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ABSTRACT

In the present study, MoS2/reduced graphene oxide (rGO)/Au (MSRG/Au)

nanohybrid was synthesized through one-step hydrothermal method and was

applied to fabricate the modified electrode in order to detect hydrazine (N2H4,

HY). Structure of MSRG/Au nanohybrid was characterized by various analyses

including field emission scanning electron microscopy (FESEM), energy dis-

persive X-ray (EDX), transmission electron microscopy (TEM), and X-ray

powder diffraction (XRD). Electrochemical behaviors of MoS2, MSRG, and

MSRG/Au in buffer solution were investigated to show the role of simultaneous

presence of rGO carbonaceous material and Au noble metal in improving

activities of MoS2. Amperometric response of MSRG/Au-modified glassy car-

bon electrode (GC electrode) for oxidation of HY had two linear ranges of

2–30 lM and 30 lM–1.5 mM. Limit of detection (LOD) was estimated as 0.5 lM
for HY. Because of the synergistic effect of gold nanoparticles, MSRG/Au

nanohybrid had higher electrocatalytic activity, yet with less overpotential for

oxidation of HY compared to MoS2/GC electrode and MSRG/GC electrode.

After investigating the effect of intrusive ions on determination of analyte, the

sensor maintained its great stability, reproducibility, and selectivity for detec-

tion of HY. Based on the results, modification of MSRG with Au may be an

effective sensing platform to detect HY.

1 Introduction

Detection of hydrazine (N2H4, HY), one of critical

pollutants in drinking water [1–3] has always been

considered as an important matter. HY is commonly

used in rocket fuel, tobacco products, reactions of

organic matter and pharmaceuticals, as well as

coloring tissue, and photography [4–6]. HY can be

absorbed through skin, lungs, and gastrointestinal

tract and rapidly spreading throughout the body. The

use of this substance has been drastically limited over

the past two decades due to its detrimental effects on

humans’ body and the environment, and therefore

extensive efforts are being made to replace it with

non-toxic alternatives [7–11].
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Detection of HY in biological and environmental

systems with high sensitivity is of great practical

importance [12–14]. There are various methods for

precise detection of HY including spectrophotometry,

titrimetry, chromatography, and chemiluminescence,

most of which are unfortunately time-consuming.

Hence, there is a great need for development of an

economical and suitable platform for sensitive

detection of HY [13]. However, electrochemical

methods are straightforward, fast, efficient in terms

of sensitivity and selectivity, and low cost. HY is

electrochemically active on surface of common elec-

trodes such as graphite screen-printed, and GC

electrode [15–17]. Nevertheless, employing these

electrodes in the unmodified states poses problems

like overpotential or surface saturation. The modified

electrodes use carbon nanomaterials, metal

nanoparticles, and metal sulfides to improve their

[18–26]. Oxidation process of HY is an irreversible

process showing only one oxidation peak in cyclic

voltammetry (CV).

Various materials have been prepared for the

modification of electrode to detect HY analyte. For

example, Shahid et al. [6] fabricated a sensor by

modifying the electrode with CoO–Au–rGO

nanocomposite. The nanocomposites displayed the

elevated sensitivity by even 50 times the concentra-

tion of intrusive trials in HY. Venkatesh et al. [8]

prepared a gold microelectrode-based sensor for

detection of HY. Gold nanoporous electrochemical

sensor showed high stability and sensitivity toward

HY oxidation. Liu et al. [27] fabricated Au–Fe3O4–GO

nanocomposites for detection of HY with good sen-

sitivity. Limit of detection (LOD) of the samples was

evaluated by an amperometric test. Linear detection

range was estimated to be between 3.8 lM and

1.4 mM, with a correlation coefficient (R2) of 0.9991.

According to the previous investigations, molyb-

denum disulfide (MoS2) has received a great deal of

attention thanks to its unique three-layer structure.

Crystalline structure of MoS2 consists of layers com-

posing of molybdenum bonds and two sulfides

[19, 28–31]. The relationship between Mo–S is a

strong covalent bond and the sheets are weakly

interconnected. Two-dimensional nanomaterials such

as graphene and MoS2 have emerged in materials

science owing to their unparalleled physical, chemi-

cal, and mechanical properties. Significant progress

has also been made in the manufacturing of electro-

chemical sensors for identification and measurement

of a range of chemical and biological molecules using

these two-dimensional nanomaterials [32]. MoS2
nanocomposite-based sensors with reduced gra-

phene oxide (rGO) are more efficient than the ones

prepared from pure MoS2 because of their high active

surface area and electron transferability [33–39]. In

addition, noble metals such as Au are potent modi-

fiers for increasing electron transfer ability [40–46].

The presence of Au nanoparticles in MoS2/rGO

nanohybrid (MSRG/Au) can enhance its applicability

and performance in sensing applications.

Herein, MSRG/Au nanohybrid was synthesized

through hydrothermal method and a modified

MSRG/Au/GC was fabricated as an efficient sensor

for electrochemical detection of HY. Au nanoparticles

play an active role in facilitating transfer of electrons,

thus the synergistic effect of Au and MSRG improves

electrochemical behavior of the sensor for oxidation

of HY. In this study a simple, sensitive, and cost-

effective sensor is presented with significant electro-

catalytic activity for the detection of HY, having

tremendous potential for commercial applications. To

the best of our knowledge, there is no report on

MSRG/Au as electrocatalyst for detection of HY.

2 Experimental procedure

2.1 Apparatus

XRD analyses were carried out by Philips PW1730

device using CuKa radiation (30 mA, 40 kV) at

k = 1.540598 Å in the 2h range of 0�–80�. The FESEM

device is tuned to the TESCAN model with an

accelerator voltage of 15 keV, equipped with energy

dispersive X-ray spectroscopy (EDX). TEM analysis

was performed using a Philips EM208 instrument at

100 keV. FTIR analysis was performed on a Bruker-

Vector 22 between 450 and 4000 cm-1 using KBr

pellet. Electrochemical behavior of the electrodes was

induced using an AUTO LAB 302 N device and a

three-electrode system, including GC electrode as

working electrode, Ag|AgCl (saturated KCl) as ref-

erence electrode, and platinum wire as a counter

electrode.

2.2 Synthesis of graphene oxide (GO)

GO was reportedly synthesized with minor modifi-

cations [43]. A certain amount of graphite powder
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was added to H2SO4 and, after placing container in

the ice bath, 15 g of KMnO4 was added. Then, H2O

and H2O2 were slowly added to the solution and

product was washed several times to obtain brown-

ish GO sheets.

2.3 Synthesis of MoS2 nanosheets

MoS2 nanosheets were reportedly synthesized with

slight modifications through hydrothermal method.

For this purpose, 0.3 g of Na2MoO4�2H2O was added

to a certain amount of distilled water, and then 0.1 M

HCl was added to the solution to reach pH level of

6.5. After that, 0.8 g of L-cysteine was added to the

solution and volume of the solution reached to 80 mL

using distilled water. After 2 h, the solution was

transferred into a 100-mL Teflon-lined stainless-steel

autoclave and heated up to 220 �C for 15 h in the

oven. Resulting suspension was washed several

times, and then was dried at 60 �C until black pow-

der MoS2 nanosheets were obtained.

2.4 Synthesis of MSRG nanosheets

MSRG nanosheets were synthesized using

hydrothermal method [31]. For this purpose, 0.1 g of

the prepared GO was added to MoS2 suspension

(40 mL) under ultrasonication for about 0.5 h. After

that, the mixture was transferred into a 100-mL

Teflon-lined stainless-steel autoclave and was heated

at 220 �C for 15 h. Resulting suspension was washed

and centrifuged with water several times, and then

was dried at 60 �C for 20 h.

2.5 Synthesis of MoS2–rGO/Au
nanohybrid

Gold nanoparticles (AuNPs) were synthesized

according to the previous reports with slight modi-

fications [28, 43]. After boiling HAuCl4 solution

(0.01%), 2.5 mL of trisodium citrate solution (1%) was

added rapidly. Color of the mixture was slowly

changed from brown to wine red, denoting to the

formation of AuNPs. After cooling down the mixture

to room temperature, AuNPs solution was collected

and stored in brown glass bottles at 4 �C. Then,

40 mL of AuNPs was added to Na2MoO4�2H2O—L-

cysteine—GO solution (30 mL) and the mixture was

vigorously stirred for 2 h to complete the reaction.

After that, the mixture was transferred into a 100-mL

Teflon-lined stainless-steel autoclave and was heated

at 220 �C for 15 h. Resulting suspension was cen-

trifuged and rinsed with distilled water several times,

and then was dried in the oven at 60 �C for 20 h.

2.6 Electrode modification

Before modification, surface of GC electrode (2 mm

in diameter) was polished until achieving a mirror-

like state by 0.05 lM alumina powder using a pol-

ishing cloth. Then, it was washed with distilled water

several times. The electrode was cycled in the range

of - 1 to 1 V at a scan rate of 50 mV s-1 in 0.5 mM

H2SO4 solution. For fabricating MSRG–Au/GC elec-

trode, 3 mg of MSRG–Au was dispersed in 500 lL of

distilled water, and then 5 lL of colloid solution was

poured on GC electrode and was dried at ambient

temperature. The other modified electrodes were

prepared in the same way using MoS2 and MSRG

nanohybrid dispersions.

2.7 Investigation of electrochemical
behavior

Electrochemical behaviors of the electrodes were

investigated in phosphate-buffered saline (PBS)

(0.1 M, pH = 7.4) at room temperature. Voltammetry

tests were performed in the range of - 0.2 to 0.6 V at

50 mV s-1. Amperometric response of the MSRG/

Au/GC electrode to HY was recorded to estimate

(LOD) by successive injections of analyte into stirring

the solution of PBS at a constant potential.

3 Results and discussion

3.1 Characterization of MSRG/Au
nanohybrid

FESEM images were used to evaluate morphology

and size of the nanostructure. Figure S1a–d for GO,

Fig. S2a–d for MoS2, and Fig. S3a–d for MSRG are

provided in four different scales in supplemented

information. Figure S1a–d shows that GO nanosheets

are layered on top of each other with an average

thickness of about 24 nm. Figure S2a–d shows MoS2
nanosheets with an average thickness of about 35 nm.

Figure S3a–d illustrates that MSRG nanosheets have

less porosity compared to tightly coupled layers of

pure MoS2 nanosheets, with an average thickness of
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about 19 nm. Figure 1a–d shows FESEM image at

four different scales. AuNPs penetrate almost uni-

formly into MSRG nanocrystals, reducing porosity

and accumulation of MSRG nanocrystals. Average

thickness of MSRG/Au was about 14 nm.

Figure 1e shows EDX spectrum of MSRG/Au. The

sample contained elements of Mo, S, C, and Au.

Proportion of Mo and S elements in nanohybrid was

higher than Au element as expected from synthesis

process.

Figure 2a, b shows TEM images of the MSRG/Au

nanohybrid at two different magnifications. Both GO

and MoS2 had a layered structure; however, MoS2
had elements with higher atomic mass than GO and

appeared as darker nanosheets in images. AuNPs

with high atomic mass are formed on nanosheets and

appear in dark area of the image due to their

properties.

Crystalline structure of MoS2, MSRG, and MSRG/

Au samples was characterized by XRD. For all three

samples, diffraction peaks were observed at 2h of

about 18, 33, and 58.6 �C resulting from crystalline

phases of MoS2, corresponding to crystal planes of

(013), (100), and (110) of hexagonal structure of MoS2
(joint committee on powder diffraction standards

(JCPDS) 01-081-203) (Fig. 3a). The diffraction peaks

appeared at 2h of 38.16, 44.46, 64.8, and 77.6 �C, and
correspond consistently to planes of (111), (200),

(220), and (311), respectively, attributing to the cubic

structure of Au (JCPDS 00–004-078). The presence of

different characteristic peaks in diffraction pattern of

sample indicates successful synthesis of MSRG/Au

nanohybrid.

Figure 3b represents FTIR spectra of the GO,

MSRG nanosheets, and MSRG/Au nanohybrid in the

range of 500–4000 cm-1. In the spectrum of GO, the

peaks at 3400, 1704, 1618, and 1023 cm-1 correspond

to O–H hydroxyl group, C=O carbonyl stretching

vibrations, C=C non-oxidized graphite structure, and

C–O alkoxy stretching vibrations, respectively, indi-

cating GO formation and confirming its presence in

nanohybrid.

3.2 Electrochemical studies

Electrochemical behavior of the electrodes modified

with nanohybrid for oxidation of HY was investi-

gated through CV method. Figure 4b shows CV of

the MSRG/Au/GC electrode in the absence of HY.

As can be seen, there is no particular peak in CV of

the nanohybrid. Figure 4a shows CV of GC, MoS2–

GC, MSRG–GC, and MSRG–Au–GC electrodes in the

bFig. 1 FESEM images of a MSRG/Au (scale bar 2 lm),

b MSRG/Au (scale bar 1 lm), c MSRG/Au (scale bar 500 nm),

d MSRG/Au (scale bar 200 nm), and e EDX spectra of MSRGG/

Au

Fig. 2 a TEM image MSRG/Au (scale bar 200 nm) and b TEM image MSRG/Au (scale bar 500 nm)
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presence of 5 mMHY at a scan rate of 50 mV s-1. The

MSRG/GC electrode exhibits an oxidation peak at a

potential of 0.25 V with current density of 46 lA,

whereas the MSRG/Au/GC electrode reveals a sharp

oxidation peak at potential of 0.21 V by increasing

current density up to 57 lA. On the contrary, the

MSRG/Au/GC electrode has a lower overvoltage for

oxidation of HY compared to the MSRG nanohybrid,

implying that AuNPs can improve catalytic activity

of the electrode. In addition, voltammograms were

recorded by increasing HY concentration from 1 to

10 mM at 50 mV s-1. Oxidation currents were

increased by increasing concentration of HY up to

10 mM.

For evaluating kinetic limitations in process,

behavior of the MSRG/Au/GC electrode was inves-

tigated in 0.1 M PBS (pH = 7.4) solution containing

5 mM HY by applying different scanning rates from

10 to 300 mV s-1 (Fig. 5a). As can be seen in Fig. 5b,

anodic peak potential values shift to positive poten-

tials as scanning rate is increased. This shift indicates

that oxidation process of HY is kinematically limited.

Anodic peak current (Ip) is increased by the square

root of scanning rate, meaning that process is under

diffusion control. As can be seen in (Fig. 5c), there is a

linear relationship between peak potential and loga-

rithm of scan rate indicating that oxidation of HY is

an entirely irreversible process at GC electrode. Tafel

equation is usually applied to obtain information

about rate-determining step as follows [17]:

Ep ¼ 2:3RT= 1� að Þ naF½ � log mþ K; ð1Þ

where a is the electron transfer coefficient, na is the

number of electrons in rate-determining step,

R = 8.314 J K-1 mol-1, T = 298, F = 96,485 C mol-1,

and K is the constant. Slope value was found to be

110 mV, corresponding to theoretical value of

120 mV. As a result, the proposed mechanism for

oxidation of HY at the MSRG/Au/GC electrode may

be expressed as follows [47, 48]:

N2H4 þH2O ! N2H3 þ e� þH3O
þ rate - limiting step

� �

ð2Þ

N2H3 þ 3H2O ! N2 þ 3e� þ 3H3O
þ fast reactionð Þ

ð3Þ

N2H4 þ 4H2O ! N2 þ 4H3O
þ þ 4e� overall reactionð Þ

ð4Þ

CV was used to investigate behavior of the MSRG–

Au nanohybrid in 0.1 M KCl solution containing

1 mM K3[Fe(CN)6]/K4[Fe(CN)6] at a scan rate of

10–400 mVs-1. As shown in Fig. 5d, e, voltammo-

grams exhibit oxidative descending peaks. The

amount of IP is increased by the square root of

Fig. 3 XRD pattern of a MSRG/Au and b FTIR spectra of GO,

MSRG, and MSRG/Au
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scanning rate linearly, indicating that oxidation of

HY at the MSRG/Au/GC electrode is a diffusion-

controlled process.

Amperometric response of the MSRG/Au/GC

electrode was measured three times to estimate LOD

of HY oxidation. Amperometric response was recor-

ded through successive injections of HY into stirring

PBS solution (0.1 M, pH = 7.4) at a constant potential

of 0.29 V (Fig. 6a). With each infusion of HY into the

electrolyte, a step response emerges rapidly. A rapid

increase in oxidation current is related to the early

release of HY to the electrode surface. Calibration

curve shows peak of the increased current in terms of

HY concentration. In Fig. 6b, error bars show stan-

dard deviations from amperometric response for the

three data analysis rounds. Figure 6c represents two

linear slopes, one at concentration range of 2–30 lM
[IP (lA) = 0.0321x ? 0.4203] with LOD of 0.5 and

sensitivity of 0.0321 lA lM-1 and the other at con-

centration range of 30 lM–1.5 mM [IP (lA) = 0.0188

x ? 0.5743] with a sensitivity of 0.0188 lA lM-1.

Variations in the slope of calibration curves (sensor

sensitivity) are due to change in diffusion coefficient

of HY, which is smaller as N2 molecules cover surface

of GC electrode. Aggregation of N2 gas on GC

electrode limits diffusion of HY and causes limitation

in progress of electrochemical reaction [49]. Given

this low LOD, the MSRG/Au nanohybrid is capable

of oxidizing HY at low concentrations.

3.2.1 Intrusive ions, selectivity, stability,

and reproducibility

The MSRG/Au nanohybrid exhibited good repro-

ducibility for oxidation of HY (Fig. 7). The selectivity

of the electrode was examined using amperometric

response of the GC electrode to 1 mM HY and many

interfering ions, as observed after injection of 1 mM

HY to PBS (0.1 M) with pH = 7.4. However, no

interference effects were detected in amperometric

currents by 10-fold and 20-fold injections of nickel

nitrate, copper nitrate, uric acid, manganese nitrate,

cobalt nitrate, sodium hydroxide, sodium nitrate,

iron nitrate, and magnesium chloride. After re-injec-

tion of HY, a rapid response to the presence of ana-

lyte was given, showing its sensitivity to increasing

HY concentration after injection of intrusive ions into

the electrolyte, as before.

Reproducibility of the fabricated electrode was also

determined by comparing CV of three different

A
B
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electrodes at 50 mV s-1 in the presence of 1 mM HY.

Relative standard deviation (RSD) was equal to 3.7%

for these three electrodes. Furthermore, repro-

ducibility of each electrode was performed by eight

consecutive CV cycles and an RSD of 4.4% was

acquired.

3.3 EIS test

Electrochemical impedance spectroscopy (EIS) mea-

surement is a useful method for investigating elec-

trochemical properties of the materials by changing

interfacial properties of the modified electrodes at

high frequency. EIS was performed using IRASOL

device (IRASOL Co., Iran) in the frequency range

between 0.01 and 100 kHz and in open circuit

potential in 5 mM K3 [Fe(CN)6/K4 [Fe(CN)6] in 0.1 M

KCl solution. All the EIS spectra represented a

Nyquist plot with a semicircle at high-frequency

region. The semicircle signifies resistance which

originates from charge transfer limitation (Rct). In

addition, linear response at low frequencies is the

evidence regarding the Warburg resistance demon-

strating a diffusion-controlled process of electrolyte
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ions. Figure 8a–d shows the EIS spectra comparing

the GC electrode and the electrode modified with

MoS2, MSRG, and MSRG/Au. The MSRG/Au/GC

electrode showed the lowest resistance to charge

transfer compared to the MoS2/GC, MSRG/GC, and

unmodified GC electrodes. Charge transfer resistivity

of the electrodes modified with the MSRG and

MSRG/Au was estimated to be Rct = 500 X and Rct

= 126 X, respectively. The Rct value was estimated to

be 25 kX and for bare GC electrode was estimated

25 kX, which is the largest value among different

electrodes. As can be seen, electrocatalytic perfor-

mance of the MSRG was improved due to the pres-

ence of Au in the MSRG/Au nanohybrid.

3.4 Comparison of the performance

Table 1 compares the performance of MSRG/Au/GC

electrode for detection of HY with the other electro-

chemical sensors. The potential at which oxidation of

HY occurs, LOD, linear range of concentration, and

sensitivity are among the parameters considered in

the table. The proposed modified electrode (MSRG/

Au/GC) displayed an excellent electrocatalytic

activity for the detection of HY with a wide linear

range, low LOD, and high sensitivity. High sensitiv-

ity and low LOD of the MSRG/Au/GC electrode

results from unique porous structure of the nanohy-

brid and the synergistic effect of the MSRG and Au

facilitating transport of electroactive molecules and

electrolyte, and electron transfer, respectively.

4 Conclusions

In the present research, a useful MSRG/Au/GC

electrode was developed to detect HY with low LOD.

The MSRG/Au nanohybrid was synthesized using

hydrothermal method and was characterized and

performed using some common techniques such as

FESEM, EDX, FTIR, TEM, and XRD. Electrochemical

activity of the MSRG/Au/GC electrode was ana-

lyzed as a function of analyte concentration and

amperometric responses. The MSRG/Au/GC elec-

trode showed suitable electrocatalytic behavior

toward oxidation of HY with a remarkable decrease

in overpotential compared to the MSRG/GC elec-

trode. The synergistic effect of Au with MSRG effi-

ciently improved electrocatalytic activity of the

modified electrode. Our results proved that the cur-

rent-developed MSRG/Au/GC electrode exhibits

better or comparable sensing performance in terms of

high current density, wide linear range, high sensi-

tivity stability, repeatability, and selectivity for

Fig. 7 Amperometric response of MSRG/Au/GC electrode by

adding HY to the stirred solutions at a constant potential of 0.29 V

in the presence of 10-fold injections and 20-fold injections of

a nickel nitrate, b copper, c uric acid, d manganese oxide, e cobalt

nitrate, f sodium nitrate, g sodium nitrate, h iron nitrate, and

i magnesium chloride
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detection of HY in the presence of interfering ions

and species than some reported HY sensors. The

MSRG/Au/GC electrode was found to represent the

lowest charge transfer resistance compared to bare

GC, pure MoS2/GC, and MSRG/GC electrodes

according to the EIS measurements. According to the

results, the proposed MSRG/Au nanohybrid may be

a promising candidate for the development of elec-

trochemical sensors.

Supplementary Information: The online version

contains supplementary material available at http

s://doi.org/10.1007/s10854-021-05496-3.
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