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Abstract
Nanostructured graphitic carbon nitride (g-C3N4) has attracted enormous attention as a promising visible-light photocatalyst 
because of its unique physicochemical properties. However, controlling the nanostructure of g-C3N4 is challenging because 
the most common template methods are high-cost and high-risk intensive as well as tedious. In this work, tubular g-C3N4 
is prepared in situ by annealing a melamine-cyanurate supramolecular array, which is conducted through a  H2SO4-assisted 
precursor self-assembly strategy. The as-prepared samples are characterized by X-ray diffraction, scanning electron micros-
copy, Brunauer–Emmett–Teller analysis, and other photoelectrochemical measurements. Moreover, the band structure of the 
g-C3N4 nanotubes is investigated to elucidate the carrier separation mechanism. The result shows that the g-C3N4 nanotubes 
have a hollow structure (average diameter: 0.2–1.2 μm, length: 10–50 μm, and thickness: 15–20 nm) and an enhanced elec-
tronic structure. Owing to the high specific surface area of their hierarchical pores and the efficient charge separation of their 
1D feature, the g-C3N4 nanotubes exhibit high photocatalytic methylene blue (MB)/tetracycline (TC) degradation rates of 
0.0265 min−1 and 0.0110 min−1, which are three and seven times higher than those of Bulk g-C3N4, respectively. Therefore, 
this study provides a facile and effective strategy for the construction of carbon nitride nanostructures.

1 Introduction

Solar-driven photocatalysis has become one of the most 
effective methods to solve environmental and energy 
problems [1–4]. An effective photocatalyst for this reac-
tion requires a strong oxidative ability, suitable band gap, 
and excellent stability in water solutions. In recent years, 
graphitic carbon nitride (g-C3N4) has become a prominent 

photocatalyst because of its non-toxicity, stability, simple 
preparation, and suitable band gap [5–7]. However, g-C3N4 
possesses several disadvantages, including low specific sur-
face area, high recombination rate, low transmission rate 
of charge carriers, and insufficient quantum efficiency, thus 
limiting its practical applications [8–13]. Meanwhile, con-
siderable effort has been devoted to resolving these draw-
backs through methods, such as morphology modification 
(exfoliation, nanostructure construction), doping (metal/
non-metal element), composite (heterojunction construc-
tion), etc. [14–17]. Among these methods, supramolecu-
lar preassembly is a promising strategy that can produce 
g-C3N4 with an ordered texture and a controllable morphol-
ogy [18]. For example, Huang et al. [19] prepared various 
g-C3N4 structures including 3D architectures, 2D ultra-thin 
nanosheets, and 1D arrays through thermal treatment of the 
melamine-cyanuric acid supramolecular. The unique elec-
tronic structure of different topographies facilitates an aston-
ishing photocatalytic performance. This interesting prepara-
tion strategy justifies further exploration.

In particular, the construction of g-C3N4 nanotubes 
is considered to be one of the most effective methods to 
improve its photocatalytic activity. The anisotropic growth 
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of 1D structure is conducive to the transmission of pho-
togenerated electrons [20–23], and the hollow structure is 
expected to enhance the multiple scattering effect of visible 
light in the tube [24]. However, the synthesis of tubular car-
bon nitride often involves hazardous reagents and expen-
sive templates, leading to tedious post-treatment problems 
[12, 25, 26]. Cao et al. [27] fabricated tubular g-C3N4 via 
a chemical method, and the as-prepared g-C3N4 showed a 
high specific capacitance and good photodegradation abil-
ity. However, it should be pointed out that a large amount of 
 HNO3 was used as solvent, which necessitates further explo-
ration and enhancement. Consequently, the development of a 
facile, green, and efficient method to prepare tubular carbon 
nitride is required.

Herein, we developed a  H2SO4-assisted precursor self-
assembly strategy to prepare carbon nitride nanotubes. 
Particularly, melamine-cyanurate supramolecular array 
(SMCA) was first formed via a  H2SO4-assisted hydrothermal 
treatment and further polymerized to form carbon nitride 
nanotubes by the subsequent annealing. Different from the 
high consumption of  H2SO4 in chemical exfoliation [28] of 
g-C3N4, a spot of  H2SO4 here was serving as a revulsive, 
leading an interesting change of morphology and electronic 
structure of the as-prepared g-C3N4. Because of the hier-
archical pores and 1D feature, g-C3N4 nanotubes exhibit a 
large specific surface area and excellent charge separation, 
and thus show good photocatalytic degradation performance.

2  Experimental

2.1  Synthesis of  H2SO4‑modified 
melamine‑cyanurate (SMCA) precursors

Typically, 4.0 g melamine was dispersed into 30 mL of 
deionized water. Certain amount of  H2SO4 (0 mL, 1 mL, 
1.5 mL, 2 mL, 2.5 mL) was added to the solution after which 
the resulting suspension was stirred for 30 min at ambient 
temperature. The white viscous suspension was then trans-
ferred to a 100-mL Teflon-lined autoclave and heated at 
180 °C for 12 h, respectively. After cooling to ambient tem-
perature, the obtained supramolecular aggregates (labeled as 
SMCA-0, SMCA-1, SMCA1.5, SMCA-2, and SMCA-2.5) 
were collected by washing with deionized water and ethanol. 
Finally, the SMCA were dried at 80 °C.

2.2  Synthesis of tubular g‑C3N4

A series of tubular g-C3N4 were successfully prepared by 
direct calcination of the as-made SMCA precursors. The 
SMCA precursors were placed into a 50-mL corundum cru-
cible with a cover, heated in a muffle furnace at a rate of 
5 °C/min, and kept for 3 h at 500 °C to obtain the yellow 

g-C3N4 products (labeled as SCN-0, SCN-1, SCN-1.5, SCN-
2). There was no product when annealing SMCA-2.5. Bulk 
g-C3N4 (BCN) was synthesized by directly heating the mela-
mine at 550 °C for 3 h.

Characterization and photocatalytic tests are described in 
Supplementary Information.

3  Results and discussion

The morphologies of the precursors are investigated via 
scanning electron microscopy (SEM) analysis. As shown 
in Fig. 1a, SMCA-2 shows a dense rod-like array with a 
smooth and regular surface, which is completely different 
from the monoclinic pristine melamine particles (Fig. S1a). 
 H2SO4-assisted hydrothermal treatment has a great impact 
on the morphology of SMCA (further discussed in the sup-
plementary document). The high-magnification SEM images 
further depict the morphologies of samples. As shown in 
Fig. 1, SCN-1(Fig. 1b) and SCN-1.5 (Fig. 1c) display a 
rod-like structure with carbon nitride nanosheets stacking 
inside, and the stacking nanosheets delaminate from inside 
and begin to separate from the tube wall. Typically, SCN-2 
(Fig. 1d) maintains a tubular structure with a diameter in the 
range of 0.2–1.2 μm and a length of 10–50 μm. Moreover, 
several pores with a diameter of 10–20 nm are observed on 
the tube wall of SCN-2, which would offer a large surface 
area for accommodating reaction substrate. In comparison, 
BCN (Fig. S2a) and SCN-0 (Fig. S2b) present a classi-
cal bulk structure with severe agglomeration and smooth, 
imporous surfaces. No product is obtained when annealing 
SMCA-2.5, which suggests that melamine will hydrolyze in 
high doses of  H2SO4.

Transmission electron microscopy (TEM) image (Fig. 1e) 
shows that SCN-2 has a nanotube structure with a diameter 
of hundreds of nanometers and a wall thickness in the range 
of 15–20 nm, which is consistent with the SEM image. The 
 N2 adsorption–desorption isotherm (Fig. 1f) shows that the 
BET surface area of SCN-2 is 92.04 m2/g, which is 5.7 times 
more than BCN (16.26 m2/g). BJH (inset in Fig. 1f) analysis 
indicates that SCN-2 has hierarchical pores distributed on a 
range of 2–4 nm and 38–52 nm, which may correspond to 
the mesopores on the nanotubes and the interstices between 
the nanotubes, respectively. The hollow structure and hier-
archical porous feature of SCN improve its active specific 
surface area, and are conducive for exposing more interfaces 
to come into contact with the reactant, thereby exhibiting 
superior adsorption and photocatalytic properties.

To elucidate the transformation of the precursor, the 
chemical structure is determined via X-ray diffraction 
(XRD). Typically, pristine melamine can be well indexed 
to monoclinic melamine (JCPDSNo: 39-1960), while the 
XRD pattern of SMCA is indexed to melamine cyanurate 
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(JCPDSNo: 05-0127), suggesting the formation of a supra-
molecule (SMCA inset in Fig. 2a). Moreover, SMCA-2.5 
shows a completely different XRD pattern from melamine 
and melamine cyanurate and it can be well indexed to cya-
nuric acid (JCPDS No: 23-1637), indicating that most of the 
melamine are converted to cyanuric acid with the  H2SO4 
amount reaching 2.5 mL and thus leading a precipitous drop 
in production. These results are consistent with SEM (Fig. 
S1).

The structure of the sample is also evaluated by XRD. 
Figure 2b reveals that SCN and BCN present two peaks at 
12.8° and 27.7°, corresponding to the (100) and (002) planes 
of carbon nitride [29]. Two peaks of SCN-2 are weaker 
than BCN, indicating that the crystallinity and the agglom-
eration of SCN-2 have decreased [30]. This result may be 
because the tubular structure disrupts the in-plane repetition 
of the heptazine unit and weakens the stacking of aromatic 
structure. FTIR spectra in Fig. 2c illustrate that SCN-2 has 
characteristic peaks at 810 cm−1, 1200–1700 cm−1, and 
3000–3300 cm−1, corresponding to the vibrations of the 
tri-s-triazine unit, heterocycles, and N–H of carbon nitride, 
respectively [31]. Based on the results above, a possible 
formation mechanism is proposed. First, part of melamine 
turns into cyanuric acid and the rod-like supramolecular 
compounds formed by self-assembly between melamine 
and cyanuric acid during the hydrothermal treatment. Then, 
rod-like carbon nitride is obtained by annealing SMCA. Fur-
thermore, with the assistance of  H2SO4, the conversion of 

melamine is accelerated, and a greater amount of cyanuric 
acid decomposes during thermal treatment, which reduces 
agglomeration of carbon nitride, leading to the formation 
of nanotube.

From N1s spectra (Fig. 3a), SCN-2 shows four peaks at 
398.32 eV, 399.03 eV, 400.62 eV, and 404.35 eV, corre-
sponding to N atom of C–N=C, N–(C)3, N–Hx, and π excita-
tion [32]. The peaks of SCN-2 shift to lower binding ener-
gies compared with those of BCN, indicating the formation 
of N vacancies [33]. Furthermore, from Table S1, the ratio 
of  sp2 C–N=C bonds(N2C) to the sum of N–(C)3 and N–Hx 
bonds is 0.91, which is lower than that of BCN (2.43), sug-
gesting the preferential loss of  N2C atoms according to the 
calculation results [34]. To further confirm the existence of 
N vacancies, EPR is conducted to detect the spin state of 
unpaired electrons. In Fig. 3b, SCN-2 and CN show a single 
Lorentzian line with a g-value of 2.003, which can be due 
to lone paired electrons of  sp2-C in heptazine g-C3N4 [33]. 
Furthermore, SCN-2 shows a stronger EPR intensity than 
that of BCN, indicating the enriched  N2C defect on SCN-2 
surface. For g-C3N4, intrinsic point defects would serve as 
recombination centers, while surface defects are conducive 
to boost charge separation [35]. Therefore, the  N2C defect 
on the SCN-2 surface may trap a portion of electrons, and 
thus quench the recombination of charge carriers [33, 36]. 
In addition, Raman spectra were carried out to better under-
stand the chemical structure of SCN-2. As shown in Fig. 
S3, the main peaks at 705 and 974 cm−1 are attributed to 

Fig. 1  SEM images of a SMCA-2, b SCN-1, c SCN-1.5, d SCN-2, e TEM images of SCN-2, f  N2 adsorption isotherms (Inset: pore size distri-
bution) of SCN-2 and BCN
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Fig. 2  XRD patterns of a melamine and SMCAs, b BCN and SCN, c FTIR spectra of BCN and SCN

Fig. 3  a High-resolution N1s XPS spectra, b EPR spectra of SCN-2 and BCN
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symmetric N-breathing mode of heptazine units and the in-
plane bending vibrations of the tri-heptazine CNC linkages 
[37]. In addition, the peak at 762 cm−1 for BCN corresponds 
to the out-of-plane bending mode of graphitic domains of 
g-C3N4 [38]. This peak shifts to 766 cm−1 for SCN-2, which 
may be attributed to presence of the N vacancies and the 
tubular structure of SCN.

In Fig. 4a, UV–vis DRS of SCN-2 shows a blue-shift 
compared to BCN, which may be due to the quantum con-
finement effect caused by nanostructure [39]. According 
to the Tauc plot (inset of Fig. 4a), the band gap energy 
(Eg) of SCN-2 and BCN is determined to be 2.78 eV and 
2.55 eV. Changes in optical properties induced by nano-
structures can be also found in the photoluminescence (PL) 
spectra (Fig. 4b). The main peak of SCN-2 shows a blue-
shift at approximately 440 nm and its overall intensity is 
much lower than that of BCN. In addition, SCN-2 shows a 
smaller radius in electrochemical impedance spectra Nyquist 
plots (Fig. 4c), suggesting lower electron transfer resistance. 
These results indicate that the 1D structure of SCN-2 might 
promote the migration of photogenic carriers and thus sup-
press charge recombination.

Furthermore, the energy band structures including the band 
gap, conduction band (CB), and valence band (VB) are studied 
to better understand the carrier separation mechanism. From 
the VB-XPS spectra in Fig. 4c, the energy gap between VB 
and the Fermi level (Ef) of BCN and SCN-2 could be deter-
mined to be 2.26 eV and 1.89 eV, respectively. Based on the 

Mott–Schottky plots in Fig. 4d, the flat potentials of BCN and 
SCN-2 were calculated to be − 0.66 V and − 0.52 V versus the 
Ag/AgCl electrode, respectively, and they could be converted 
to − 0.46 V and − 0.32 V versus the normal hydrogen electrode 
(NHE). Generally, the value of flat potentials is approximately 
equal to that of the Fermi level [40, 41]. Therefore, the VB 
positions of BCN and SCN-2 are equal to 1.80 eV and 1.57 eV, 
respectively. Based on abovementioned band gap energy, the 
CB positions of BCN and SCN-2 are − 0.76 eV and − 1.21 eV, 
respectively. The illustration of the band structure of BCN and 
SCN-2 is present in Fig. 4f. According to the band structure, 
SCN-2 presents a wider band gap and a large offset of CB 
positions. Since the CB position of samples refers to reduction 
potential, while that of the VB refers to the oxidation potential, 
a large negative shift of CB and rather high position of VB of 
SCN-2 are helpful for the generation of active radicals, such 
as h+ and ·O2

−. With its unique electronic structure, SCN-2 
is expected to deliver a superior photo-oxidation activity. 
Mott–Schottky measurement could also determine the carrier 
density on the formation of Schottky barrier between anode 
and electrolytes. Generally, the carrier density (ND) can be 
estimated from the slope of Mott–Schottky curve through the 
Poisson Eqs. (1) and (2) [42, 43]

(1)
1

C2
=

2

e��0ND

(

E − Efb −
�T

e

)

,

Fig. 4  a UV–vis absorption curves. (Inset: Tauc plots and band gaps), b PL spectra, c EIS spectra, d VB-XPS spectra, e Mott–Schottky plots, f 
band structure of BCN and SCN
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where C denotes the capacitance of the space charge layer; ɛ 
denotes the dielectric constant; ɛ0 denotes the vacuum per-
mittivity (8.854 × 10−14 F/cm); e denotes the electron charge 
(1.602 × 10−19 C); E denotes the potential versus normal 
hydrogen electrode (NHE); κ denotes the Boltzmann con-
stant (1.38 × 10−23 J/K). With the ɛ value of 15.6 for g-C3N4 
[44], the ND of SCN-2 is determined to be 9.4 × 1018, which 
is 3 times higher than that of BCN (3.2 × 1018). This result 
shows that the charge separation and transport efficiency are 
enhanced with tubular structure of SCN-2, which is consist-
ent with the results of PL and EIS.

The photocatalytic performance of samples is evalu-
ated through photodegradation of MB (20 mg/L) and TC 
(10 mg/L) in an aqueous solution under visible-light irra-
diation (λ > 420 nm). Photocatalytic degradation of MB 
(Fig. 5a, b) and TC (Fig. 5c, d) show that photocatalytic 
activity is significantly affected by the amount of  H2SO4 

(2)ND =
(

2∕��0e
)[

d
(

1∕C2
)

∕dV
]−1

,
used in the hydrothermal treatment. In view of its unique 
physicochemical properties, tubular SCN-2 shows supe-
rior activity both in the adsorption of dark conditions and 
degradation under illumination than that of BCN. After 
exposure to visible light for 60 min, the removal efficiency 
and reaction kinetic rate constant of MB reach 90 % and 
0.0265 min−1, respectively, which is 3 times higher than 
that of BCN (0.0084 min−1), while the reaction kinetic rate 
constant of TC reaches 0.01101 min−1, i.e., 7 times than 
that of BCN (0.00157 min−1).

Active species capture experiments are performed in 
order to further clarify the photocatalytic mechanism and 
active species for MB degradation. In these experiments, 
ammonium oxalate (AO, 2  mmol), benzoquinone (BQ, 
0.2 mmol), and isopropyl alcohol (IPA, 2 mmol) are used to 
scavenge holes (h+), superoxide radical anions (·O2

−), and 
hydroxyl radicals (·OH), respectively. As shown in Fig. 6a, 
there is no significant change in the photocatalytic activ-
ity as the IPA is added, indicating the ·OH is not the main 
active oxidation species in MB degradation. In contrast, 

Fig. 5  MB (a, b), TC (c, d) degradation efficiency and kinetic linear simulation curves of BCN and SCN
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the photocatalytic activity is considerably suppressed by 
the introduction of BQ. According to the band structure, 
the VB potential of BCN (1.80 eV) and SCN-2 (1.57 eV) 
are not sufficiently higher enough than the standard redox 
potential of  OH−/·OH (1.99 eV vs NHE, pH = 7) [45]; thus, 
it is rational to infer that  OH− anion cannot be oxidized to 
·OH by h+. Notably, the CB potential of SCN-2 (− 1.21 eV) 
is much lower than that of BCN (− 0.76 eV), which is con-
ducive for the generation of ·O2

−. The EPR/DMPO experi-
ment is also carried out for further analysis. In Fig. 6b, the 
peaks of DMPO-·O2

− are obvious under illumination while 
no such signals are detected in dark condition, suggesting 
that dissolved oxygen can be transformed into ·O2

− by photo-
induced electron. Moreover, the intensity of the character-
istic peak for SCN-2 is much stronger than that of BCN, 
which can be matched to the results of degradation experi-
ments. This might attribute to the unique band structure and 
the rapid charge migration which can be featured by the 1D 
structure of SCN-2. Based on the abovementioned results, 
it is expected that ·O2

− is the main active oxidation species 
for the degradation.

4  Conclusions

We fabricate g-C3N4 nanotubes by a simple  H2SO4-assisted 
precursor self-assembly strategy. The results of XPS, DRS, 
and PL show that the  N2C defect, nanosize, and 1D structure 
might boost the transmission of the photogenerated carriers 
and further suppress charge recombination. The study of the 
band structures shows that SCN-2 had a wider band gap and 
a large offset of the CB positions which is expected to deliver 
a better photo-oxidation activity. Benefiting from the high 
specific surface area provided by the hierarchical pores and 
the hollow structure, SCN-2 shows excellent photocatalytic 

degradation of MB and TC, and the degradation rates reach 
0.0265 min−1 and 0.0110 min−1, respectively, which are 3 
and 7 times higher than that of BCN. This study proposes a 
facile and effective method to prepare carbon nitride nano-
tubes and provides a feasible strategy for photocatalytic 
environmental remediation.
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