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Abstract
This paper covers a successfully grown process of iron ditelluride (FeTe2) thin films deposited on glass substrates. Structural, 
morphological and optical properties were investigated by means of X-ray diffraction (XRD), scanning electron microscopy 
(SEM) and optical measurements. As well as, photoluminescence (PL) spectroscopy, electrical, thermal and photocatalytic 
performance of iron ditelluride thin films were determined using photoluminescence spectroscopy, impedance spectroscopy 
technique and electro-pyroelectric method, for the first time in literature. The XRD results revealed that preferentially orienta-
tion along (111) direction at 2θ value of approximately 32.03° have been observed for FeTe2 films. Besides, the impedance 
spectroscopy was used to determine the resistance R, the electrical capacitance Ce, as well as the angular frequency of the 
maximum peak ωm depending on the effect of temperature. In addition, the activation energy was found equal to Eg = 0.23 eV 
for iron ditelluride thin film. The thermal measurement for the composite revealed the thermal conductivity and thermal 
diffusivity of FeTe2 are about 1.2 W m−1 K−1 and 3.9 × 10−7 m2 s−1, respectively. The photocatalytic activity and stability of 
this material under visible light irradiation towards the degradation of methylene blue dye was carried out. The iron ditel-
luride composite exhibited a high photocatalytic degradation performance.

1  Introduction

Since the discovery of the superconductivity phenomenon 
by 2008 on La (O1−xFx) FeAs materials [1], a large number 
of iron-based superconductors have been discovered due 
to many efforts to determine their high temperature super-
conductors (HTSC). Indeed, this discovery seems provid-
ing a new playground in the HTSC group with the current 
record-holding Tc of 56 K which are actually the quintu-
ples Gd1−xThxFeAsO and Sr1−xSmxFeAsF [2, 3]. Among 
iron-based superconductors family such as FeTe0.8S0.2 and 
FeTe0.7S0.3 polycrystalline samples were found. These com-
pounds were obtained using solid state reaction with a three-
step procedure and exhibited a zero resistivity because of the 
reduction of Fe excess which is related to the formation of 
FeTe2 and Fe3O4 impurity phases. The latest phenomenon 

was observed not only in oxygen post-annealed samples but 
also in as-grown ones [4].

In addition, FeX2 (X = S, Se, Te) chalcogenides have 
attracted attention in many fields thanks to their relative sim-
ple synthesis protocols, simple crystal structures and they 
exhibit semiconducting behaviour [5–7]. Besides, under cer-
tain ambient conditions, the previous chalcogenides exhibit 
marcasite structure while in high boundary values of tem-
perature and pressure synthesis leads rather to more stable 
pyrite structure [8].

FeTe2 is an archetypal material that has been prepared 
by several synthetic methods [9, 10]. Song and Bochmann 
[11] synthesized tellurium complex of the type [M_{Bu2

t 
P(E)NR}2] as precursors for the gas-phase deposition of 
FeTe2 film. Also, preparation route using a simple spray 
pyrolysis technique and optical properties of the iron tel-
luride thin films has been explored by Ben Messaoudi et al. 
[12, 13]. However, photoluminescence, thermal, electrical 
characterisations and photocatalytic performance of these 
films have not been studied. Herein, we report structural, 
optical, photoluminescence, thermal, electrical properties 
and photocatalytic behaviour of FeTe2 thin films with mar-
casite structure. These samples were synthesised by a simple 
protocol consisting on anneal amorphous iron oxide layers. 
Afterwards, they have been explored by XRD, SEM, optical 
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measurements, PL spectroscopy, impedance analyser and 
electro-pyroelectric technique. The electrical and impedance 
measurements, as well thermal properties of iron ditelluride 
thin films were determined, for the first time in literature. 
Thanks to this work, we have confirmed that such compound 
may has interesting photocatalytic performance.

2 � Experimental techniques

2.1 � Sample preparation

FeTe2 thin films were deposited on glass substrates and 
placed on a hot plate heated at 350 °C [12, 13]. Those films 
have been prepared using an aqueous solution of FeCl3·6H2O 
(0.015 M). Then, 50 ml of the solution was sprayed with 
nitrogen as a gas carrier by means of a nozzle allowing a jet 
flow rate of 4 ml/min. The obtained amorphous iron oxide 
films were placed with 20 mg of tellurium in a vacuum 
(~ 104 Pa) sealed Pyrex tube. The latter procedure has been 
employed a heat treatment under tellurium atmosphere in 
an electric tubular oven at temperature 530 °C for 24 h. The 
thickness of these films was of the order of 400 nm using the 
interference fringes method [14].

2.2 � Characterization techniques

X-ray diffraction analysis of all prepared thin films was 
performed by a copper source diffractometer (Analytical 
X Pert PROMPD), with the wavelength (λ = 1.54056 Å). 
Diffractograms were obtained by varying angle (2θ) from 
3° to 70°. Besides, the surface morphologies of the FeTe2 
thin films were performed by scanning electron micros-
copy (JSM-5400). Further, the optical measurements, in the 
UV–Vis range were carried out using a Schimadzu UV 3100 
double-beam spectrophotometer, within a (250–2500 nm) 
wavelength range. The PL measurements were performed at 
room temperature in the range of 470–900 nm using a HOR-
IBA Jobin yvon spectrometer. This kind of study requires an 
excitation by He–Cd laser (λ = 325 nm, 50 Hz).

In addition, the electrical study of the prepared FeTe2 
thin films were determined to study the impedance spec-
troscopy by means of a Hewlett-Packard 4192 analyzer that 
is equipped to a computer for data acquisition. The study 
has been made in the temperature range (450–480 °C) with 
frequency of (5–13,000 kHz) and forced us to implement 
two electrodes on their extremities using a conductive silver 
paste [15, 16].

Moreover, in electro-pyroelectric (EPE) experiments on the 
back-scattering geometry, a sinusoidally modulated voltage 
was flowed through the serpentine at a metal contact. As a 
result, an oscillatory heat flux was diffused through the silpad 
900S thanks to Joule heating effects. The latter is a thermally 

conductive insulation material which is composed of silicon 
and fiberglass compounds in order to avoid a short circuit. 
Indeed, Silpad 900S was deposited on a polyvinylidene fluo-
ride (PVDF) film of 28 µm thickness, which produced a rise 
of temperature over the time at its interface. As a result, a 
pyroelectric current was generated. The EPE amplitude and 
phase signals were acquired by use a preamplifier, a Stanford 
SR 530 lock-in amplifier and a computer-based data acquisi-
tion via a RS 232 interface.

Finally, the photocatalytic performance of prepared FeTe2 
films was evaluated via evaluating the discoloration of an aque-
ous solution of methylene blue (MB) under irradiation with 
visible and solar light. For the photodegradation of MB dye, 
we used a 50 ml beaker with 10 mg of prepared photocatalysts.

Before the irradiation, the obtained solution was placed in a 
dark for 1 h in order to obtain the adsorption–desorption equi-
librium. The initial concentration C0 and the pH value of the 
MB solution were taken respectively as C0 = 10−5 M and pH 
7.2. Afterward, 10 ml of the solution was taken out from the 
prepared mixture using a syringe and the sunlight irradiations 
of the MB solution were examined every 20 min by a UV–Vis 
spectrometer to evaluate the decrease in the dye concentration. 
So, the photocatalytic activities of FeTe2 samples could be 
calculated. Indeed, the degradation efficiency of such thin film 
was described for MB dyes by means of

with C is the concentration of dye solution after irradiation, 
and C0 is the preliminary concentration of dye solution.

3 � Results and discussion

3.1 � Structural properties

3.1.1 � X‑ray diffraction

Figure 1 shows X-ray diffraction analysis which proves that 
this film has a good crystalline state with the appearance of 
multi peaks of the FeTe2 orthorhombic phase. In such film we 
note the formation of FeTe2 binary material with the crystal-
lites are preferentially orientated along [111] direction at 2θ 
value of 32.03°, close to JCPDS file, no.: 00-014-0419 card, 
as already recorded by Ben Messaoud et al. [12]. The lattice 
parameters are: a = 5.26 Å, b = 6.26 Å, and c = 3.88 Å; these 
results are in agreement with those of previous studies [17].

To obtain useful information on improving the thin film 
structure of FeTe2, some calculations have been done. The 
interplanar spacing dhkl were estimated by using the Bragg 
equation:

(1)% =
[

(C0 − C)∕C0

]

× 100%.

(2)2dhklSin� = n�



6052	 Journal of Materials Science: Materials in Electronics (2019) 30:6050–6058

1 3

where λ is the X-ray wavelength, θ is the Bragg diffraction 
angle, and n is the order of the diffraction (usually n = 1).

For the orthorhombic close-packed structure:

Moreover, some structural parameters such as the crys-
tallite size (D), number of crystallites (Nc), micro-strain 
(ε), and amount of defects in a crystal defined as the length 
of dislocation lines per unit volume (δ) could be estimated 
by the following expressions [18–21]:

where k0 = 0.90, � 1

2

=

√

(

�e
2 − �0

2
)

 and �′ are the Scherer 
constant, the full width at half maximum and the thickness 
of the FeTe2 layers. With, �e is measured from the film and 
�0 is the full width at half maximum related to the XRD 
peaks.

(3)
1

d2
hkl

=
h2

a2
+

k2

b2
+

l2

c2

(4)D =
k0 × �

� 1

2

cos(�)

(5)Nc =
�
�

D3

(6)� =
� 1

2

4 tan(�)

(7)� =
1

D2

Calculated values of the grain size, the micro-strain, and 
the dislocation density of the thin films are summarized in 
Table 1.

3.1.2 � SEM observation

The marcasite FeTe2 was analyzed through scanning elec-
tron microscopy, Fig. 2. The result showed that the voids and 
the shape of ditilluride iron are characterized by irregular 
and micronsized polyhedrons. Large particles usually cause 
a decrease in catalytic active sites; large particles may also 
affect the catalytic activity of FeTe2 [17].

3.2 � Optical study

Figure 3 reveals the optical absorbance A of the investigated 
films in the range of 300–1185 nm wavelength at room tem-
perature. It can be seen an absorption band at 300 nm in UV 
region as well as a broad band spanning between 400 and 
800 nm in visible region.

Besides, we can reach the absorption coefficient � of the 
material using the following well known formula [22]:

with A the absorbance of the film and � its thickness.
The absorption coefficient � can be related to the energy 

gap Eg of FeTe2 sprayed thin films from the following Tauc 
relationship [23–25]:

(8)� = 2.303
A

�

Fig. 1   XRD pattern of nanocrystalline FeTe2 annealed at 530 °C

Table 1   Structural constants of FeTe2 thin films

D (nm) N
c
 (1018 m2) ε (10−3) δ (1015 line/m2)

FeTe2 12.0 16.6 1.10 6.90

Fig. 2   SEM microphotograph of surface of as-prepared FeTe2
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where A′ is a constant related to the probability of transition, 
hν (eV) is the incident photon energy, Eg (eV) is the energy 
gap and n is equal to ½ for direct band transition .

The optical band gap is evaluated by plotting (αhν)2 versus 
hν and extrapolating the linear part of the curve, Fig. 3b. So, 
the intercept (extrapolation) of this plot (straight line) on the 
energy axis gives the energy band gap value. We notice that 
the graph has linear part, which indicate direct band gap type 
behaviour for FeTe2.

The calculated values of Eg of FeTe2 thin film is of the 
order of 0.9 eV which fall within the range reported elsewhere 
[26–28]. These band gap energies for the marcasite Te iron 
chalcogenide do not suggest a role as a light-absorbing layer in 
highly efficient solar cells which confirms the previous results.

In fact, this optical study confirms the records of Si et al. 
[29] and Nie et al. [30], who stated that for deposition tem-
peratures beyond 500 °C, the orthorhombic phase of the 
oxide Fe2O3 appears and prevents the substitution of oxygen 
by tellurium.

As result of the incorporation of impurities and excess metal 
into the iron ditelluride thin film affects the band gap structure 
and optical transitions which reveals a tail for the density of 
states of the band gap. The Urbach tail can be obtained using 
the following empirical Urbach equation [31, 32]:

where α0 is a constant and EU is the Urbach energy which 
is given by the slope of the exponential limit. Knowing the 

(9)(�h�) = A�
(

h� − Eg

)n

(10)� = �0 exp

(

h�

EU

)

optical gap value, the optical absorption by defects appears 
at a lower energy. The obtained urbach energy value is 
about EU = 416 meV and it appears as a relatively high value 
because of the structural defects inside the film detailed 
above.

3.3 � Photoluminescence (PL)

Room temperature PL spectra were recorded to find the 
exact band edge emission of the synthesized FeTe2.

Figure 4 shows the PL spectrum of FeTe2 thin film. The 
iron ditelluride spectrum shows a broad emission band. 
Actually, in order to understand the origin of the PL peaks, 
it is required to achieve the de-convoluted following Gauss-
ian profile fitting.

We can notice, from the spectra’s Gaussian fitting, six 
bands in visible and IR regions. In fact, the emissions 
between 522 and 537 nm could be originated from the 
recombination of the photogenerated holes with singly ion-
ized charge state of specific defect.

The PL bands of iron ditelluride thin film have indeed 
a weak emission band located at 578 nm, which may be 
attributed to the presence of a minority phase of Fe2O3 [33].

3.4 � Electrical study

Figure 5 represents the Nyquist plot for FeTe2 sprayed thin 
film which reflected the variation of the imaginary part (Z″) 
corresponding with the real part (Z′) at temperatures ranged 
between 450 and 480 °C in order to determine the conduct-
ing state of FeTe2 thin film .

Fig. 3   a Absorbance versus wavelength of FeTe2 thin film. b Tauc-plot of FeTe2 thin film
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The nyquist diagram shows the presence of only one 
semi-circle over the entire frequency range which demon-
strate that the electrical conduction process arises due to 
the relaxation model. So, it is noted that each semi-circle 
may be modeled in terms of an electrical equivalent circuit 
composed of a resistance R and a capacitance Ce associated 
in parallel that is attributable to the grains in the conduction 
mechanism.

In addition, the variation of the real impedance Z′ 
decreases when the temperature increase. Therefore, we 
can estimate that the electrical conductivity is thermally 
activated; and so we assume a semiconductor behavior of 
such material.

Figure 6 shows the variation of Z″ against angular fre-
quency (Ln (ωm)) at different temperatures of FeTe2 thin 
film. It is noted that the imaginary part of the complex 
impedance (Z″) spectra has a relaxation peak which shifts 

slightly to the higher values of frequency as the tempera-
ture is increased.

We first investigated the angular frequency of the maxi-
mum peak wm that is expressed by the following equation:

with τ is the relaxation time.
As listed in Table 2, it is found that the calculated Ce 

value is of the order of 5 pF in the temperature range 
450–480 °C. Also, we notice that the R value decreases 
with the rise of the temperature, as well as the expected 
value of the ωm has been increased with the temperature.

As shown in Fig. 7, the frequency evolution of the total 
conductivity at different temperatures is independent at 
low frequencies, which may be attributed to dC contribu-
tion. In contrast, for the high frequencies, the variation of 
the total conductivity increases linearly with the frequency 
characterizing the measured AC conductivity (σAC).

Following Jonscher’s universal power law, the fre-
quency dependence of AC conductivity is introduced by 
the following equation [34, 35]:

(11)�m =
1

�
=

1

RCe

Fig. 4   Photoluminescence spectra of FeTe2 thin film
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Fig. 5   Complex impedance diagrams (Z″ vs. Z′) at different tempera-
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Fig. 6   Angular frequency dependence (Ln (ωm)) of the imaginary 
part of the complex impedance (Z″) at different temperatures

Table 2   Values of electrical parameters at different temperatures of 
FeTe2 thin film

Measurement 
temperature (°C)

Ln (ωm) ωm (106) R (105 Ω) Ce (10−12 F)

450 14.2 1.60 1.22 5.12
460 14.2 1.60 1.19 5.25
470 14.4 1.83 1.06 5.15
480 14.4 1.83 1.02 5.35
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with w is the angular frequency, the exponent S can be in 
0 ≤ S ≤ 1 domain, A′′ is a complex proportionality constant 
and σdC is the dC conductivity.

The AC conductivity is frequency dependent and it shifts 
to a higher frequency with an increase of the temperature, 
which is consistent with the observed shift of the relaxation 
frequency.

In fact, as seen in Fig. 7, an enlargement of the electrical 
conductivity dependant temperature in the studied material 
is noticed which was previously confirmed by the decrease 
of resistance values R with temperature increasing (see 
Table 2).

As displayed in the insets of Fig. 7, the expression of Ln 
(σT) as a function of (1000/T) has a linear behavior and fol-
lows the Arrhenius model [36, 37]:

with kB is the Boltzmann constant, �0 is a constant and Ea is 
the activation energy.

The activation energy Ea value is about Ea = 0.23 eV 
which let us mention that the carrier transport mechanism 
is a thermally activated process.

3.5 � Thermal investigation

In this paper, an electro-pyroelectric (EPE) technique on the 
front detection configuration has been used to reach both the 
thermal conductivity k and thermal diffusivity D [38–40]. 
Indeed, Fig. 8 displays the configuration that is made of five 
adjacent layers: air (a), insulator sample (2), PVDF film (p), 
investigated sample (1), substrate (S) and backing (b). In 

(12)�AC = �T − �dC = A���S,

(13)�T = �0 exp

(

−Ea

kBT

)

fact, it is practical to normalize the EPE signals of the sam-
ples to the one obtained without the studied sample(�1 = 0).

The theoretical model of the EPE normalized voltage 
signal is a complex function of frequency modulation and 
thermal properties of the studied sample [38]. From a com-
parison between the experimental and theoretical curves of 
the normalized EPE signals using mathematical software 
(Maple.13), thermal conductivity and diffusivity values of 
FeTe2 thin film were determined. Finally, thermal effusivity 
e and volume heat capacity Cth can be obtained from the 
following equations:

Figure 9 shows the best fits found between experimen-
tal and theoretical amplitudes and phases of the normal-
ized EPE signal as a function of modulation frequency for 
sprayed FeTe2 thin film. The best coincidences between 
these curves are obtained for given values of both thermal 

(14)Cth =
e

√

D
,

(15)k = e ×
√

D

Fig. 7   Frequency dependence of ln (�
T
) versus ln (�) at different tem-

peratures

Fig. 8   Geometry of electro-pyroelectric cell in front detection con-
figuration

Fig. 9   Experimental (dots) and theoretical (line) normalized ampli-
tude and phase of the electro-pyroelectric signal for FeTe2 according 
to the frequency modulation
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conductivity and diffusivity of the studied sample. Then, 
we rely on Eqs. (14) and (15) to extract the thermal effusiv-
ity and the heat capacity of the studied film. The obtained 
values are listed in Table 3.

The surprising low thermal conductivity of FeTe2, as 
shown in Table 3, makes it as a possible candidate (lower 
than 2 W m−1 K−1) for practical thermoelectric applications. 
The phonon mean free path is very sensitive to the grain 
boundary and disorder effect that could enhance the scatter-
ing process and suppress the phonon mean free path [41]. 
The excess of Te element can be results to the low value of 
the thermal conductivity as seen by the bright zones on the 
surface of FeTe2 film observed in Fig. 2.

Unfortunately, as there is no report on the thermal proper-
ties of bulk FeTe2, therefore, comparison with experimental 
data from other sources is impractical.

In the past decade years, a few studies have been moti-
vated to explore thermal properties of other chalcogenides 
family such as FeSb2. The thermal conductivity of the latter 
nanocomposite sample is about 2 W m−1 K−1 which is well 
comparable or even higher than that of iron ditelluride sam-
ple (1.2 W m−1 K−1) [42].

3.6 � Photocatalytic activity

In Fig. 10, it is found that the absorbance of methylene blue 
(MB) in the presence of FeTe2 thin film under solar light 
decreases continuously with the variation of illumination 
time from 0 to 100 min. In the presence of sample FeTe2, 
MB solution becomes totally colorless after 100 min of irra-
diation, signifying the total breaking down of dye molecules 
by FeTe2 nanoparticles. Thus, we conclude that the func-
tional group responsible for the characteristic color of MB 
dyes is decomposed and consequently we have observed a 
quick vanishing of the absorption bands of MB dyes.

The degradation efficiency of the studied thin film for MB 
dyes was given in Fig. 11a. The formula used to calculate 
the rate of the degradation efficiency is given by the Eq. (1) 
[43, 44].

The photocatalytic reaction in chosen time t can be esti-
mated according to Eq. (16):

The constant kr is defined as rate constant for degradation.
As shown in Fig. 11b, the plot of ln (C0/C) as a function 

of irradiation time gives a straight line, which proves the 

(16)ln C0/C = krt

first-order kinetic of the photocatalytic decomposition reac-
tion [45, 46].

So, kr can be obtained from the slope of the curves in 
Fig. 11b and the evaluated value is 2.33 × 10−2 min−1.

Venkata Reddy et al. [47] reported that CdO/ZnO hybrid 
photocatalyst exhibited better photocatalytic activity and pho-
tostability, compared to ZnO and CdO ones, thanks to its high 
degradation rate constant (2.25 × 10−2 min−1).

Indeed, the above result shows that FeTe2 obtained by this 
simple route had greater degradation rate constant compared to 
the CdO/ZnO hybrid sample which its combination of unlike 
semiconductor oxides can decrease the electron–hole pair 
separation under light irradiation leading to a relatively high 
photocatalytic performance [47].

However, FeTe2 material synthesized by this protocol 
seems more interesting than the other materials since it pro-
vides the best photocatalytic behaviour.

The suitable band gap in the thin materials can support 
transfer of electrons and holes to the surface under light, these 
electrons and holes can increase the photoreaction.

4 � Conclusion

In this work, ditelluride thin film has been successfully pre-
pared by a simply protocol. XRD studies reveal the orthorhom-
bic phase of FeTe2 with the crystallites is preferentially orien-
tated along [111] direction at 2θ values of 32.03°. Moreover, 
the obtained value of energy gap of the sprayed thin film FeTe2 

Table 3   Thermal parameters of 
sprayed FeTe2

k (W m−1 K−1) D (10−7 m2 s−1) Cth (J K−1 m−3) e 
(102 J K−1 m−2 s−½)

FeTe2 1.20 ± 0.02 3.90 ± 0.02 307 19.2

Fig. 10   The photodegradation curves of MB in the presence of FeTe2 
thin film under solar light
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is Eg = 0.9 eV do not suggest a role as a light-absorbing layer 
in highly photovoltaic solar conversion. On the other hand, the 
Nyquist plot, the electrical parameters, as well as the thermal 
properties for FeTe2 thin have been carried out. The photocata-
lytic activity of the synthesized FeTe2 thin film was evaluated 
for degradation of MB dye which demonstrated 90% degrada-
tion after 100 min of visible illumination.

Despite many research efforts, no attempts have been 
made to determine their magnetic and dielectric behaviors, 
as well as their thermoelectric figures of merit. It would be 
valuable for future research to understand properties and 
behavior of FeTe2 compounds which we suggest to use it for 
possible thermoelectric applications and for sensitivity ones.
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