

Determination of frequency and voltage dependence of electrical properties of Al/(Er₂O₃/SiO₂/n-Si)/Al MOS capacitor

Aliekber Aktağ1,2 · Alex Mutale2 · Ercan Yılmaz1,2

Received: 4 February 2020 / Accepted: 17 April 2020 / Published online: 28 April 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In this study, we investigated the effects of applied voltage and frequencies on the electrical properties of $\text{Al}/(\text{Er}_2\text{O}_3(150 \text{ nm})/$ $SiO_2(20 \text{ nm})/n-Si)/Al MOS$ capacitor. The e-beam deposited Er_2O_3/SiO_2 films were annealed at 650 °C in N₂ ambient and the crystal and phase identifcation of the flms were confrmed by X-ray difractometry. The capacitance–voltage (*C*–*V*) and the conductance–voltage (*G*/*ω*–*V*) measurements of the MOS capacitor were carried out for voltage frequencies from 50 kHz to 1 MHz at several steps. The parameters of doping concentration, difusion potential, built-in potential, barrier height, Fermi energy level, the image force barrier lowering and the depletion layer width were calculated by *C*–*V* and *G*/*ω*–*V* data. While the depletion layer width decreased with increasing frequencies, the difusion potential and the barrier height increased a little with small frequencies (200 kHz≤*f*) frst, then decreased insignifcantly. We also studied the frequency efects on the series resistance (R_s) and the interface state density (D_{it}) through the $C-V$ and $G/\omega-V$ curves, and found noticeable decreases in R_s and D_{it} values with increasing frequency. The measured and calculated results reveal that both R_s and D_{it} frequency dependence have significant impacts on Er₂O₃/SiO₂/n-Si MOS capacitor properties. These effects are basically because of the interfacial charge behavior of thin $SiO₂$ layer contained in between *n*-Si and $Er₂O₃$.

1 Introduction

For new generation highly advanced complementary metal oxide semiconductor (CMOS) technology, the improved electronic devices with well-known features are required. The metal–oxide–semiconductor (MOS) capacitors are used in many diferent application areas of optoelectronics, microelectronics, thermophotovoltaic and biomedical applications since they have outstanding optical and electrical properties [\[1](#page-7-0)]. The early MOS capacitors had $SiO₂$ as the oxide layer between metal and semiconductor. Because of the excessive gate leakage current associated with the $SiO₂$ layer which leads an increase in static power consumption and error in logic devices, of late, research is on fnding better high permittivity (high-k) alternatives to the $SiO₂$ layer [\[2](#page-7-1)]. In the past decade, for the highly advanced complementary metal

oxide semiconductor (CMOS) technology, many high-k materials such as Pr_2O_3 , Al_2O_3 , Er_2O_3 , Sr_2O_3 , HfO_2 , ZrO_2 , La_2O_3 , Fe₂O₄, Dy₂O₃, and TiO₂ have been proposed as possible alternatives to $SiO₂$ [\[3](#page-7-2)–[6\]](#page-7-3). However, $Er₂O₃$ is one of the promising high-k materials that has pluses over $SiO₂$ because it owns a higher dielectric constant (10–14), a wider bandgap $({\sim} 5.4 \text{ eV})$, a relatively large conduction band offset (∼ 3.5 eV), and lower gate leakage current [\[7](#page-7-4)]. Despite that, there are still some issues concerning the degradation of the metal–oxide–semiconductor (MOS) device reliability, this is because of the difficulty in finding a high-k material that has a perfect interface match with Si as compared to $SiO₂$. For this reason, an extremely thin $SiO₂$ layer is deposited onto the Si before the high-k layer reducing the lattice mismatch. Besides, the $SiO₂$ interfacial layer could not only reduce the lattice match but it would also increase the thermodynamic stability between high-k materials and Si [\[2](#page-7-1)]. A high thermodynamic stability reduces the formation of silicides and rugged surfaces [[8\]](#page-7-5).

Among many other deposition techniques to fabricate $Er₂O₃$ thin films, we had used the electron beam (e-beam) vapor deposition technique. The e-beam evaporation is a physical vapor deposition (PVD) technique whereby an intense electron beam is generated from a flament and

 \boxtimes Aliekber Aktağ aktag_a@ibu.edu.tr

¹ Nuclear Radiation Detectors Applications and Research Center, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey

² Physics Department, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey

steered via electric and magnetic felds to strike the source material and vaporize it within a vacuum environment [[9,](#page-7-6) [10](#page-7-7)]. This technique has some key advantages over the other techniques; it has high and controllable rate of deposition, high density, and homogeneity of the prepared thin films, etc. The e-beam PVD technique has attracted much more attention because such technique has control on porosity, flm structure, stoichiometry flm growth rate. All these parameters may be controlled by varying the deposition conditions. This method has also been used to deposit highk flms because of controllable interface growth and low contamination. While in many other techniques an oxidation interface layer occurs on Si substrate due to oxygen ambient at high annealing temperatures, it does not happen in the e-beam PVD technique [[11\]](#page-7-8).

In this work, we systematically investigated the $Er_2O_3/$ $SiO₂/n-Si$ structure deposited by e-beam PVD technique and determined the electrical characteristics for MOS capacitor such as barrier height (Φ_B) , diffusion potential (V_D) , donor concentration (N_D) , Fermi energy level (E_F) , and depletion layer width (W_D) by measured capacitance–voltage $(C-V)$ and conductance–voltage (*G*/*ω*–*V*) data. We also studied the behavior of the interface states density (D_{it}) and the series resistance (R_s) through $C-V$ and $G/\omega-V$ data for frequencies from 50 kHz to 1 MHz at room temperature.

2 Experimental details

Four samples were annealed in N_2 atmosphere at temperatures ranging from 450 to 750 °C to optimize crystallinity. All samples were analyzed by X-ray difraction and found that the sample annealed at 650 °C illustrated a good cubic structure and may exhibit interesting electrical properties.

In order to fabricate the MOS capacitor, a 6-inch, 500 μm thick *n*-type Si wafer (100) with resistivity of 2–4 cm Ω was dried using nitrogen gas. Following the standard RCA cleaning procedure, the $SiO₂$ layer was grown on *n*-Si by dry oxidation at 1000 °C. The Er_2O_3 thin film was deposited on $SiO₂/n-Si$ structure by e-beam evaporation under the pressure of 3×10^{-4} Torr in the growth rate of 1.5 Å/s. The thickness of $SiO₂$ and $Er₂O₃$ layers were measured using Angstrom Sun Spectroscopic refectometer and found to be 20 nm and 150 nm, respectively. Then a portion of deposited Er_2O_3/SiO_2 film was annealed at 650 °C for 30 min under $N₂$ ambient with the flow rate of 1000 sccm. Metallization processes were performed to convert annealed thin flms to MOS capacitors. A shadow mask with 1.5 mm circular dots was placed on the $Er_2O_3/SiO_2/Si$ structure, with aluminum (Al) deposition at 120 W by RF magnetron sputtering. The back contact was obtained by covering the entire back surface in the same conditions with front contacts. Al contacts were used to reduce possible signal loss and to eliminate a

possible potential barrier that may form between the electrode and semiconductor interface. As schematically shown in Fig. [1](#page-1-0), the $Al/(Er_2O_3/SiO_2/n-Si)/Al MOS$ capacitors were fabricated. The flms' structure was characterized by Rigaku 2500PC X-ray diffraction (XRD) with the CuK_α characteristic X-ray wavelength of 1.5 Å. The 2θ range was between 10° and 80°. The 2 θ step and the step acquisition time were 0.01 and 5 per second for all difract grams.

The surface morphology of the 150 nm Er_2O_3 film was analyzed using AFM. Figure [2](#page-2-0) shows the AFM image of the Er₂O₃ film in 3D with the size of 4 μ m × 4 μ m. The film is characterized by the roughness root-mean-square (R_a) which is obtained to be 1.77 nm as deposited. For the flm annealed at 650 °C, the R_a is obtained to be 2.3 nm. The increase in roughness is related to the film thickness of Er_2O_3 .

The electrical measurements; *C*–*V* and *G*/*ω*–*V* were performed with the Keithley 4200-SCS Parameter Analyzer for voltage raised from − 5 to 5 V at frequencies from 50 kHz to 1 MHz in a 50 step frst, then at 100 kHz steps at room temperature. Finally, all of the fabrication processes and the experiments were performed in Class-100 cleanroom laboratories in Bolu Abant Izzet Baysal University Nuclear Radiation Detectors Application and Research Center, Turkey.

3 Measurements, calculations and discussions

The obtained XRD spectra of the $Er_2O_3/SiO_2/n-Si$ were given in Fig. [3](#page-2-1). While the as-deposited Er_2O_3/SiO_2 film shows polycrystalline structure weak spectrum peaks, the annealed sample at 650 °C for 30 min in a nitrogen environment exhibits stronger refections peaks, in particular, the peaks at $2 = \theta 21.0^{\circ}$, 29.5°, 35.0°, 48.9°, and 58.6° can be associated to reflections for the (211) , (222) , (400) , (440) , and (622) planes of the Er_2O_3 cubic lattice with the lattice parameter of 10.54 Å $[9, 12, 13]$ $[9, 12, 13]$ $[9, 12, 13]$ $[9, 12, 13]$ $[9, 12, 13]$ $[9, 12, 13]$. It is observed that the preferred orientation of the fabricated flm is in the cubic phase structure with (222). The peaks were indexed by the International Centre for Difraction Data (ICCD) card number 77–0463.

Fig. 1 Structure of $\frac{AI(Er_2O_3/SiO_2/n-Si)}{AI}$ MOS Capacitors

Fig. 2 AFM image of the Er_2O_3 film: as deposited (left) and annealed at 650 °C (right)

Fig. 3 XRD spectra of Er_2O_3/SiO_2 thin films on n-Si (100) substrate

In general, the capacitance of a dielectric material (C_{die}) inserted between metal electrodes is given as

$$
C_{\rm die} = \varepsilon_{\rm o} \kappa_{\rm die} \frac{A}{t_{\rm ox}} \tag{1}
$$

where ε_0 is the permittivity of free space $(8.85 \times 10^{-12} \text{ F/m})$, κ_{die} is the dielectric constant of dielectric layer (SiO₂ (3.9)) or $(Er₂O₃ (14))$ used for calculation, A is the metal gate electrode area (Al $(1.77 \times 10^{-2} \text{ cm}^2)$) and t_{ox} is the thickness of the dielectric (SiO₂ (20 nm) or Er₂O₃ (150 nm)). Calculated capacitance of $C_{SiO2} = 3.05 \times 10^{-9}$ F and C_{Er, O_3} $= 1.46 \times 10^{-9}$ F.

In Fig. [4](#page-3-0)a, the total oxide capacitance of the sample equivalent to the series of the capacitance of the $SiO₂$ layer and the Er_2O_3 layer is represented and calculated by the following equation [[14–](#page-7-11)[16\]](#page-7-12).

$$
C_{ox} = \frac{C_{SiO_2} C_{Er_2O_3}}{C_{SiO_2} + C_{Er_2O_3}}
$$
 (2)

where CSiO_2 and CEr_2O_3 are the capacitances of the SiO_2 and Er_2O_3 layers, respectively. By substituting calculated $CSiO₂$ and $CEr₂O₃$ values into Eq. [\(2\)](#page-2-2), the total oxide capacitance (C_{ox}) was found to be 9.89×10^{-10} F.

Figure [4b](#page-3-0), c show *C*–*V* and *G*/*ω*–*V* data accomplished over the frequency range of 50 kHz and 1 MHz. As shown in Fig. [4](#page-3-0)b, the capacitance tends to decrease with increasing frequency. However, as the frequency is raised, the capacitance reduces to a limit and stays there because the defect charges have no enough time to rearrange and response to the applied voltage.

As shown in Fig. [4](#page-3-0)c, the existence of R_s causes the measured conductance (G_m/ω) to increase with increasing frequency while the admittance peaks reduce relatively as the frequency increases, however, when G_m is corrected (G_C/ω) , it decreases with frequency (See Fig. [7](#page-4-0)). This indicates that at low frequencies, fow of charge through the interface is possible and the characteristics depend on the relaxation time and the AC signal frequency [\[17](#page-7-13)].

At a given frequency, most of the errors in the *C*–*V* and G/ω –*V* features are due to the series resistance (R_s) in the strong accumulation region and a portion of the depletion region.

Using Nicollian and Goetzberger calculation approach, the R_s of MOS devices may be deducted from the strong accumulation region measurements of the capacitance (C_{ma}) and the conductance (G_{ma}) at high frequencies (\geq 200 kHz) [[18,](#page-7-14) [19\]](#page-7-15). For the capacitor biased into strong accumulation region, the frequency-dependent complex impedance of MOS device can be described as

$$
Z_{\text{ma}} = R_{\text{s}} + iX = \frac{G_{\text{ma}}}{(G_{\text{ma}})^2 + (\omega C_{\text{ma}})^2} - i \frac{\omega C_{\text{ma}}}{(G_{\text{ma}})^2 + (\omega C_{+})^2}
$$
(3)

Fig. 4 a Equivalent capacitance to the series of the capacitances $SiO₂$ layer and Er₂O₃ layer. **b** Measured capacitance (C_m) of Al/(Er₂O₃/ $SiO₂/n-Si)/Al$ MOS capacitor for various frequency ranges from 50 kHz to 1 MHz. **c** Measured conductance (G_m/ω) of Al/ (Er_2O_3/ω) $SiO₂/n-Si)/Al MOS$ capacitor for various frequencies ranges from 50 kHz to 1 MHz

where $\omega = 2\pi f$ is the voltage angular frequency. Using the real part of Eq. [\(3](#page-2-3)), the R_s values can be found for the given frequencies [\[20](#page-7-16)].

$$
R_{\rm S} = \frac{G_{\rm ma}}{\left(G_{\rm ma}\right)^2 + \left(\omega C_{\rm ma}\right)^2} \tag{4}
$$

Fig. 5 Series resistance curves for $Er_2O_3/SiO_2/n-Si$ MOS capacitor for various frequencies ranges from 50 kHz to 1 MHz

The calculated R_s values versus voltage frequency are calculated and plotted in Fig. [5](#page-3-1) for Al/ $\left(\text{Er}_2\text{O}_3/\text{SiO}_2/n\text{-Si}\right)$ / Al MOS capacitor. The R_s values are varying in range of 850–32 Ω for frequencies of 50–600 kHz, and 29–25 Ω for frequencies of 700–1000 kHz as voltage increases from − 5 V to about -2.25 V. The R_s get their peak values at around − 1.5 V as voltage increases from − 2.25 to − 0.375 V. Later, as shown in Fig. [5](#page-3-1) (emplacement), when voltage increased from -0.375 to 5 V the peaks disappear and R_s decrease, become stable and remained fixed in 84–27 Ω range for frequencies of 50–600 kHz, and 25–23 Ω range for frequencies of 700–1000 kHz [[21\]](#page-7-17). The reason for this to happen is the displacement and rearrangement of the frequency-dependent charges such as fxed oxide charge, oxide trapped charge, mobile oxide charge, and interface trapped charge. The *C*–*V* and G/ω –*V* were corrected due to the fact that R_s is voltage dependent at the strong accumulation region as seen in R_s –*V* plot (Fig. [5\)](#page-3-1). In addition, the interface trap charges may have enough energy to jump through traps placed between the metal (rear contact) and the semiconductor interface in the Si bandgap [[17,](#page-7-13) [18](#page-7-14)].

The *C*–*V* and *G*/*ω*–*V* data were corrected by the use of strong accumulation region R_s values [\[21\]](#page-7-17). The corrected capacitance (C_C) and corrected conductance (G_C) are calculated from the equations [\[22\]](#page-7-18).

$$
C_{\rm C} = \left(\frac{G_{\rm m}^2 + (\omega C_{\rm m})^2}{a^2 + (\omega C_{\rm m})^2}\right) C_{\rm m}
$$
\n(5)

$$
G_{\rm C} = \left(\frac{G_{\rm m}^2 + (\omega C_{\rm m})^2}{a^2 + (\omega C_{\rm m})^2}\right) a \tag{6}
$$

Fig. 6 Corrected capacitance (C_c) characteristics of Al/ $(\text{Er}_2\text{O}_3/\text{Fe}_3)$ $SiO₂/n-Si)/Al$ MOS capacitor for various frequencies range from 50 kHz to 1 MHz

where

$$
a = Gm - \left[Gm2 + \left(\omega Cm\right)^{2}\right]RS
$$
\n(7)

Figures [6](#page-4-1) and [7](#page-4-0) show the C_c –*V* and G_c/ω –*V* curves of the MOS capacitor measured in the voltage raised from -5 to 5 V. There is no signifcant change between the *C*–*V* and the C_c –*V* curves because the thin SiO₂ layer deposited onto the Si to reduce the lattice mismatch keeps the capacitance almost the same. However, in G/ω –*V* and G/ω –*V* curves, there is an important variation. After the measured conductance is corrected, the admittance peaks fade away as the frequency increases. This fading is attributed to the decrease in R_s which is demonstrated by Fig. 5 and in Table [1](#page-5-0).

The interface state density, D_{it} was calculated using the Hill-Coleman method by the equation [\[22,](#page-7-18) [23\]](#page-7-19).

$$
D_{\rm it} = \frac{2G_{\rm c,max}/\omega}{Aq[(G_{\rm c,max}/(\omega C_{\rm ox}))^2 + (1 - C_{\rm c}/C_{\rm ox})^2]}
$$
(8)

where *q* is the elementary charge $(1.60 \times 10^{-19} \text{ C})$, A is the gate electrode area of the MOS capacitor $(1.77 \times 10^{-2} \text{ cm}^2)$, $G_{c,max}/\omega$ are maximum values of G_c/ω collected from the G_c/ω –*V* curve, C_c is corrected capacitance of the MOS capacitor corresponding to $G_{c,\text{max}}$, and C_{ox} is the equivalent (total) capacitance of oxides.

As shown in Fig. [8](#page-5-1) and Table [1](#page-5-0), the D_{it} decreases as a reciprocal function ($\sim 1.5f^{-0.09} \times 10^{11}$) with the increase of applied bias voltage frequency, *f*. Particularly, at low frequencies the interface density is strongly dependent on frequency which leads an increase in the capacitance of the MOS structure in strong accumulation region. On the other hand, it is expected that at high frequencies $(>1$ MHz), the

Fig. 7 Corrected conductance (G_C/ω) measurements for Al/ (Er_2O_3/ω) $SiO₂/n-Si)/Al MOS$ capacitor for various frequencies ranges from 50 kHz to 1 MHz

interface densities to be negligibly dependent on frequency because at low frequencies while the D_{it} can follow the applied voltage signal, at high frequencies the D_{it} cannot. This is because its transport mechanisms are too slow compared to the signal [[21](#page-7-17), [24\]](#page-7-20).

Acceptor-like interface states and donor-like interface states are the two interface states affecting Φ_B . The Φ_B , $N_{\rm D}$, $E_{\rm F}$, and $V_{\rm D}$ are obtained from the reciprocal squared of corrected C_c^{-2} –*V* plot. At higher frequencies, it is observed that linearity of the obtained C_c^{-2} –*V* curves increases indicating the uniform distribution of interface states in the device structure given Fig. [9](#page-5-2).

The relation between C_c^{-2} and *V* is given as [\[22,](#page-7-18) [23](#page-7-19)]

$$
C_C^{-2} = \frac{2(V_0 + V)}{\kappa_s \varepsilon_0 q A^2 N_D} = mV + mV_0
$$
\n(9)

where m is the slope and mV_0 is the intercept that determined from C_c^{-2} –*V* plot given in Fig. [9.](#page-5-2)

$$
m = \frac{2}{\kappa_{\rm s} \varepsilon_{\rm o} q A^2 N_{\rm D}}\tag{10}
$$

where *A* is the gate electrode area $(1.77 \times 10^{-2} \text{ cm}^2)$, κ_s is the dielectric constant of silicon (11.9 for *n*-Si). From Eq. [\(10](#page-4-2))

$$
N_{\rm D} = \frac{2}{\varepsilon_{\rm s} \varepsilon_{\rm o} q A^2 |m|} \tag{11}
$$

 N_D is the free electron concentration when all shallow donor levels are ionized, *V* is the applied bias voltage and V_0 is the built-in potential. From the intercept of C_c^{-2} –*V* plot with the *V* axis, V_0 (= intercept/*m*) can be determined by Eq. ([9](#page-4-3)) [[17](#page-7-13)–[19\]](#page-7-15)

Table 1 Electrical parameters of E-beam $Al/(Er₂O₃/SiO₂/n-Si)/$

Al MOS capacitor

Fig. 8 Variations of D_{it} as a function of frequency for $Al/Er_2O_3/$ SiO₂/n-Si)/Al MOS capacitor

Fig. 9 C_c^{-2} –V characteristics and corresponding linear ft function of Al/ $(Er_2O_3/SiO_2/n$ -Si)/Al MOS capacitor at various frequencies from 50 kHz to 1 MHz

$$
V_{\rm D} = V_{\rm o} + \frac{k_{\rm B}T}{q} \tag{12}
$$

where V_D is the diffusion potential, k_B is the Boltzmann's constant (1.38 × 10⁻²³ JK⁻¹), *T* is the room temperature in Kelvin (300 K). The barrier height (Φ_B) may be calculated using the C_c^{-2} –*V* measurements in the equation [\[25](#page-7-21)].

$$
\Phi_{\mathbf{B}} = c_2 V_{\mathbf{o}} + \frac{k_{\mathbf{B}} T}{q} + E_{\mathbf{F}} - \Delta \Phi_{\mathbf{B}} \tag{13}
$$

where c_2 is the correction factor which is the relationship between the theoretical doping concentration $(N_D = 4.31 \times 10^{15} \text{ cm}^{-3})$ and the experimental values and can be extracted from the slope of *C*−2–*V* curves or may be given as $c_2 \approx N_D(\exp.)/N_D(\text{th.})$ [[4](#page-7-22), [26](#page-7-23)[–28](#page-7-24)], $E_F = \frac{k_B T}{q} \ln(\frac{N_C}{N_D})$ $\frac{N_{\rm C}}{N_{\rm D}}$) is the Fermi energy level, N_C (2.82 × 10¹⁹ cm⁻³) is the effective density of states $[\sim 5.0 \times 10^{15} \text{ T}^{3/2} (m^*_{\text{n}}/m_{\text{o}}), T = 300 \text{ K},$

Frequency (kHz)	$V_{0}(V)$	$V_{\rm D}$ (eV)	$N_{\rm D}$ (10 ¹⁵ cm ⁻³)	$E_{\rm E}$ (eV)	$\Delta\Phi_{\rm B}$ (10 ⁻³ eV)	$\Phi_{\rm B}$ (eV)	$W_D (10^{-4} \text{ cm})$	c ₂
50	1.19	1.21	1.087	0.2628	1.744	0.567	1.213	0.252
100	1.21	1.24	1.128	0.2618	1.768	0.584	1.201	0.262
200	1.21	1.24	1.177	0.2607	1.789	0.598	1.178	0.273
300	1.20	1.22	1.178	0.2607	1.783	0.593	1.169	0.273
400	1.17	1.19	1.183	0.2606	1.775	0.587	1.153	0.275
500	1.15	1.17	1.199	0.2603	1.772	0.585	1.135	0.278
600	1.14	1.16	1.204	0.2602	1.771	0.584	1.128	0.279
700	1.13	1.16	1.214	0.2599	1.771	0.584	1.119	0.282
800	1.11	1.14	1.247	0.2593	1.775	0.586	1.095	0.289
900	1.09	1.12	1.272	0.2587	1.778	0.588	1.076	0.295
1000	1.09	1.11	1.279	0.2586	1.778	0.587	1.071	0.297

Table 2 Electrical parameters of Al/ $\left(\text{Er}_2\text{O}_3/\text{SiO}_2/\text{n-Si}\right)/\text{Al}$ MOS capacitor obtained from C_C^{-2} –V

 $m^*_{n}/m_o = 1.08$ for *n*-Si] in the conduction band for *n*-Si at room temperature, and $\Delta \Phi_B$ is the image force barrier lowering which is calculated from

$$
\Delta \Phi_{\rm B} = \sqrt{\frac{qE_m}{4\pi \varepsilon_{\rm s}\varepsilon_{\rm o}}} \text{where} E_{\rm m} = \sqrt{\frac{2qN_{\rm D}V_{\rm D}}{\varepsilon_{\rm s}\varepsilon_{\rm o}}} \tag{14}
$$

 E_m is the maximum electric field [\[29](#page-7-25), [30](#page-7-26)].

The obtained electrical parameters are listed in Table [2.](#page-6-0) Diffusion potentials $V_D(s)$ are located at negative voltages indicating that positive charges are trapped in the MOS capacitor in the fabrication process. Furthermore, as seen in Table [2,](#page-6-0) the doping concentration N_D , increases with increasing applied voltage frequency. The Fermi level E_F is almost constant with varying applied voltage frequency. $\Delta \Phi_{\rm B}$ varies a little about 1.773 \times 10⁻³ eV depending on the frequency. V_D and V_o are related through temperature $(V_o = V_D - k_B T/q, T = 300 \text{ K})$ and values are very close. They increase for 50 kHz and 100 kHz frequencies then decrease with the increase of frequency accordingly. The C_c^{-2} –*V* data also reveals that Φ_B stays almost constant. This is because of the dependence of the built-in potential V_0 , E_F , and $\Delta \Phi_B$. Finally, the depletion layer width (W_D) is given by the equation,

$$
W_D = \sqrt{\frac{2\varepsilon_{\rm s}\varepsilon_{\rm o}V_{\rm D}}{qN_{\rm D}}}
$$
\n(15)

where V_D is the diffusion potential and N_D is the free electron concentration. Depending on V_D/N_D ratio W_D decreases from 1.117×10^{-4} to 1.029×10^{-4} cm with increasing frequency (see Table [2](#page-6-0)) [[18,](#page-7-14) [29\]](#page-7-25).

4 Conclusion

In summary, the electrical parameters of $\text{Al}/(\text{Er}_2\text{O}_3/\text{SiO}_2/\text{n}$ -Si)/Al MOS capacitor such as R_s , D_{it} , Φ_B , $\Delta \Phi_B$, V_o , V_D , $N_{\rm D}$, $W_{\rm D}$, and $E_{\rm F}$ were determined from frequency-dependent *C*–*V*, *G*/ ω –*V* and *C*_c⁻²–*V* data. The experimental results show that the Φ_B and V_D increases for 50–100 kHz frequencies and then decrease with increasing frequency. We also investigated the effects on the series resistance (R_s) and the interface state density (D_{it}) through the $C-V$ and $G/\omega-V$ plots. From the obtained results, we noticed that the efect of voltage and frequency on R_s reduction is significant. The introduction of $SiO₂$ layer between the high-k $Er₂O₃$ and n-Si appears to be the main reason for R_s reduction. R_s –*V* (Fig. [5\)](#page-3-1) and *G*/*ω*–*V* (Fig. [7](#page-4-0)) curves demonstrate a strong and high response at − 1.5 V for all frequencies. However, at voltages greater than -0.375 V R_s decreases, becomes stable and remains fxed. Similarly, the admittance peaks reduced and disappeared at high frequencies. The disappearance of these peaks from Figs. [5](#page-3-1) and [7](#page-4-0) is because the interface charges can hardly follow the AC signal at high frequencies. Calculations also show that D_{it} is affected by frequencies greatly. Figure [8](#page-5-1) shows the decrease in D_{it} as a reciprocal function (~1.5 $f^{-0.09} \times 10^{11}$) of the applied voltage frequency. Especially, at low frequencies, D_{it} is strongly dependent on frequency which leads an increase in the capacitance of the MOS structure in the strong accumulation region. However, at high frequencies, D_{it} cannot follow the AC signal since its transport mechanisms are too slow compared to the signal.

Acknowledgment This work is supported by the Presidency of Turkey, Presidency of Strategy and Budget under Contract Number: 2016K121110.

References

- 1. R. Lok, S. Kaya, H. Karacali, E. Yilmaz, A detailed study on the frequency-dependent electrical characteristics of $AI/HfSiO₄/p-Si$ MOS capacitors. J. Mater. Sci. Mater. Electron. **27**(12), 13154– 13160 (2016)
- 2. C.S. Pang, J.G. Hwu, Improvement in the breakdown endurance of high-κ dielectric by utilizing stacking technology and adding sufficient interfacial layer. Nanoscale Res. Lett. 9(1), 1-7 (2014)
- 3. J. Robertson, R.M. Wallace, High-k materials and metal gates for CMOS applications. Mater. Sci. Eng. R Rep. **88**, 1–41 (2015)
- 4. Ç.G. Türk, S.O. Tan, S. Altındal, B. Inem, Frequency and voltage dependence of barrier height, surface states, and series resistance in $Al/Al_2O_3/p-Si$ structures in wide range frequency and voltage. Phys. B **582**, 411979–411985 (2020)
- 5. Seçkin Altındal Yerişkin, The investigation of effects of $(Fe₂O₄-PVP)$ organic-layer, surface states, and series resistance on the electrical characteristics and the sources of them. J. Mater. Sci. **30**, 17032–17039 (2019)
- 6. Y. Badali, A. Nikravan, Ş. Altindal, I. Uslu, Efects of a thin Rudoped PVP Interface layer on electrical behavior of Ag/n-Si structures. J. Electron. Mater. **47**, 3510–3520 (2018)
- 7. C.H. Kao, H. Chen, Y.T. Pan, J.S. Chiu, T.C. Lu, The characteristics of the high-k Er_2O_3 (erbium oxide) dielectrics deposited on polycrystalline silicon. Solid State Commun. **152**(6), 504–508 (2012)
- 8. V. Mikhelashvili, G. Eisenstein, F. Edelmann, Structural properties and electrical characteristics of electron-beam gun evaporated erbium oxide flms. Appl. Phys. Lett. **80**(12), 2156–2158 (2002)
- 9. S. Abubakar, E. Yilmaz, Optical and electrical properties of E-Beam deposited TiO₂/Si thin films. J. Mater. Sci. 29(12), 9879– 9885 (2018)
- 10. H.S. Kamineni et al., Optical and structural characterization of thermal oxidation efects of erbium thin flms deposited by electron beam on silicon. J. Appl. Phys. **111**(1), 013104 (2012)
- 11. R. Messier, Thin flm deposition processes. MRS Bull. **13**(11), 18–21 (1988)
- 12. X. Queralt, C. Ferrater, F. Sánchez, R. Aguiar, J. Palau, M. Varela, Erbium oxide thin flms on Si(100) obtained by laser ablation and electron beam evaporation. Appl. Surf. Sci. **86**(1–4), 95–98 (1995)
- 13. A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, Evaluation of radiation sensor aspects of $Er_2O_3 MOS$ capacitors under zero gate bias. IEEE Trans. Nucl. Sci. **63**(2), 1284–1293 (2016)
- 14. M. Miritello et al., Optical and structural properties of Er_2O_3 films grown by magnetron sputtering. J. Appl. Phys. **100**, 13502–13507 (2006)
- 15. Y. Wang, R. Jia, C. Li, Y. Zhang, Electric properties of $La_2O_3/$ SiO₂/4H-SiC MOS capacitors with different annealing temperatures. AIP Adv. **5**(8), 3–8 (2015)
- 16. F. Ze-Bo, Z. Yan-Yan, W. Jia-Le, J. Zui-Min, Annealing efects on the structure and electrical characteristics of amorphous Er_2O_3 flms. Chinese Phys. B **18**(8), 3542–3546 (2009)
- 17. A. Tataroğlu, G.G. Güven, S. Yilmaz, A. Büyükbas, Analysis of barrier height and carrier concentration of MOS capacitor using C-f and G/ω-f measurements. Gazi Univ. J. Sci. **27**(3), 909–915 (2014)
- 18. A.R. Wazzan, MOS (Metal oxide semiconductor) physics and technology. Nucl. Technol. **74**(2), 235–237 (1986)
- 19. S. Kaya, R. Lok, A. Aktag, J. Seidel, E. Yilmaz, Frequency dependent electrical characteristics of $BiFeO₃$ MOS capacitors. J. Alloys Compd. **583**, 476–480 (2014)
- 20. I. Dökme, Ş. Altindal, "On the profle of frequency and voltage dependent interface states and series resistance in MIS structures. Phys. B **393**(1–2), 328–335 (2007)
- 21. I. Yücedağ, Ş. Altindal, A. Tataroğlu, On the profle of frequency dependent series resistance and dielectric constant in MIS structure. Microelectron. Eng. **84**(1), 180–186 (2007)
- 22. S. Kaya, E. Yilmaz, A comprehensive study on the frequencydependent electrical characteristics of $Sm₂O₃ MOS$ capacitors. IEEE Trans. Electron. Dev. **62**(3), 980–987 (2015)
- 23. S. Kaya, E. Yilmaz, Use of BiFe $O₃$ layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate. Instru. Methods Phys. Res. Sect. B **319**, 168–170 (2014)
- 24. S. Zeyrek, E. Acaroğlu, Ş. Altindal, S. Birdoǧan, M.M. Bülbül, The effect of series resistance and interface states on the frequency dependent C-V and G/w-V characteristics of Al/perylene/p-Si MPS type Schottky barrier diodes. Curr. Appl. Phys. **13**(7), 1225–1230 (2013)
- 25. A.M. Goodman, Metal—semiconductor barrier height measurement by the diferential capacitance method—one carrier system. J. Appl. Phys. **34**(2), 329–338 (1963)
- 26. A. Tataroğlu, Ş. Altindal, M.M. Bülbül, Temperature and frequency dependent electrical and dielectric properties of Al/ SiO2/p-Si (MOS) structure. Microelectron. Eng. **81**(1), 140–149 (2005)
- 27. S. Kaya, E. Yilmaz, A detailed study on frequency dependent electrical characteristics of MOS capacitors with dysprosium oxide gate dielectrics. Semicond. Sci. Technol. **35**, 25002–25010 (2020)
- 28. S. Alptekin, Ş. Altındal, A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater Sci. **30**, 6491–6499 (2019)
- 29. D.A. Neamen, *Semiconductor Physics and Devices: Basic Principles*, 4th edn. (The McGraw-Hill Companies Inc, New York, 2012)
- 30. A. Kahraman, U. Gurer, R. Lok, S. Kaya, E. Yilmaz, "Impact of interfacial layer using ultra-thin $SiO₂$ on electrical and structural characteristics of Gd₂O₃ MOS capacitor. J. Mater. Sci. 29, 17473–917482 (2018)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.