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ABSTRACT

The usage of composite materials in which graphene combined with magnetic

nanoparticles offers benefits for biomedical applications. Stabilization of

nanoparticles on the electrode surface which is necessary for biosensors and

other applications is still an important issue to be solved. Here the stabilization

of the nanoparticles is achieved by inserting nanoparticles between two gra-

phene layers in a sandwich structure. Furthermore, it has been theoretically

predicted that sandwich-type structures prepared with metal nanoparticles

between two graphene layers would have extraordinary physical properties. In

this study, Fe2O3/SLG (single-layer graphene) and the sandwich-type SLG/

Fe2O3/SLG electrodes were produced. Fe2O3 nanoparticles were synthesized by

the sol–gel method, and graphene was produced by CVD (chemical vapor

deposition) on Cu foil and then transferred onto FTO (fluorine-doped tin oxide).

Fe2O3/SLG composite structure was produced by the drop-casting process. The

structural, magnetic, and electrochemical properties of samples were investi-

gated in detail. Structural analysis revealed that Fe2O3 has an a-phase with a

rhombohedral crystal structure and the mean particle diameter is 128 nm.

Raman and SEM analysis also confirmed the quality of SLG and the sandwich-

type graphene structure. The nanoparticles have a magnetic phase transition

which has Morin temperature at about T = 263 K. Also, Fe2O3 nanoparticles

have shown ferromagnetic behavior at room temperature with 0.16 Am2/kg

remanent magnetization and 0.203 T coercive field. This work demonstrates the

effectiveness of graphene sandwich-type electrodes to eliminate the main sta-

bilization obstacle of magnetic nanoparticles especially for biosensor

applications.

Address correspondence to E-mail: cunlu@pau.edu.tr

https://doi.org/10.1007/s10854-020-04637-4

J Mater Sci: Mater Electron (2020) 31:21248–21259

http://orcid.org/0000-0003-2554-5886
http://crossmark.crossref.org/dialog/?doi=10.1007/s10854-020-04637-4&amp;domain=pdf


1 Introduction

Recently, graphene, a single layer of carbon atoms, is

one of the most crucial technological developments

owing to its extraordinary physical properties. The

relatively small bond length (0.0142 nm) makes gra-

phene tougher than the steel and extremely flexible

material as well. Recently its low resistivity

(10- 8 Wm) and transparency makes graphene a

promising material for the electronic industry, energy

storage, medicine, and biosensor technology [1–4].

Furthermore it makes an effective interface between

enzyme and electrode, allowing the improvement of

biosensors in terms of high sensitivity and short

current response time [5, 6]. So far many methods

have been proposed to produce graphene among

which the Hummers method is the foremost com-

monly used [7–13]. However, the graphene oxide

(GO) and reduced GO flakes obtained by this method

are generally in the order of micrometers. Alterna-

tively, graphene can be directly transformed from

amorphous carbides by chlorination under low tem-

peratures and ambient pressures [14–16]. Among

them, the most promising technique is the CVD

technique to get high-quality, uniformity and large-

scale (the order of cm) graphene [17, 18].

Nowadays graphene composites containing mag-

netic nanoparticles (MNPs) such as transition metals

and their oxides are attracting great attention owing

to their magnetic properties that are useful for med-

icine and biosensor applications [19–45]. Therefore

graphene gains new functionality with the MNPs.

The unique properties and production methods of

these graphene-based composites are still under

investigation and new and green synthesis approa-

ches are challenging. Up to now Fe-based metal oxide

nanoparticles, magnetite (Fe3O4), maghemite (c-
Fe2O3) and hematite (a-Fe2O3) have been used as

contrast agents in magnetic resonance imaging, drug

carriers, as well as inducers for hyperthermia of

tumors [46–49]. Among them, hematite is widely

studied because it is the most stable iron oxide with

high resistance to corrosion, not expensive, easy to

find, biocompatible, environmentally friendly and

non-toxic [50–54]. Especially, hematite is the most

promising modifying material because of the variable

valence state of iron oxides that can be recovered

in situ via electrochemical reducing or oxidizing

during the sensing process [50].

The nanosized 3d elements (Co, Ni, Fe) and their

oxides have been mostly decorated on the graphene

layer because their redox states, and electrochemical

stabilities [55] play an essential role to produce for

glucose detection [7], and MNPs can easily connect

with the glucose enzyme. Fe3O4/GO has been pre-

sented to be both glucose and H2O2 sensor [8]. Fur-

thermore, Li et al. [9] reported Fe2O3/graphene

systems show better results for the lithium storage

battery. In another study, a-Fe2O3 NPs with various

morphologies were synthesized and the electrocat-

alytic activities of dopamine (DA) and uric acid (UA)

at Fe2O3/GO nanohybrids decorated glassy carbon

electrodes were measured by Cai et al. [13]. In the

study, the electrochemical measurements exhibited

that the discal Fe2O3 NPs had the most remarkable

electrochemical response toward the simultaneous

detection of DA and UA.

Graphene can be decorated with nanoparticles

(magnetic or non-magnetic) using different tech-

niques such as the chemical, the electrochemical, the

sputtering, etc. Selection of the decorated nanoparti-

cle depends on the interaction between the

nanoparticle and enzyme and, at the same time,

degradation of the nanoparticle (cycle, photo, chem-

ical, etc.) has a significant effect since measurement

cycles cause the degradation, and removal of the

nanoparticle or nanoparticles from the graphene

surface decreases the sensitivity of the biosensor.

Furthermore, graphene which is decorated with

nanoparticle systems have been developed as well

[10, 11]. In 2016, Feng et al. worked on multilayered

Fe2O3/graphene where graphene oxide layers were

prepared with a modified Hummers method [12].

This structure exhibits superior catalytic activity

toward the oxygen evolution reaction for Li batteries.

Moreover sandwich-type graphene, two slices of

single-layer graphene with encapsulated nanoparti-

cles is shown theoretically as a super-strong, con-

ductive material enhancing desired electronic and

optical properties. When binding molecules between

nanoparticles and graphene are not used, nanoparti-

cles are placed using Van der Waals forces on the

SLG. Therefore, nanoparticles in biosensor applica-

tions are challenging in terms of stability. Sandwich-

type graphene is proposed to overcome this issue

[56]. The numbers of nanoparticles are limited by the

graphene layers which significantly improved the

sensitivity of the system for biosensor applications
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due to stability in the number of nanoparticles

between layers.

In this study, Fe2O3/SLG and sandwich-type SLG/

Fe2O3/SLG composites were prepared on FTO by

CVD, drop-casting and sol–gel methods. Fe2O3

nanoparticles were fabricated by the sol–gel method

and the CVD method was used to produce graphene.

The structural characterizations were done by the

X-ray diffraction (XRD), Raman spectroscopy, Energy

Dispersive X-ray (EDX), X-ray photoelectron spec-

troscopy (XPS), optical microscopy and scanning

electron microscopy (SEM). Magnetic properties of

the nanomaterials were analyzed using a vibrating

sample magnetometer (VSM) option of Quantum

Design PPMS. In addition, the electrochemical anal-

yses were carried out in a cell with three electrodes.

2 Experimental

2.1 Graphene growth

Single-layer graphene (SLG) was produced by using

CVD technique. 0.1 mm thick, 2 9 2 cm2 Cu foils of

99.8% purity was used as a metallic catalyzer. Copper

foils were pre-cleaned by acetone, isopropanol, and

deionized water for 10 min in an ultrasonic cleaner.

Then, it was placed in a furnace. The furnace was

evacuated to 10- 6 Torr and pre-heated to 1000 �C
with flowing H2 at 100 sccm for 30 min. This pre-

heating and annealing process for Cu is targeted to

create graphene seeds for growth. After annealing,

CH4 gas was let into the chamber at 30 sccm flow for

30 min. The chamber pressure was kept at 9 9 102

Torr while holding the Cu substrate at 1000 �C during

the growth of the graphene film. Finally, the Cu foil

covered with graphene was quickly cooled to room

temperature.

2.2 Transfer procedure of graphene to FTO
substrates

The large-area SLG graphene prepared on the Cu

foils was transferred onto FTO substrates. To be able

to carry out the transfer, graphene on Cu foil was

covered homogeneously with PMMA (Polymethyl

methacrylate) solution with a spin-coater rotating at

4000 rpm for 40 s. Then, the sample was floated onto

Fe(NO3)3*9H2O for a day in order to have the Cu

substrate etched. The remaining graphene with

PMMA was transferred onto the FTO substrate by the

fishing process. Then the PMMA solution was

removed by acetone.

2.3 Synthesis of Fe2O3 nanoparticles

Fe2O3 was prepared by the sol–gel technique.

Appropriate amount of Fe(NO3)3*9H2O was dis-

solved in water in order to obtain desired stoi-

chiometry. Afterward, citric acid and ethylene glycol

were added to the mixture. A viscous residue was

formed by slowly boiling this solution at 200 �C. The
obtained residue was dried at 300 �C until a dry-gel

was formed. Finally, the residual precursor was

burned in the air at 600 �C for 12 h in order to remove

the organic materials produced in the chemical

reactions, and the remaining powder material was

grounded in a mortar to obtain homogenous

materials.

2.4 Production of Fe2O3/SLG
and sandwich-type SLG/Fe2O3/SLG
electrode

Nanoparticles produced by the sol–gel method were

dissolved in ethanol for 10 min through an ultrasonic

cleaner and then the solution was left for 30 min for

large particles to collapse. The nanoparticle solution

was taken from near the surface by pipet and the

solution was dropped onto SLG/FTO by drop-cast-

ing and dried under room conditions to produce

Fe2O3/SLG composite. Also, the production of

sandwich-type SLG/ Fe2O3/SLG had followed the

same procedure with Fe2O3 on graphene, and then,

another single-layer graphene sheet was transferred

on Fe2O3/SLG.

2.5 Characterizations

X-ray diffraction (XRD) was used for the structural

analysis of Fe2O3 nanoparticles. XRD patterns were

collected at room temperature using Cu-Ka radiation.

FullProf software was used for data processing [6].

Raman spectroscopy was used for analyses of gra-

phene properties. The morphology analyses were

performed by SEM (Ziess/Supra 55 FE-SEM) and

optical microscopy (Optica B-1000MET). EDX and

XPS analyses were performed for elemental analysis

(Thermo Fisher Scientific model). The temperature

dependence of the magnetization M(T) with Zero
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Field Cooled (ZFC), Field Cooled (FC) and Field

Warmed (FW) protocols under 1 T magnetic field and

the field dependence of the magnetization M(H) at

room temperature (300 K) were measured using a

Quantum Design PPMS with VSM option. Electro-

chemical measurements were carried on Iviumstat

potentiostat/galvanostat in a conventional working

cell containing SLG on FTO, and Fe2O3/SLG on FTO

as a working electrode, a Pt wire as counter electrode,

and Ag/AgCl as the reference electrode. The elec-

trodes were inserted into a working cell containing

5 mM K4Fe(CN)6/0.1 M KCl between - 0.8 V and

1.2 V with 100 mV/s of the scan rate.

3 Results and discussion

Figure 1 shows the refined XRD pattern of the as-

synthesized Fe2O3 nanoparticles. In the figure, the

red circle symbol and the thick line represents the

observed and calculated patterns, respectively. The

thin black line indicates the difference between these

patterns. The Bragg positions are also presented. The

refinement result shows that there is a good agree-

ment between the observed and the calculated pat-

terns. The structure of Fe2O3 was found to be a

rhombohedral crystal structure with hexagonal axes

(space group; R-3cH). The calculated lattice constants

are determined as a = b = 5.032 Å and c = 13.739 Å

(c/a = 2.730). The result shows that the nanoparticles

have a-Fe2O3 phase. The crystallite size of the sample

was calculated for the strongest Bragg reflection by

using Scherrer Formula [57] and found to be 44 nm.

The morphology of the Fe2O3 was measured by

SEM and presented in Fig. 2. The images show that

nanocrystals are agglomerated and the shapes of

particles are nearly spherical. The size distribution of

particles is also depicted in the inset. The distribution

analysis of NPs shows that the mean particle diam-

eter is 128 nm.

SLG, SLG/Fe2O3, and the sandwich-type SLG/

Fe2O3/SLG on FTO have been investigated in bright

and dark field mode by optical microscopy (Fig. 3a–

f). The dark field microscopy process is useful to see

the detail of the materials. Figure 3a–d shows that

SLG is located on FTO. After Fe2O3 nanoparticles are

added on SLG/FTO, they can be easily seen in the

images (Fig. 3b–e). In addition, after a second gra-

phene sheet transferred on Fe2O3/SLG, two different

graphene structures can be distinguished from the

edges (Fig. 3c–f).

Raman spectroscopy is widely used to characterize

layer number and quality of graphene. The quality of

the graphene is determined by the ratio of peak

intensities, ID/IG. The number of layers of graphene

can be derived from the ratio of peak intensities, I2D/

IG. The Raman spectrum as a single layer and the

sandwich-type of the graphene obtained in this study

are shown in Fig. 4a, b, respectively. The Raman

spectrum in Fig. 4a shows the characteristic D band

peak at 1368 cm- 1, the G peak at 1594 cm- 1, the 2D

peak at 2712 cm- 1. The ratios of peak intensities

were calculated as ID/IG= 0.62 and I2D/IG=1.5.

Fig. 1 Rietveld refinement results. Observed (red circles) and

calculated (black lines) intensities of XRD patterns of Fe2O3

(Color figure online)

Fig. 2 SEM images of the Fe2O3 nanoparticles (histograms of

crystallite size diameters obtained from SEM images of the Fe2O3

nanoparticles shown in the inset)
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General opinion on layer number of graphene is I2D/

IG ratio of[ 2, *1, and\ 1 is speculated as a single-

layer, bilayer, and few-layer graphene, respectively

[58, 59]. Consequently, the obtained value indicates

single-layer graphene synthesized on FTO. The

Raman spectrum in Fig. 4b shows the characteristic D

band peak at 1370 cm- 1, a G peak at 1589 cm- 1, the

2D peak at 2713 cm- 1. The ratio of 2D and G peak’s

intensity is 0.65 proving that sandwich-type (few-

layer) graphene is successfully produced in the

Fig. 3 Microscopic views of a SLG on FTO, b Fe2O3/SLG on FTO, c SLG/Fe2O3/SLG and the dark field microscope images of d SLG

on FTO, e Fe2O3/SLG on FTO, f SLG/Fe2O3/SLG

Fig. 4 Raman spectroscopy of a Fe2O3/SLG on FTO and b sandwich-type SLG/ Fe2O3/SLG on FTO
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study. Furthermore, optical microscopy and SEM

analysis also confirm the results of the Raman

analysis.

Figure 5 also shows SEM images of FTO (Fig. 5a),

SLG (Fig. 5b), Fe2O3/SLG (Fig. 5c) and the sandwich-

type SLG/Fe2O3/SLG (Fig. 5d, e) on FTO. It is pos-

sible to distinguish from the images as coated and

uncoated (Fig. 5a) with SLG. Furthermore, these

images show that the SLG is mostly covered with the

Fe2O3 nanoparticles. In addition to seeing the differ-

ences between bare SLG/FTO surface and Fe2O3/

SLG/FTO surface. The nanoparticles also appear to

be trapped between the graphene layers and are

covered by a graphene layer (Fig. 5d, e). Further-

more, in the images, a typically wrinkled, sheet

structure of graphene and the presence of very small

defects in this graphene layer can be seen.

Fig. 5 SEM images of a FTO, b SLG on FTO, c Fe2O3/SLG on FTO d, e sandwich-type SLG/Fe2O3/SLG on FTO
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EDX spectra of the sandwich-type SLG/Fe2O3/

SLG on FTO are depicted in Fig. 6. EDX is a standard

method for identifying and quantifying elemental

compositions. The EDX spectrum confirms the exis-

tence of C peaks of graphene, Fe, and O peaks of

Fe2O3 nanoparticles. In addition, F and Sn peaks of

the FTO substrate are also observed. The Si peak

arises from the FTO coated glass surface.

Figure 7 represents the XPS of the sandwich-type

SLG/Fe2O3/SLG on FTO. It shows the presence of

various components such as carbon, oxygen, Fe, and

FTO at room temperature (Fig. 7a). All the binding

energies were corrected using the C 1s reference line

at 284.6 eV as a standard. Furthermore, the peaks

concerned groups in the C 1s spectra confirm the

graphene structure (Fig. 7b). The energies at 286.7

and 289.3 eV can be appointed to C–O, and C=O,

respectively. Furthermore, the Fe 2p peaks which are

located at approximately 711.2 and 717.0 eV are

assigned to Fe 2p3/2 and Fe 2p1/2, respectively,

indicating that the Fe ions are present in the trivalent

form, as depicted in Fig. 7c. The low-intensity peak

located around 713.5 eV is a satellite. The O 1s con-

tribution originates from the Fe2O3 and FTO (Fig. 7d).

Generally, the XPS analysis revealed the presence of

Fe2O3 nanoparticles and successfully coated the SLG

on FTO.

To investigate the magnetic behavior of Fe2O3

nanoparticles, the temperature dependence of mag-

netization was measured at 1 T, which is shown in

Fig. 8. In general, Fe2O3 has a high Neel temperature

of about TN = 955 K [60]. M(T) measurement showed

an antiferromagnetic behavior at low temperatures.

When the temperature is increased, there is a mag-

netic phase transition at T = 263 K antiferromagnetic

to weak ferromagnetic, which is known as Morin

temperature (TM) or spin-flop transition. This phase

transition arises from the two sub-lattices from along

to perpendicular to the [111] axis of a rhombohedral

structure with hexagonal axes. In the case of spin

reorientation, spins are oriented in a direction dif-

ferent from their previous alignment which strongly

depends on the value of the applied magnetic field

and presents anisotropy in the system. Above TM

temperature, Fe2O3 has parasitic ferromagnetism

because of spin-canting. Below this temperature, it is

antiferromagnetic. Because an equal number of spins

arrangement in the two sub-lattices indicates spon-

taneous antiparallel orientation along the [111]

direction of the crystal [61].

Figure 9 shows the magnetic field dependence of

the magnetization M(H) of Fe2O3 measured from

- 2T to 2T magnetic field at room temperature

(300 K). As seen in the figure, the Fe2O3 particles

show no saturation of the magnetization due to the

Fig. 6 EDX analysis of the sandwich-type SLG/Fe2O3/SLG on FTO. C belongs to graphene and Fe and O belong to Fe2O3. F, Sn and Si

peaks arise from the FTO coated glass surface
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presence of the antiferromagnetic phase. By remov-

ing the antiferromagnetic contribution on the curve,

the saturation value of the ferromagnetic Fe2O3

nanoparticles was obtained as 0.31 Am2/kg. Fur-

thermore, the magnetization curve indicates a weak

remanent magnetization of 0.16 Am2/kg and also

coercivity of 0.203 T at room temperature. These

results confirm that Fe2O3 nanoparticles exhibit

rhombohedral a-phase [62].

The electrochemical characterizations of SLG on

FTO, and Fe2O3/SLG on FTO were investigated

using cyclic voltammetry (CV) to understand oxida-

tion-reduction processes of Fe2O3 nanoparticles

(Fig. 10). When analyzing CV curves of materials, the

charge density of Fe2O3/SLG/FTO depicts a larger

area than SLG/FTO which can be attributed to the

active surface area of Fe2O3 nanoparticles. In addi-

tion, the transferring of Fe2O3 nanoparticles on the

FTO/SLG, the current density was increased.

4 Conclusion

In summary, to the best of our knowledge, large-area

Fe2O3/SLG and sandwich-type SLG/Fe2O3/SLG

composite structure were produced for the first time

by CVD and sol–gel process and structure properties

were investigated by using XRD, Raman spec-

troscopy, EDX, XPS, optical microscopy and SEM. a-
Fe2O3 has a rhombohedral phase and the shapes of

Fig. 7 XPS analysis of SLG/Fe2O3/SLG on FTO. Panel a shows the broadscan XPS spectra of SLG/ Fe2O3/SLG surfaces. Panels b, c and

d display C, Fe and O XPS spectra of SLG/Fe2O3/SLG surfaces, respectively
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the particles which contain agglomerates of

nanoparticles are spherical with about 128 nm parti-

cle diameter. It was observed that the remanent

magnetization of Fe2O3 nanoparticles is 0.16 Am2/kg

and samples showed almost 0.203 T magnetic coer-

civity. Furthermore, the structure analysis results

indicated that Fe2O3/SLG and sandwich-type SLG/

Fe2O3/SLG composites were successfully obtained.

The increase in the charge density of Fe2O3/SLG/

FTO was clearly observed when compared to SLG/

FTO via electrochemical measurements. Moreover,

these results demonstrate the feasibility of graphene

sandwich-type electrodes to eliminate the main sta-

bilization obstacle of magnetic nanoparticles espe-

cially for biosensor applications.
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