k = 1.5405Å
´

).

The diffraction data were analyzed by the Rietveld

method using the FULLPROF software [37].

2.2.2 FTIR—Fourier Transformation Infrared—

spectroscopy analysis

To identify the functional group of the prepared

samples, we use the FTIR analysis. Nicolet Impact

400 Spectrophotometer was used to record FTIR

spectra in the wavenumber range of 400–4000 cm-1

at RT.

2.2.3 Vibrating sample magnetometer (VSM)

A vibrating sample magnetometer (VSM) was used to

record the magnetic measurements value with a

constant applied magnetic field of 0.1 T under the

conditions of zero-field cooled (ZFC) and field cooled

(FC) in the temperature range of 5–300 K.

Fig. 3 Observed and calculated X-ray diffraction data and

Rietveld refinement for La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0.00,

0.10, 0.15, and 0.20). Vertical bars are the Bragg reflections for

the space group Pnma. The difference pattern between the

observed data and fits are shown at the bottom

J Mater Sci: Mater Electron (2021) 32:22106–22118 22109



Isothermal measurements M (H) were carried out

by varying H up to 5 T at different Ts.

3 Results and discussions

3.1 Structural analysis

The Rietveld refinement of X-ray diffraction patterns

confirms that all compounds are single phase with

orthorhombic structural, Pnma space group (See

Figs. 2 and 3). Table 1 shows information about the

relevant structural parameters obtained by Rietveld

refinements. A reduction of the unit cell volume and

the lattice parameters is expected upon substitution

manganese by chromium because the radius of Cr3?

(0.615 Å) is a little smaller than that of Mn3?

(0.645 Å) [38]. The bond lengths dMn–O and the

bond angle Mn–O–Mn change slightly with increas-

ing Cr3? content.

3.2 Fourier transformation infrared
spectroscopy

In order to detect the absorption bands in the pre-

pared samples, Fourier transformation infrared

spectroscopy analysis was performed at room tem-

perature in the wave number range of

400–4000 cm-1. The FTIR spectrums are presented in

Fig. 4. The main absorption bands are observed at

around 600 cm-1. These absorption bands can be

attributed to Mn–O and O–Mn–O bond vibrations of

the octahedral MnO6 in our perovskite structure

samples [39, 40].

3.3 Magnetic properties

Figure 5 displays the temperature dependence of

magnetization (M) of La0.5Sm0.2Sr0.3Mn1-xCrxO3

samples in the (ZFC) and (FC) processes measured

with the application of a magnetic field of 0.1 T. It can

be seen that the FC curves exhibit a single (PM-FM)

behavior transition with decreasing T. At an irre-

versibility temperature (Tirr), a bifurcation between

the FC and ZFC curves and a drop in ZFC magneti-

zation (k shape) are observed which can be associated

to super para-magnetism or spin glass behavior

[41–43]. Similar behavior was observed in La0.5-

Sm0.2Sr0.3Mn1-xFexO3 compounds reported by Kh.

Abdouli et al. [29].

Curie temperature (TC) is the temperature where

the (PM-FM) transition occurs and is estimated from

the peak of dM/dT (T) curves (inset of Fig. 5). The TC

values for the samples (x = 0.00, 0.10, 0.15, and 0.20)

are given in Table 2. Substitution of Cr at the Mn site

causes a gradually reduction in Curie temperature

from 278 to 205 K for x = 0.00 and x = 0.20.

The decrease of TC is related to the decrease of Mn

ion rate and the increase of Cr ion concentration. Cr3?

ions can basically replace Mn3? ions. Indeed, r\Cr3þ [

= (0.615 Å) is smaller than r\Mn3þ [ = (0.645 Å) and

bigger than r\Mn4þ [ = (0.53 Å). Furthermore, Cr3?

ion has an electronic configuration similar to Mn4?

ion (t32ge
0
g) which lead to the appearance of an anti-

ferromagnetic super exchange interaction between

Cr3? and Mn4? [44]. The increase of the content of
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Fig. 4 FTIR spectra of La0.5Sm0.2Sr0.3 Mn1-xCrxO3 (x = 0.00,

0.10, 0.15 and 0.20) compounds

Table 2 Magnetic parameters for La0.5Sm0.2Sr0.3Mn1-xCrxO3

(x = 0.00, 0.10, 0.15, and 0.20) compounds

x TC (K) hp (K) C (lB.K/T) lexpeff (lB) ltheff(lB)

0.00 278 283.659 (6) 8.64 7.724 (4) 4.630

0.10 264 280.045 (1) 7.10 6.347 (6) 4.532

0.15 245 262.768 (9) 5.75 5.140 (6) 4.482

0.20 205 255.034 (4) 4.77 4.264 (5) 4.431

22110 J Mater Sci: Mater Electron (2021) 32:22106–22118



Cr3? ion significantly decreases Mn3?/ Mn4? ratio

which means that the double-exchange interactions

between Mn3? and Mn4? ions was partially

destroyed, while the antiferromagnetic interactions

between Cr3? and Mn4? are enhanced. Also, the

antiferromagnetic coupling between Mn4?-Mn4? and

Cr3?-Cr3? should be considered. To sum up, ferro-

magnetic double-exchange interactions are weakened

when Mn is substituted by Cr, while the antiferro-

magnetic interactions are reinforced.

Furthermore, in order to know the magnetic

behavior in the paramagnetic range, we studied the

temperature dependence of the inverse magnetic

susceptibility (v), which is plotted from the M (T)

data and shown in (Fig. 6). The fit of (1/v) as a

function of temperature reveals that at high temper-

ature, the four samples follow the Curie–Weiss

behavior:

v ¼ C

T � hp
ð3Þ

where v is the susceptibility, hp is the Curie–Weiss

temperature and C is the Curie constant.

It can be noted that hp values are slightly higher

than that of TC, their positive values indicate that

there is a ferromagnetic exchange interaction

between the nearest neighbors. In general, this dif-

ference between hp and TC depends on the material

and is related with the existence of short range

ordered slightly above TC, which is associated to the

existence of a magnetic inhomogeneity.

According to the determined Curie constant (C),

the known relation

ðlexpeff Þ
2 ¼ 3KBMm

NAl2
B

C ð4Þ
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Fig. 5 Variation of the magnetization (M) vs. temperature (T) of La0.5Sm0.2Sr0.3 Mn1-xCrxO3 (x = 0.00, 0.10, 0.15 and 0.20) compounds

measured at an applied magnetic field of 0.1 T. Inset: The variation of dM/dT as a function of temperature (T)
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is used to determine the experimental effective

paramagnetic moments ðlexpeff Þ;. where NA is the

Avogadro’s number (6.023 9 1023 atoms mol-1), lB is

the Bohr magneton (9.274 9 10–21), Mm is the

molecular weight, and KB is the Boltzmann constant

(1.38016 9 10–16 erg K-1).

According to La0.5Sm0.2Sr0.3Mn1-xCrxO3 composi-

tion, the theoretical effective paramagnetic moment is

determined via the following relation:

where leff = 0.85lB for Sm3?, leff = 4.9lB for Mn3?,

leff = 3.87lB for Mn4?, and leff = 3.87lB for Cr3?.

hP, lexpeff ; and ltheff values are registered in Table 2.

The dissimilarity between lexpeff and ltheff values may

be related to the existence of the ferromagnetic

polarons in the paramagnetic state [45].

3.3.1 Isothermal magnetization studies

To understand the magnetism and to approve the

ferromagnetic comportment of the samples at low

temperatures, we report in Fig. 7 the relationship

between the magnetization (M) and the applied

Fig. 6 Variation of the inverse magnetic susceptibility (v-1) as function of temperature, and the red lines are the fits according to the

Curiee-Weiss law

ltheff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2½ltheffðSm3þÞ�2 þ ð0:7 � xÞ½ltheffðMn3þÞ�2 þ x½ltheffðCr3þÞ�2 þ 0:3½ltheffðMn4þÞ�2

q
; ð5Þ
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magnetic field (H) at several temperatures near to TC

(up to 5 T). It can be observed that M (H) curves, near

the FM-PM transition, gradually increase with

increasing H values. Below TC, a typical behavior of

ferromagnetic material is detected, after applying a

magnetic field up to 1 T, the magnetization rises

sharply and then reaches saturation. Above TC, the

magnetization M increases more steadily, and the M

(H) curves gradually become linear, which is com-

mon in paramagnetic materials. It can be clearly seen

from Fig. 7 that an increase in temperature will cause

a slight decrease in magnetization. This reduction is

mainly due to the magnetic moment disorder caused

by thermal stirring.

3.3.2 Arrott curves

In order to further understand the nature of the FM-

PM phase transition, we derive the Arrott plots (H/M

vs. M2) from M(H) plots [46] for the four samples as

shown in Fig. 8. Arrott plots are usually used to

determine the sequence of magnetic phase transi-

tions. Indeed, as reported by the criterion suggested

by Banerjee [47], the negative slope corresponds to

the first-order magnetic transition, and the positive

slope corresponds to the second-order magnetic

transition. It can be clearly seen from Fig. 8 that the

Arrott plots show a positive slope, confirming the

second-order nature of the phase transition from FM

to PM. This approves the results already seen in the

discussion section of M (T).

Fig. 7 Isothermal magnetization for La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0.00, 0.10, 0.15, and 0.20) samples measured at different

temperatures around TC

J Mater Sci: Mater Electron (2021) 32:22106–22118 22113



3.4 Magnetocaloric effect

Figure 9 shows the temperature dependence of the

magnetic entropy changes (- DSM) for our four

samples when the magnetic field change is at most

5 T. It is found that (- DSM) rises with the rising of

temperature, thus, reaching the maximum value at

TC. The characteristics of the magnetic transition can

be concluded from the sign of (- DSM) (T, H). For

materials presenting a FM transition, we found pos-

itive values of (- DSM) (T, H) due to the formation of

a magnetically ordered configuration when an

external magnetic field is applied [48]. As the mag-

netic field increases, the magnetization and spin

alignment increase, followed by the increase in the

maximum magnetic entropy change value �DSmax
M

� �

of all compounds. However, due to the secondary

nature of the ferromagnetic transition in these

compounds, the peak position is hardly affected. It is

found that �DSmax
M

� �
is influenced by the Cr doping.

In fact, under H = 5 T �DSmax
M

� �
is 3.06 J kg-1 K-1 at

277 K, 2.44 J kg-1 K-1 at 269 K, 2.30 J kg-1 K-1 at

254 K, and 1.92 J kg-1 K-1 at 204 K for x = 0.00, 0.10,

0.15, and 0.20 (Fig. 9).

The values of our entropy change decrease with

Cr3? substitution increases. We can explain this result

by the decreasing number of hopping electrons and

the reduction of DE interactions of Mn3?-O-Mn4?. As

previously mentioned, such as Cr3? replaces Mn3 ? ,

the replacement of Mn site by trivalent ions reduces

Mn3?/Mn4? rate and the lattice will be affected due

to the presence of Cr3? in Mn–O–Mn chains. The

chromium substitution reduces the DE interaction

and the magnitude of the �DSmax
M

� �
.

Fig. 8 Arrott plots (M2 vs. l0H/M) of La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0.00, 0.10, 0.15 and 0.20) samples around TC

22114 J Mater Sci: Mater Electron (2021) 32:22106–22118



We list the �DSmax
M

� �
and RCP values of all samples

in Table 3 and compare them with other results

reported in the literature. It is noticed that RCP val-

ues increase with rising the applied magnetic field.

This can be the result of spin coupling, which is

weaker when a high magnetic field is applied.

At 5 T, RCP values are 268 J Kg-1, 243 J Kg-1, 244 J

Kg-1, and 190 J Kg-1 for x = 0.00, 0.10, 0.15, and 0.20,

respectively. The RCP values of our compounds are

about 50% of the RCP value of pure Gd, indicating

that our compounds may be candidate materials for

magnetic refrigeration.

4 Conclusion

In this work, the effect of partial replacement of

Manganese by Chromium on structure, magnetic,

and magnetocaloric properties of La0.5Sm0.2Sr0.3Mn1-

xCrxO3 (x = 0.00, 0.10, 0.15, and 0.20) compounds is

studied. The four prepared compounds are crystal-

lized at room temperature in the orthorhombic

structure with Pnma space group. Magnetization

measurement results show a second-order paramag-

netic–ferromagnetic transition. TC value decreases

from 278 K (x = 0.00) to 205 K (x = 0.20). The

Fig. 9 Magnetic entropy change (- DSM) as a function of temperature in various magnetic fields between 1 and 5 T of the compounds

La0.5Sm0.2Sr0.3Mn1-xCrxO3 (x = 0.00, 0.10, 0.15, and 0.20)
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magnetocaloric properties of these compounds are

checked based on the relationship between the

isothermal magnetization and the magnetic field.

These data are measured at different temperatures

around TC. The maximum magnetic entropy change

�DSmax
M

� �
of our samples decreases with the increase

of added chromium’s rate. The RCP values are also

studied and are sufficiently high to make the present

compounds’ good candidates for near-room mag-

netic refrigeration.
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C.A. Cortés-Escobedo, J.A. Betancourt-Cantera, M. Ramı́rez-
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