

Novel AgCI nanoparticles coupling with PbBiO₂Br nanosheets for green and efficient degradation of antibiotic oxytetracycline **hydrochloride under visible‑light irradiation**

Wen Li1,2 · Zhiying Liu3 · Wei Song⁴ · Yanhua Xu[3](http://orcid.org/0000-0001-9497-8971)

Received: 18 March 2020 / Accepted: 7 June 2020 / Published online: 17 June 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this work, novel Ag/AgCl/PbBiO₂Br photocatalysts were synthesized via a hydrothermal and in situ photoreaction method. The microstructure, morphology, composition, electrochemical, and optical properties of the synthesized catalysts were investigated by multiple techniques. The obtained Ag/AgCl, PbBiO₂Br, and Ag/AgCl/PbBiO₂Br composites were evaluated via degradation of oxytetracycline (OTC) hydrochloride antibiotic under visible-light irradiation. The results show that the Ag/AgCl/PbBiO₂Br composites are composed of Ag/AgCl nanoparticles (NPs) and PbBiO₂Br nanosheets. The Ag/ AgCl/PbBiO₂Br (20.4%) composite exhibits the highest visible-light absorption and best photogenerated charge separation efficiency. The photocatalytic degradation experiments show that all Ag/AgCl/PbBiO₂Br composites exhibit an enhanced degradation activity under visible-light irradiation, and maintain good stability in the photocatalytic process. The Ag/AgCl/ PbBiO₂Br (20.4%) composite has the highest degradation activity, which is 1.82 and 2.11 times higher than that of Ag/ AgCl and PbBiO₂Br, respectively. The enhanced photocatalytic activity of Ag/AgCl/PbBiO₂Br can be mainly attributed to the fact that the loading of Ag NPs on the surface of the AgCl promotes the separation efficiency of photoinduced charge and enhance the visible-light absorption. Additionally, active species trapping experiments confrm that superoxide radicals \cdot O₂), Cl⁰ and holes (h⁺) play an very important role in the degradation process.

1 Introduction

Nowadays, the widespread usage of antibiotics has received the increasing attention because they fow into the water system and cause the water pollution [[1\]](#page-8-0). Oxytetracycline (OTC) hydrochloride is one of the very important antibiotics, extensively used in human and veterinary medicine [\[2](#page-8-1)].

Electronic supplementary material The online version of this article [\(https://doi.org/10.1007/s10854-020-03760-6\)](https://doi.org/10.1007/s10854-020-03760-6) contains supplementary material, which is available to authorized users.

 \boxtimes Yanhua Xu lw_water@126.com

- ¹ College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Environmental & Safety Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- ³ School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- ⁴ Changzhou Zhiheng Environmental Technology Co., Ltd, Changzhou 213164, Jiangsu, China

Worryingly, the most of OTC is only partially metabolized in humans or animals and hardly biologically degraded, ultimately released into lakes and rivers. These antibiotics have harmful effects on water environment and human health [\[3](#page-8-2)]. Hence numbers of research attempts have been made in the past decades to eliminate these refractory antibiotics, such as electrochemical treatments [\[4](#page-8-3)], photoelectron-Fenton [[5\]](#page-8-4) and advanced oxidation treatment [\[6](#page-8-5)]. However, most of the methods use expensive oxidants. Therefore, it is indispensable to develop novel visible-light-driven photocatalysts [\[7](#page-8-6)], which are environmentally friendly and efficient approach to remove OTC from waters.

 $PbBiO₂Br$ is an n-type visible-light-driven semiconductor and has attracted more and more attention in recent years, owing to its physicochemical stability, highly anisotropic layered structure, and outstanding photocatalytic performance [[8](#page-8-7)–[11](#page-8-8)]. Unfortunately, the photocatalytic activity of bare $PbBiO₂Br$ is still unsatisfactory owing to its fast recombination rate of photoexcited electron–hole (e^{-}/h^{+}) pairs [\[12,](#page-8-9) [13\]](#page-8-10). To overcome the above mentioned drawback of $PbBiO₂Br$ and improve the degradation efficiency, constructing semiconductor composites is efective in improving the separation efficiency of photoinduced e^{-}/h^{+} pairs. So far, studies have reported on $g - C_3N_4/PbBiO_2Br$ $[14]$, NbSe₂/PbBiO₂Br [[15\]](#page-8-12), PbBiO₂Br/UiO-66-NH₂ [[16\]](#page-8-13) Cu₂O/PbBiO₂Br [\[17](#page-8-14)], p -Ag₂O/n-PbBiO₂Br [[18\]](#page-8-15), PbBiO₂Br/ BiOBr composites [[19\]](#page-8-16), and etc. These heterojunction composites were found to exhibit superior photocatalytic activity. Despite many PbBiO₂Br-based materials have been reported, it is still necessary to be committed to the exploitation of more efficient visible-light-driven $PbBiO₂Br-based$ photocatalysts for making the best use of the solar energies.

The surface plasmon resonance (SPR) strategy is widely used in fabricating efficient visible-light-driven photocatalysts [[20](#page-8-17)]. Because of SPR of noble metal nanoparticles (NPs), the absorption range of visible-light region can be expanded, resulting in the enhanced degradation performance of photocatalysts [\[21](#page-8-18)]. Recently, Ag/AgCl has been widely considered as a promising photocatalyst due to its being a p-type SPR structure semiconductor [\[22](#page-8-19)]. Furthermore, $Ag⁰$ NPs dispersed on the surface of AgCl can not only efectively absorb visible light, but also can accelerate the transfer of photo-carriers. By now, a number of Ag/ AgCl-based photocatalysts have been successfully synthe-sized, such as Ag/AgCl/NaTaO₃ [\[23](#page-9-0)], and BiVO₄/MWCNT/ Ag@AgCl [[24\]](#page-9-1). These composite photocatalysts exhibited superior photocatalytic performances. To the best of our knowledge, the coupling of $PbBiO₂Br$ nanosheets with Ag/ AgCl NPs has not been reported yet. Hence, we expect that the new $Ag/AgCl/PbBiO₂Br$ composites not only improve the utilization rate of solar energy, but also enhance photocatalytic ability.

Inspired by previous studies, we have successfully fabricated a series of $Ag/AgCl/PbBiO₂Br$ composites by a hydrothermal and in situ photoreaction method. Morphology and microstructure, elements chemical states, optical and electrochemical properties of the $Ag/AgCl/PbBiO₂Br$ composites were systematically studied. Their photocatalytic performances were investigated by the degradation of OTC under visible-light irradiation. The possible enhanced photocatalytic mechanism was also proposed.

2 Experimental

2.1 Preparation of the photocatalysts

PbBiO₂Br nanosheets were synthesized via a facile hydrothermal method [[17](#page-8-14)]. Detailed experimental process was given in Supporting Information $(S1)$. Ag/AgCl/PbBiO₂Br composites were prepared via a photoreduction method. The preparation process was as follows: 1 mmol of $PbBiO₂Br$ was dispersed in deionized water, stirred for 20 min to form uniform suspension A. Then, 1 mmol $AgNO₃$ was added into the suspension A and stirred for 20 min. Subsequently,

1 mmol NaCl was transferred into the suspension A under strong stirring for 30 min. The resulting mixture was illuminated under a 500 W xenon lamp for 30 min so that the $Ag⁺ NPs$ on the surface of AgCl/PbBiO₂Br were reduced to $Ag⁰$ NPs. Eventually, the precipitate was filtered, rinsed with deionized water and ethanol, and dried at 80 °C for 24 h. The obtained product, in which the mass ratio of Ag to $PbBiO₂Br$ was 20.4%, was designated as $Ag/AgCl/PbBiO₂Br (20.4\%)$. Ag/AgCl/PbBiO₂Br (13.6%), Ag/AgCl/PbBiO₂Br (40.8%), and bare Ag/AgCl were also obtained with the same conditions by changing the content of $PbBiO₂Br$.

2.2 Characterization and photocatalytic evaluation

The synthesized catalysts were investigated in detail by multiple instruments analyses. The photocatalytic activities of the Ag/AgCl, PbBiO₂Br, and Ag/AgCl/PbBiO₂Br composites were evaluated via the degradation of the antibiotic OTC under visible-light irradiation. Detailed experimental process was given in Supporting Information (S2).

2.3 Photoelectrochemical measurements

The electrochemical properties of as-prepared samples were investigated on a electrochemical workstation (CS350H, wuhan sikete instrument Co., Ltd, China) with standard calomel electrode (SCE). Preparation of the working electrodes and detailed experimental process were given in Supporting Information (S3).

3 Results and discussion

3.1 XRD analysis

The crystal structures of as-synthesized PbBiO₂Br, Ag/ AgCl, and Ag/AgCl/PbBiO₂Br (20.4%) composite were analyzed using X-ray difraction (XRD), as presented in Fig. [1](#page-2-0)a. It can be seen that the XRD pattern of bare $PbBiO₂Br$ was consistent with the standard spectrum of tetragonal phase PbBiO₂Br (PDF#38-1008). The strong peak located at 30.6° corresponds to the (103) plane of $PbBiO₂Br$, indicating that the obtained catalyst is well-crystallized [[25\]](#page-9-2). For the Ag/AgCl, the peaks at 2*θ*=27.7°, 32.1°, 46.1°, 54.7°, and 57.3°correspond to the (111), (200), (220), (311), and (222) planes of cubic AgCl (PDF#31-1238), respectively [\[26](#page-9-3)]. In addition, the diffraction peaks at $2\theta = 37.9^{\circ}$, 44.1°, 64.3°, and 77.2° match with the (111), (200), (220), and (311) facets of Ag crystal (PDF# 65-2871), respectively [[27\]](#page-9-4). Additionally, as for the Ag/AgCl/PbBiO₂Br (20.4%) photocatalyst, all the diffraction peaks correspond to $PbBiO₂Br$ and Ag/AgCl, and no additional crystal phases can be detected, which indicates the formation of $Ag/AgCl/PbBiO₂B$ composites.

Fig. 1 a XRD patterns of Ag/AgCl, PbBiO₂Br, and Ag/AgCl/PbBiO₂Br (20.4%) composite. XPS spectra of Ag/AgCl/PbBiO₂Br (20.4%) composite; **b** the XPS survey spectrum, **c** Ag 3d, **d** Pb 4f, **e** Bi 4f, **f** Cl 2p, **g** Br 3d and **h** O 1s

3.2 XPS analysis

The elemental valence states of the as-synthesized Ag/ AgCl/PbBiO₂Br (20.4%) were detected by X-ray photoelectron spectroscopy (XPS) technology, and the obtained results are illustrated in Fig [1.](#page-2-0) The main peaks in the XPS survey spectrum of Ag/AgCl/PbBiO₂Br (20.4%) composite (Fig [1](#page-2-0)b) correspond to Br 3d, Pb 4f, Bi 4f, Cl 2p, Ag 3d, and O 1s. Figure [1](#page-2-0)c displays the XPS spectrum of Ag 3d, where the peaks at 367.93 and 373.60 eV are assigned to Ag^0 , and the other two strong peaks at 367.69 and 373.87 eV are ascribed to Ag $3d_{5/2}$ and Ag $3d_{3/2}$ of Ag⁺ in Ag/AgCl, respectively. This result is consistent with other reports in literatures [[28\]](#page-9-5). In Fig. [1](#page-2-0)d, the binding energy peaks at 138.27 and 143.02 eV are corresponding to Pb $4f_{7/2}$ and Pb $4f_{5/2}$, respectively [[29](#page-9-6)]. Figure [1](#page-2-0)e shows

that the XPS spectrum of Bi element, where the peaks at 157.09 and 164.32 eV are attributed to Bi $4f_{7/2}$ and Bi $4f_{5/2}$, respectively [[30](#page-9-7)[–34\]](#page-9-8), indicating that Bi^{3+} ions exist in PbBiO₂Br. Furthermore, in Fig [1](#page-2-0)f, two typical peaks at 199.61 and 197.99 eV can be attributed to Cl $2p_{3/2}$ and Cl $2p_{1/2}$, indicating that Cl[−] ions exist in AgCl phase [[34](#page-9-8)]. Figure [1](#page-2-0)g shows the XPS spectrum of Br 3d, where the binding energy peaks at 68.5 and 69.4 eV are corresponding to Br $3d_{3/2}$ and Br $3d_{5/2}$, respectively [\[35\]](#page-9-9). The O 1s XPS spectrum of $Ag/AgCl/PbBiO₂Br$ (20.4%) composite (Fig. [1h](#page-2-0)) is composed of ftted peaks at 529.66 and 531.04 eV, which could be attributed to the lattice oxygen of $PbBiO₂Br$ and surface-adsorbed oxygen species, respectively [[36,](#page-9-10) [37](#page-9-11)]. From the XPS analysis, it is clear that Ag/ AgCl/PbBiO₂Br is a composite sample composed of Ag/ AgCl and $PbBiO₂Br$.

3.3 Scanning electron microscope (SEM) and EDX analysis

Figure [2](#page-3-0) shows the morphologies of the PbBiO₂Br, Ag/ AgCl, and Ag/AgCl/PbBiO₂Br (20.4%) composite. Figure [2](#page-3-0)a reveals that the AgCl consists of cubic-like NPs with grain size of 300–500 nm and Ag NPs are dispersed on the surfaces of AgCl cubes. Figure [2](#page-3-0)b shows that the as-prepared $PbBiO₂Br$ has a sheet-like morphology with thickness about 30 nm. As seen from Fig. [2c](#page-3-0), the Ag/AgCl NPs are attached on the surface of PbBiO₂Br nanosheets. Moreover, we also notice that compared with the pure Ag/AgCl, the particle size of Ag/AgCl in the Ag/AgCl/PbBiO₂Br (20.4%) composite undergoes signifcant change, which could be due to the fact that $PbBiO₂Br$ could influence the surface energy of Ag/AgCl and thus impede their growth. Additionally, energy-disperse X-ray (EDX) spectroscopy analysis of $Ag/AgCl/PbBiO₂Br (20.4%) composite was carried out, and$ the obtained result is illustrated in Fig. [2](#page-3-0)d. From the EDX spectrum, the peaks belonging to Ag, Cl, Pb, Bi, O, C, Au, and Br are observed (C and Au element come from the test instrument). The atomic ratio of Ag/Pb equals to 1:1, which is in good agreement with the Ag/Pb atomic ratio of Ag/ AgCl/PbBiO₂Br (20.4%) composite.

3.4 TEM analysis

To further obtain more detailed structure information of Ag/ $AgCI/PbBiO₂Br (20.4%) composite, field emission transmis$ sion electron microscopy (TEM) and high resolution TEM (HRTEM) images were carried out. As shown in Fig. [2](#page-3-0)e, the Ag/AgCl NPs are formed on the surface of $PbBiO₂Br$ nanosheets. From Fig. [2f](#page-3-0), it is clearly seen that the lattice fringes of 0.235 and 0.277 nm are corresponding to the (111)

Fig. 2 SEM images of **a** Ag/ AgCl, **b** PbBiO₂Br, and **c** Ag/ AgCl/PbBiO2Br (20.4%); **d** EDS spectrum, **e** TEM and **f** HRTEM images of as-prepared Ag/AgCl/PbBiO₂Br (20.4%) composite

and (220) planes of Ag and AgCl, respectively [\[38](#page-9-12)]. The lattice fringes of 0.291 nm are correlated with the (103) plane of PbBiO₂Br [[39\]](#page-9-13).

3.5 Optical properties of the photocatalysts

The optical properties of photocatalysts are very important for their photocatalytic application in the degradation of the antibiotics. Therefore, the optical properties of as-obtained bare PbBiO₂Br, Ag/AgCl, and different Ag/AgCl/PbBiO₂Br composites were investigated via ultraviolet–visible difuse refectance spectra (UV–Vis DRS) measurement, as shown in Fig. $3a$. The bare PbBiO₂Br exhibits the absorption edge at 500 nm, which is in agreement with the previous results in literatures [\[17](#page-8-14), [40](#page-9-14)]. It can be seen that Ag/AgCl exhibits a strong absorption in the visible-light region. It is also obvious that the absorption intensities of $Ag/AgCl/PbBiO₂Br$ composites are stronger than that of bare $PbBiO₂Br$ in the visible-light regions, which can be attributed to the Ag SPR strategy [[41\]](#page-9-15).

3.6 FT‑IR analysis

Figure [3](#page-4-0)b shows the Fourier transform infrared spectroscopy (FT-IR) spectra of the samples. For the pristine Ag/ AgCl sample, the peak at 1044.1 cm^{-1} is attributed to the stretching vibration of Ag–Cl [\[42](#page-9-16)]. Furthermore, the stretching vibration of Ag NPs bond can be also observed at 2790.1 and 2908.7 cm⁻¹ [[43](#page-9-17)]. For pure PbBiO₂Br, the peaks at 1388.4 and 1600.1 cm⁻¹ are attributed to the bending vibrations of the Pb–O bond and the Bi–O bond, respectively [[44,](#page-9-18) [45\]](#page-9-19). The broad absorption bands on the right side from 3250 to 3425 cm−1 are corresponding to the stretching vibration O–H band by the absorbed H_2O [\[46,](#page-9-20) [47\]](#page-9-21). As for the Ag/ $AgCl/PbBiO₂Br$ composites, all the absorption peaks are from $Ag/AgCl$ and $PbBiO₂Br$. The analysis results indicate that $Ag/AgCl/PbBiO₂Br$ are successfully fabricated.

3.7 Nitrogen adsorption analysis

According to the previously reported literature [\[47–](#page-9-21)[49\]](#page-9-22), the photocatalytic efficiency of the catalyst is largely dependent on its specifc surface area, so the Brunauer–Emmett–Teller (BET) specifc surface areas of the as-prepared samples were measured using nitrogen adsorption–desorption measurements. The BET specific surface areas of pure $PbBiO₂Br$, Ag/AgCl, and Ag/AgCl/PbBiO₂Br composites are summarized in Table [1](#page-4-1). It is found that the BET specifc surface area of the Ag/AgCl/PbBiO₂Br (20.4%) is measured to be $37.16 \text{ m}^2/\text{g}$, which is 3.06 times higher than that of pure $PbBiO₂Br (12.12 m²/g)$. The much larger surface area facilitates the contaminant contact with the catalyst and enhances the photocatalytic performance.

3.8 Photocatalytic activity

The removal of OTC was used to evaluate the photocatalytic properties of the obtained photocatalysts under visible-light irradiation, and the attained results are given in Fig. [4](#page-5-0)a. No apparent OTC degradation is detected without photocatalyst under visible-light irradiation, indicating that the direct

Table 1 BET specifc surface areas of the as-prepared samples

Samples	$BET(m^2/g)$
Pure $PbBiO2Br$	12.12
Ag/AgCl/PbBiO ₂ Br (13.6%)	25.82
Ag/AgCl/PbBiO ₂ Br (20.4%)	37.16
Ag/AgCl/PbBiO ₂ Br (40.8%)	32.01
Ag/AgCl	26.14

Fig. 3 a UV–Vis absorption spectra and **b** FT-IR spectra of bare PbBiO₂Br, Ag/AgCl and different Ag/AgCl/PbBiO₂Br composites

Fig. 4 a OTC photodegradation and $\mathbf{b} - \ln(C_t/C_0)$ vs. time plots for photodegradation of OTC by the obtained catalysts; **c** Cycling degradation efficiency of Ag/AgCl/PbBiO₂Br (20.4%) composite and **d**

photolysis of OTC can be almost neglected. It can be observed that 44% and 51% of OTC solution is removed within 80 min visible-light irradiation for bare $PbBiO₂Br$ and $Ag/AgCl$, respectively. However, the $Ag/AgCl/PbBiO₂Br$ composites exhibit enhanced photocatalytic activity in comparison to pure PbBiO₂Br and Ag/AgCl under identical experimental conditions. The degradation percentage of OTC solution reaches 72%, 93.2%, and 84% for Ag/AgCl/PbBiO₂Br (13.6%), Ag/ AgCl/PbBiO₂Br (20.4%), and Ag/AgCl/PbBiO₂Br (40.8%) composites within 80 min visible-light irradiation, respectively. It is worth noting that the Ag/AgCl/PbBiO₂Br (40.8%) photocatalyst has a higher mass ratio of Ag than the Ag/AgCl/ PbBiO₂Br (20.4%) photocatalyst, however, the photocatalytic activity of the former is lower than that of the latter. The reason may be that Ag NPs are loaded on the surface of the photocatalyst, which not only motivate the SPR, but also promote separation of electrons and holes. However, excessive Ag NPs covering on surface of the AgCl could inhibit the light absorption and decrease the separation efficiency of e^-/h^+ pairs, thus leading to decreased photocatalytic activity. In addition, to get further insight into the reaction kinetic behaviors, the

XRD patterns of Ag/AgCl/PbBiO₂Br (20.4%) composite before and after the recycling photocatalytic experiment

photocatalytic degradation rates are calculated using the fol-lowing equation [[50](#page-9-23)[–52](#page-9-24)]:

$$
\ln\left(C_t/C_0\right) = K_{\text{app}}t\tag{1}
$$

where, k_{app} stands for degradation rates constant [[53\]](#page-9-25). The results are drawn and displayed in Fig. [4](#page-5-0)b. The obtained rate constants k_{app} are 1.06×10^{-2} , 7.25×10^{-3} , 1.71×10^{-2} , 3.25×10^{-1} and 2.21×10^{-1} min⁻¹ for Ag/AgCl, PbBiO₂Br, Ag/AgCl/PbBiO₂Br (13.6%), Ag/AgCl/PbBiO₂Br (20.4%), and Ag/AgCl/PbBiO₂Br(40.8%), respectively. It is clear that the rate constant k_{app} of Ag/AgCl/PbBiO₂Br (20.4%) is 3.04 and 4.48 times higher than that of Ag/AgCl and PbBiO₂Br, respectively. These results confirm that Ag/AgCl/PbBiO₂Br composites accelerate the degradation of OTC in photocatalytic progress.

3.9 Cyclic experiments

In order to investigate the structural stability and practical application of Ag/AgCl/PbBiO₂Br (20.4%) composite, recycling experiments were performed under the same condition, as shown in Fig. [4](#page-5-0)c. It can be observed that after the 4th run recycle experiment, the removal efficiency of $Ag/AgCl/PbBiO₂Br (20.4%) photocatalyst decreases from$ 93.2 to 92.8%. This implies that the decrease of the deg-radation efficiency can be negligible. Furthermore, Fig. [4](#page-5-0)d exhibits the XRD patterns of Ag/AgCl/PbBiO₂Br (20.4%) photocatalyst before and after photodegradation recycling. It is clearly observed that all difraction peaks undergo no change, indicating no any change in crystalline structure. Above results further confrm the stability of the Ag/AgCl/ PbBiO₂Br composites during photocatalytic process.

3.10 Possible photocatalytic mechanism

As we all know, superoxide radicals $\left(\cdot O_{2}^{-} \right)$, hydroxyl radicals (-OH) and holes (h⁺) are involved in the photocatalytic reaction system as the main radical species [[54\]](#page-9-26). To explore the role of the active species, the radical trapping experiments was implemented by separately adding 10 mM ethylene diaminetetraacetic acid disodium salt (EDTA-2Na), 10 mM

Fig.5 The degradation of OTC on the Ag/AgCl/PbBiO₂Br (20.4%) composite in presence of various scavengers

Fig. 6 a PL spectra (excited at 325 nm) and **b** EIS Nyquist plots of the as-synthesized samples

isopropanol (IPA) and 1 mM benzoquinone (BQ) into the photocatalytic reaction system, which act as the h⁺, **·**OH and ⋅O[−] 2 scavengers, respectively. As depicted in Fig. [5,](#page-6-0) it is evident that with adding IPA, the degradation rate of Ag/AgCl/ PbBiO₂Br (20.4%) decreases slightly to 90.5%, demonstrating that there are almost no **·**OH radicals generated in the degradation process. However, when adding BQ or EDTA-2Na, the degradation efficiency sharply decreases from 93.2 to 17 and 26%, respectively, demonstrating that \cdot O₂ and h⁺ play very important role in the degradation process. Furthermore, in this study, considering that the Cl− could be oxidized by holes to $Cl⁰$ atoms and the antibiotics OTC could be oxidized $[55]$ $[55]$. $Cl⁰$ atoms are considered to be another actual active species in the photocatalytic degradation process [[56](#page-10-0)].

Many researches indicate that photoluminescence (PL) emission spectra can be induced by the recombination between photogenerated electrons and holes [\[57](#page-10-1)]. The lower the PL emission peaks, the less the recombination of photoexcited charge carriers. Therefore, the charge transfer and recombination processes in the photodegradation experiment can be investigated by PL spectra. Figure [6](#page-6-1)a shows the PL spectra of bare PbBiO₂Br, Ag/AgCl, and different Ag/AgCl/ PbBiO₂Br composites in the range of $420-620$ nm under excitation at 325 nm, which arise due to the recombination of photogenerated electrons and holes. It is observed that the emission spectrum intensity of bare PbBiO₂Br is the strongest. However, after the coupling of Ag/AgCl NPs with $PbBiO₂Br$ nanosheets, the intensity of the PL emission spectra is decreased, indicating that the charge separation rate of $Ag/AgCl/PbBiO₂Br$ composites is more efficient than that of bare $PbBiO₂Br$ and Ag/AgCl nanoplates. It is noteworthy that the Ag/AgCl/PbBiO₂Br (20.4%) composite exhibits the weakest intensity, suggesting that it has the highest separation efficiency of photoexcited charge carriers [\[58\]](#page-10-2). In order to further understand the charge transfer in the photocatalytic process. Electrochemical impedance spectroscopy (EIS) measurement was also carried out for the bare PbBiO₂Br, Ag/AgCl, and Ag/AgCl/PbBiO₂Br (20.4%) composite. As shown in Fig. [6](#page-6-1)b, it is found that Ag/AgCl/ PbBiO₂Br (20.4%) composite owns the smallest semicircle

radius. It is commonly recognized that the curvature radius serves as an indicator of charge-transfer resistance, and a smaller semicircle radius implies higher charge transfer efficiency [\[59](#page-10-3), [60](#page-10-4)].

The positions of the conduction band (CB) and valence band (VB) of obtained PbBiO₂Br are about -1.0 and 1.5 eV (vs.NHE), respectively, according to our previously reported results [[17](#page-8-14), [18\]](#page-8-15). Furthermore, in the light of the literature, the positions of the CB and VB of the AgCl are located at − 0.09 and 3.16 eV (vs. NHE), respectively [\[23](#page-9-0), [25](#page-9-2)].

In the light of above experimental results, a possible photocatalysis mechanism is proposed to explain the charge transfer behaviors of Ag/AgCl/PbBiO₂Br composite in the photocatalytic process. As shown in Fig. [7,](#page-7-0) the PbBiO₂Br and metallic Ag NPs are photoexcited to generate e^{−/h+} under visible-light irradiation (Eqs. [2](#page-7-1), [3](#page-7-2)). The AgCl is difficult to be stimulated under visible-light irradiation due to its broad bandgap. Since the SPR of Ag NPs is energetic enough to the photoexcited electrons and can be easily injected into the E_{CB} of AgCl or PbBiO₂Br (Eq. [4\)](#page-7-3). These accumulated electrons on the E_{CB} of AgCl could not reduce oxygen to form \cdot O₂, due to the E_{CB} potential of AgCl (−0.09 eV) more positive than the standard reduction potential of $E_0 (O_2 / \cdot O_2^-) = -0.33 \text{ eV}$ vs. NHE [[61–](#page-10-5)[64](#page-10-6)]. These accumulated charges could react with O_2 on the surface of PbBiO₂Br to form \cdot O₂ due to the E_{CB} potential of PbBiO₂Br (−1.0 eV) more negative than the standard reduction potential of $E_0 (O_2 / \cdot O_2^-) = -0.33 \text{ eV}$ vs. NHE (Eq. [5](#page-7-4)). Above radical trapping experimental results verify that the \cdot O₂ is one of the main active species in the photocatalytic process. Meanwhile, the residual h^+ at Ag NPs migrates to the E_{VB} of AgCl surface to oxi-dize the Cl[−] ion to form Cl⁰ atoms (Eqs. [6](#page-7-5), [7](#page-7-6)). The Cl⁰ atoms are reactive radical species. After that, $Cl⁰$ atoms oxidize OTC and hence are reduced to Cl− again (Eq. [8\)](#page-7-7) [[65,](#page-10-7) [66](#page-10-8)]. Thus, the Ag/AgCl/PbBiO₂Br can maintain good catalytic performance and stability. On the other hand, from a thermodynamic point of view, the photogenerated h+ cannot react with OH− or H2O to produce **·**OH since the VB potential of $PbBiO₂Br$ is more negative than the redox potentials of $E^{0}(OH^{-}/OH)$ (1.99 eV vs. NHE) and $E^0(H_2O/\cdot OH)$ (2.38 eV vs. NHE), indicating that the h⁺ can directly oxide OTC [[67–](#page-10-9)[69](#page-10-10)]. The produced active species (h⁺,⋅O₂) can efficiently decompose OTC into intermediate products and finally into H_2O and CO_2 (Eq. [9](#page-7-8)). The above discussion suggests that the Ag/AgCl/PbBiO₂Br composites can improve the separation of photogenerated e−/h+, fnally leading to the enhancement of photocatalytic activity.

$$
Ag + hv \rightarrow Ag(e^-)_{CB} + Ag(h^+)_{VB}
$$
 (2)

$$
\mathrm{PbBiO}_{2}\mathrm{Br} + h\nu \rightarrow \mathrm{PbBiO}_{2}\mathrm{Br}(\mathrm{e}^{-})_{\mathrm{CB}} + \mathrm{PbBiO}_{2}\mathrm{Br(h^{+})}_{\mathrm{VB}} \tag{3}
$$

$$
Ag(e^-)_{CB} + PbBiO_2Br \rightarrow PbBiO_2Br(e^-)_{CB} + Ag \tag{4}
$$

$$
PbBiO2Br(e-)CB + O2 \rightarrow O2-
$$
 (5)

$$
Ag(h^{+})_{VB} + AgCl \rightarrow AgCl(h^{+})_{VB} + Ag
$$
 (6)

$$
AgCl(h^{+})_{VB} + Cl^{-} \rightarrow Cl^{0} + AgCl
$$
 (7)

$$
Cl0 + OTC \rightarrow products + Cl-
$$
 (8)

$$
\cdot \text{O}_2^-/\text{h}^+ + \text{OTC} \rightarrow \text{products} \tag{9}
$$

Fig. 7 Proposed photocatalytic reaction processes and charge separation of Ag/AgCl/PbBiO₂Br composites under visible-light irradiation

4 Conclusions

In this study, visible-light-driven novel $Ag/AgCl/PbBiO₂Br$ composites were successfully synthesized through hydrothermal and in situ photoreaction method. The UV–Vis absorption spectra confrm that the as-obtained Ag/AgCl/ PbBiO₂Br composites exhibit remarkable photo-absorption property in the visible-light region as compared to $PbBiO₂Br$ nanosheets, which could be due to the surface Ag resonance. The Ag/AgCl/PbBiO₂Br (20.4%) composite exhibits the strongest capacity for degradation of the antibiotic OTC under visible-light irradiation, which can be mainly attributed to strong visible-light absorbance and the efficiently separation of photoexcited charge. The recycling experiments demonstrate that the Ag/AgCl/PbBiO₂Br composites possess good stability. In addition, active species trapping experiments confirm that \cdot O₂, Cl⁰ and h⁺ play an very important role in the degradation process. This work provides a way to design an excellent environmental purifcation material.

Funding This research has been supported by the China National Key R&D Project during the 13th Five-year Plan Period (Grant No. 2017YFB0602500) and University Natural Science Research Program of Jiangsu Province (16KJA610002).

Availability of data and materials All data are fully available without restriction.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing interests.

References

- 1. Q.J. Yu, T. Ouyang, K.F. Zhou, C.T. Chang, Photocatalytic degradation of oxytetracycline by photosensitive materials and toxicological analysis by caenorhabditis elegans. J. Nanosci. Nanotechnol. **19**, 6924–6932 (2019)
- 2. S.F. Wang, H.J. Gao, G. Sun, Y. Li, Y. Wang, H. Liu, C. Chen, L. Yang, Structure characterization, optical and photoluminescence properties of scheelite-type CaWO4 nanophosphors: effects of calcination temperature and carbon skeleton. Opt. Mater. **99**, 109562 (2020)
- 3. S.J. Jiao, S.R. Meng, D.Q. Yin, L.H. Wang, L.Y. Chen, Aqueous oxytetracycline degradation and the toxicity change of degradation compounds in photoirradiation process. J. Environ. Sci. **7**, 806–813 (2008)
- 4. Z.M. He, Y.M. Xia, B. Tang, J.B. Su, X.F. Jiang, Optimal cocatalytic effect of NiFe₂O₄/ZnO nanocomposites toward enhanced photodegradtion for dye MB. Z. Phys. Chem. **233**, 347–359 (2017)
- 5. E. Guine, J.A. Garrido, R.M. Rodriguez, P.L. Cabot, C. Arias, F. Centellas, E. Brillas, Degradation of the fuoroquinolone

enrofoxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim. Acta. **55**, 2101–2115 (2010)

- 6. T. Xian, X.F. Sun, L.J. Di, Y.J. Zhou, J. Ma, H.Q. Li, H. Yang, Carbon quantum dots (CQDs) decorated $Bi₂O_{3-x}$ hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7. Catalysts **9**, 1031 (2019)
- 7. T. Xian, L.J. Di, X.F. Sun, H.Q. Li, Y.J. Zhou, H. Yang, Photo-Fenton degradation of AO7 and photocatalytic reduction of $Cr(VI)$ over CQD-decorated BiFeO₃ nanoparticles under visible and NIR light irradiation. Nanoscale Res. Lett. **14**, 397 (2019)
- 8. Y.L. Yu, S.L. Huang, Y. Gu, S. Yan, Z.J. Lan, W.J. Zheng, Y.A. Cao, Study of PbBiO₂X (X = Cl, Br and I) square nanoplates with efficient visible photocatalytic performance. Appl. Surf. Sci. **428**, 844–850 (2018)
- 9. F.Y. Liu, Y.R. Jiang, C.C. Chen, W.W. Lee, Novel synthesis of PbBiO₂Cl/BiOCl nanocomposite with enhanced visible-drivenlight photocatalytic activity. Catal. Today **300**, 112–123 (2018)
- 10. B. Wang, J. Di, P.F. Zhang, J.X. Xia, S. Dai, H.M. Li, Ionic liquid-induced strategy for porous perovskite-like PbBiO₂Brphotocatalysts with enhanced photocatalytic activity and mechanism insight. Appl. Catal. B **206**, 127–135 (2017)
- 11. B. Wang, J. Di, L. Lu, S.C. Yan, G.P. Liu, Y.Z. Ye, H.T. Li, W.S. Zhu, H.M. Li, J.X. Xia, Sacrifcing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like pbBiO₂Br for robust CO2 photoreduction. Appl. Catal. B **254**, 551–559 (2019)
- 12. F.Y. Xiao, J. Xing, L. Wu, Z.P. Chen, X.L. Wang, H.G. Yang, Assembly of ultrathin $PbBiO₂Br$ nanosheets with enhanced visible light photocatalytic properties. RSC Adv. **3**, 10687–10690 (2013)
- 13. C.K. Song, W.J. Feng, J.S. Zhao, X. Wang, Efect of drying temperature on properties of lithium-rich manganese-based materials in sol-gel method. Ionics **25**, 4607–4614 (2019)
- 14. M. Li, W. Feng, W. Su, X. Wang, Complex hollow structures of cobalt(II) sulfde as a cathode for lithium–sulfur batteries. Int. J. Electrochem. Sci. **15**, 526–534 (2020)
- 15. X. Li, J. Wang, D. Xu, Z. Sun, Q. Zhao, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, NbSe₂ nanosheet supported PbBiO₂Br as a high performance photocatalyst for the visible light-driven asymmetric alkylation of aldehyde. ACS Sustain. Chem. Eng. **3**, 1017–1022 (2015)
- 16. S. Li, X. Wang, Y. Xu, H. Yang, F. Wei, X. Liu, The excellent photocatalytic synergism of PbBiO₂Br/UiO-66-NH₂ composites via multiple coupling efects. RSC Adv. **6**, 89907–89915 (2016)
- 17. Y.M. Xia, Z.M. He, J.B. Su, K.J. Hu, Construction of novel Cu₂O/ PbBiO₂Br composites with enhanced photocatalytic activity. J. Mater. Sci.: Mater Electron. **30**, 9843–9854 (2019)
- 18. Z.M. He, J.B. Su, R. Chen, B. Tang, Fabrication of novel p-Ag₂O/ n-PbBiO₂Br heterojunction photocatalysts with enhanced photocatalytic performance under visible-light irradiation. J. Mater. Sci.: Mater Electron. **30**, 20870–20880 (2019)
- 19. H.P. Lin, W.W. Lee, S.T. Huang, L.W. Chen, T.W. Yeh, J.Y. Fu, C.C. Chen, Controlled hydrothermal synthesis of PbBiO₂Br/ BiOBr heterojunction with enhanced visible-driven-light photocatalytic activities. J. Mol. Catal. A **417**, 168–183 (2016)
- 20. M.J. Islam, D.A. Reddy, R. Ma, Y. Kim, T.K. Kim, Reduced-graphene-oxide-wrapped BiOI-AgI heterostructured nanocomposite as a high-performance photocatalyst for dye degradation under solar light irradiation. Solid State Sci. **61**, 32–39 (2016)
- 21. H.J. Gao, X.X. Zhao, H.M. Zhang, J.F. Chen, S.F. Wang, H. Yang, Construction of 2D/0D/2D face-to-face contact $g - C_3N_4@Au@$ $Bi_4Ti_3O_{12}$ heterojunction photocatalysts for degradation of rhodamine B. J. Electron. Mater. (2020). [https://doi.org/10.1007/s1166](https://doi.org/10.1007/s11664-020-08243-2) [4-020-08243-2](https://doi.org/10.1007/s11664-020-08243-2)
- 22. Z.H. Shah, Y.Z. Ge, W.Y. Ye, X.J. Lin, S.F. Zhang, R.W. Lu, Visible light activation of SrTiO₃ by loading Ag/AgX (X = Cl, Br) for

highly efficient plasmon-enhanced photocatalysis. Mater. Chem. Phys. **198**, 73–82 (2017)

- 23. D.B. Xu, W.D. Shi, C.J. Song, M. Chen, S.B. Yang, W.Q. Fan, B.Y. Chen, In-situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic $Ag/AgCl/NaTaO_3$ nanocubes photocatalysts. Appl. Catal. B **191**, 28–234 (2016)
- 24. T.T. Sun, D.M. Cui, Q. Ma, X. Peng, L.J. Yuan, Synthesis of BiVO4/MWCNT/Ag@AgCl composite with enhanced photocatalytic performance. J. Phys. Chem. Solids **111**, 190–198 (2017)
- 25. Z.M. He, J.B. Su, Y.M. Xia, B. Tang, Fabrication and photocatalytic performance of $Bi₂₄O₃₁Br₁₀$ nanosphere by a polyacrylamide gel method. Micro Nano Lett. (2020). [https://doi.org/10.1049/](https://doi.org/10.1049/mnl.2020.0016) [mnl.2020.0016](https://doi.org/10.1049/mnl.2020.0016)
- 26. J.B. Zhou, W. Liu, W.Q. Cai, The synergistic efect of Ag/AgCl@ ZIF-8 modified $g - C_3N_4$ composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofoxacin. Sci. Total Environ. **696**, 133962 (2019)
- 27. Y.F. Wang, M. Zhang, J. Li, H.C. Yang, J. Gao, G. He, Z.Q. Sun, Construction of Ag@AgCl decorated TiO₂ nanorod array film with optimized photoelectrochemical and photocatalytic performance. Appl. Surf. Sci. **476**, 84–93 (2019)
- 28. Y.X. Yan, H. Yang, Z. Yi, T. Xian, R.S. Li, X.X. Wang, Construction of $Ag_2S@CaTiO_3$ heterojunction photocatalysts for enhanced photocatalytic degradation of dyes. Desalin. Water Treat. **170**, 349–360 (2019)
- 29. Y.M. Xia, Z.M. He, J.B. Su, K.J. Hu, Polyacrylamide gel synthesis and photocatalytic performanceof PbBiO₂Br nanosheets. Mater. Lett. **241**, 64–67 (2019)
- 30. Z.M. He, J.B. Su, B. Tang, Y.M. Xia, Fabrication of novel $Cu₂O$ $Bi_{24}O_{21}Br_10$ composites and excellent photocatalytic performance. J. Mater. Sci.: Mater Electron. **29**, 19544–19553 (2018)
- 31. Z.M. He, Y.M. Xia, J.B. Su, Fabrication of novel AgBr/ $Bi_{24}O_{31}Br_10$ composites with excellent photocatalytic performance. RSC Adv. **8**, 39187–39196 (2018)
- 32. N.M. Mahmoodi, A. Taghizadeh, M. Taghizadeh, J. Abdi, In situ deposition of Ag/AgCl on the surface of magnetic metal-organic framework nanocomposite and its application for the visible-light photocatalytic degradation of Rhodamine dye. J. Hazard. Mater. **378**, 120741 (2019)
- 33. M.M. Sajid, N.A. Shad, A.M. Afzal, Y. Javed, S.B. Khan, N. Amin, A. Shah, I. Yousaf, H.F. Zhai, Generation of strong oxidizing radicals from plate-like morphology of $\rm BiVO_4$ for the fast degradation of crystal violet dye under visible light. Appl. Phys. A **126**, 314 (2020)
- 34. Y.M. Xia, J.B. Su, Z.M. He, Z-scheme charge separation in $Bi_{24}O_{31}Br_{10}/SrTiO_3$ nanocomposites for degradation of methyl orange. J. Electron. Mater. **48**, 3890–3899 (2019)
- 35. Y.X. Yan, H. Yang, Z. Yi, X.X. Wang, R.S. Li, T. Xian, Evolution of Bi nanowires from BiOBr nanoplates through a N aBH₄ reduction method with enhanced photodegradation performance. Environ. Eng. Sci. **37**, 64–77 (2020)
- 36. Y.M. Xia, Z.M. He, W. Yang, B. Tang, Y.L. Lu, K.J. Hu, J.B. Su, X.P. Li, Effective charge separation in BiOI/Cu₂O composites with enhanced photocatalytic activity. Mater. Res. Express **5**, 025504 (2018)
- 37. Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, X.P. Li, Fabrication of n-SrTiO₃/p-Cu₂O heterojunction composites with enhanced photocatalytic performance. J. Alloys Compd. **753**, 356–363 (2018)
- 38. M. Zhao, W. Zhou, M.M. Lu, Z.P. Guo, C.D. Li, W.J. Wang, Novel AgCl nanotubes/BiOCl nanosheets composite with improved adsorption capacity and photocatalytic performance. J. Alloys Compd. **773**, 1146–1153 (2019)
- 39. Y.M. Xia, Z.M. He, J.B. Su, One-step construction of novel $Ag_3PO_4/PbBiO_2Br$ composite with enhanced photocatalytic activity. Mater. Res. Express **6**, 085909 (2019)
- 40. M. Golkari, H. Shokrollahi, H. Yang, The infuence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu Ce-substituted garnet synthesized by the solid state route. Ceram. Int. **46**, 8553–8560 (2020)
- 41. C.D. Yu, P. Wang, X.F. Wang, F. Chen, H.G. Yu, Silver-melamine nanowire-assisted synthesis of net-like AgCl-Ag/g-C₂N₄ for highly efficient photocatalytic degradation ability. J. Alloys Compd. **806**, 263–271 (2019)
- 42. S.F. Yang, C.G. Niu, D.W. Huang, H. Zhang, C. Liang, G.M. Zeng, $SrTiO₃$ nanocubes decorated with Ag/AgCl nanoparticles as photocatalysts with enhanced visible-light photocatalytic activity towards the degradation of dyes, phenol and bisphenol A. Environ. Sci-Nano **4**, 585–595 (2017)
- 43. J.W. Pan, Z.M. He, J.B. Su, R. Chen, B. Tang, Preparation and optical properties of Ni-doped PbBiO₂Br nanoparticles. Mater. Res. Express **6**, 115042 (2019)
- 44. Y.M. Xia, Z.M. He, J.B. Su, X.P. Li, B. Tang, One-step construction of novel PbBiO₂Br/ZnO heterojunction composites with enhanced photocatalytic activity. Phys. Status Solidi A **216**, 1900406 (2019)
- 45. Y.M. Xia, Z.M. He, J.B. Su, S.Q. Zhu, B. Tang, Sustainable solar-light-driven $SrTiO₃/PbBiO₂Br$ nanocomposites with enhanced photocatalytic activity. J. Electron. Mater. **249**, 3259– 3268 (2020)
- 46. O. Dehghani Dastjerdi, H. Shokrollahi, H. Yang, The enhancement of the Ce-solubility limit and saturation magnetization in the $Ce_{0.25}Bi_xPryY_{2.75-x-y}Fe₅O₁₂$ garnet synthesized by the conventional ceramic method. Ceram. Int. **46**, 2709–2723 (2020)
- 47. M.M. Sajid, N. Amin, N.A. Shad, S.B. Khan, Y. Javed, Z.J. Zhang, Hydrothermal fabrication of monoclinic bismuth vanadate $(m-BiVO₄)$ nanoparticles for photocatalytic degradation of toxic organic dyes. Mater. Sci. Eng. B **242**, 83–89 (2019)
- 48. M.M. Sajid, N.A. Shad, A.M. Afzal, Y. Javed, S.B. Khan, Z. Imran, S. Hassan, Z. Hussain, Z.J. Zhang, N. Amin, Fast surface charge transfer with reduced band gap energy of $FeVO₄/graphene$ nanocomposite and study of its electrochemical property and enhanced photocatalytic activity. Arab. J. Sci. Eng. **44**, 6659–6667 (2019)
- 49. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z.J. Zhang, N. Amin, H.F. Zhai, Preparation and characterization of Vanadium pentoxide (V_2O_5) for photocatalytic degradation of monoazo and diazo dyes. Surf. Interfaces **19**, 100502 (2020)
- 50. Z.M. He, Y.M. Xi, J.B. Su, B. Tang, Fabrication of magnetically separable NiFe₂O₄/Bi₂₄O₃₁Br₁₀ nanocomposites and excellent photocatalytic performance under visible light irradiation. Opt. Mater. **88**, 195–203 (2019)
- 51. C.X. Zheng, H. Yang, Z.M. Cui, H.M. Zhang, X.X. Wang, A novel $Bi_4Ti_3O_{12}/Ag_3PO_4$ heterojunction photocatalyst with enhanced photocatalytic performance. Nanoscale Res. Lett. **12**, 608 (2017)
- 52. Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, S.P. Sun, X.P. Li, Fabrication of magnetically separable NiFe₂O₄/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. **8**, 4284–4294 (2018)
- 53. G.J. Gao, W.J. Feng, W.X. Su, S.J. Wang, L.J. Chen, M.M. Li, C.K. Song, Preparation and modifcation of MIL-101(Cr) metal organic framework and its application in lithium-sulfur batteries. Int. J. Electrochem. Sci. **15**, 1426–1436 (2020)
- 54. S.F. Wang, H.J. Gao, C. Chen, Q. Li, C. Li, Y. Wei, L. Fang, Efect of phase transition on optical and photoluminescence properties of nano-MgWO₄ phosphor prepared by a gamma-ray irradiation assisted polyacrylamide gel method. J. Mater. Sci.: Mater. Electron. **30**, 15744–15753 (2019)
- 55. K.H. Wu, Y.C. Cheng, K.F. Cheng, J.C. Wang, Antibacterial activity of surface-modifed fabric with Ag/AgCl-doped quaternary a mmonium modifed silicate hybrid. J Nanosci Nanotechnol. **19**, 7285–7293 (2019)
- 56. Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, X.K. Tan, Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. **150**, 62–67 (2008)
- 57. S.F. Wang, C. Chen, Y. Li, Q. Zhang, H. Gao, Synergistic efects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in $MgAl₂O₄$: Ce and Mn-codoped MgAl₂O₄: Ce phosphors. J. Electron. Mater. 48, 6675–6685 (2019)
- 58. Y.M. Xia, Z.M. He, J.B. Su, Y. Liu, B. Tang, Fabrication and photocatalytic property of novel $SrTiO₃/Bi₅O₇I$ nanocomposites. Nanoscale Res. Lett. **13**, 148 (2018)
- 59. Z.M. He, Y.M. Xia, B. Tang, J.B. Su, Fabrication and photocatalytic property of magnetic NiFe₂O₄/Cu₂O composites. Mater. Res. Express. **4**, 095501 (2017)
- 60. Y.M. Xia, Z.M. He, J.B. Su, B. Tang, Y. Liu, Enhanced photocatalytic performance of Z-scheme $Cu₂O/Bi₅O₇I$ nanocomposites. J. Mater. Sci.: Mater. Electron. **29**, 15271–15281 (2018)
- 61. M. Li, W.J. Feng, W. Su, X. Wang, CoNi-embedded nitrogenenriched porous carbon framework for long-life lithium–sulfur batteries. J. Solid State Electrochem. **23**, 2317–2324 (2019)
- 62. Y.M. Xia, Z.M. He, J.B. Su, B. Tang, Y. Liu, X.P. Li, Fabrication of novel n-SrTiO₃/p-BiOI heterojunction for degradation of crystal violet under simulated solar light irradiation. NANO **13**, 1850070 (2018)
- 63. X.X. Yao, X.H. Liu, D. Zhu, C.B. Zhao, L.D. Lu, Synthesis of cube-like Ag/AgCl plasmonic photocatalyst with enhanced visible light photocatalytic activity. Catal. Commun. **59**, 151–155 (2015)
- 64. Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu₂O core-shell nanocomposites. Mater. Lett. **184**, 148–151 (2016)
- 65. S.F. Wang, H.J. Gao, Y. Wang, G. Sun, X. Zhao, H. Liu, C. Chen, L. Yang, Efect of the sintering process on the structure, colorimetric, optical and photoluminescence properties of SrWO_4 phosphor powders. J. Electron. Mater. (2020). [https://doi.org/10.1007/](https://doi.org/10.1007/s11664-020-07941-1) [s11664-020-07941-1](https://doi.org/10.1007/s11664-020-07941-1)
- 66. S.F. Wang, H.J. Gao, Y. Wei, Y.W. Li, X.H. Yang, L.M. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate. CrystEngComm **21**, 263–277 (2019)
- 67. Y.M. Xia, Z.M. He, Y.L. Lu, B. Tang, S.P. Sun, J.B. Su, X.P. Li, Fabrication and photocatalytic property of magnetic $SrTiO₃/$ NiFe₂O₄ heterojunction nanocomposites. RSC Adv. 8, 5441–5450 (2018)
- 68. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, N. Amin, Z.J. Zhang, Z. Imran, M.I. Yousuf, Facile synthesis of $\text{Zn}_3(\text{VO}_4)_{2}/\text{FeVO}_4$ heterojunction and study on its photocatalytic and electrochemical properties. Appl. Nanosci. (2018). [https://doi.org/10.1007/s1320](https://doi.org/10.1007/s13204-019-01199-8) [4-019-01199-8](https://doi.org/10.1007/s13204-019-01199-8)
- 69. M.M. Sajid, N.A. Shad, Y. Javed, S.B. Khan, Z.J. Zhang, N. Amin, N. Amin, H.F. Zhai, Morphological efects on the photocatalytic performance of FeVO₄ nanocomposite. Nano-Struct. Nano-Object. **22**, 100431 (2020)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.