Microwave dielectric properties of the low-temperature-fired Li₂ZnTi₃O₈–Li₂TiO₃ ceramics for LTCC applications

Tong lei¹ · Jiawang Chen² · Zhiqiang Xu^{1,2} · Hua Su^{1,2} · Yuanxun Li^{1,2} · Xiaoli Tang¹

Received: 17 May 2018 / Accepted: 5 July 2018 / Published online: 7 July 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In this work, 0.73Li₂ZnTi₃O₈-0.27Li₂TiO₃ ceramics were prepared through a traditional solid-state process. The effects of Li₂O-B₂O₃-SiO₂-CaO-Al₂O₃ (LBSCA) glass addition on phase formation, microstructure, sintering characteristic and microwave dielectric properties of the ceramics were investigated. A small amount of LBSCA glass addition significantly reduced sintering temperature of the ceramics. X-ray diffraction analysis revealed that Li₂ZnTi₃O₈ and Li₂TiO₃ phases coexisted without producing any other crystal phases in the sintered ceramics. Dielectric constant and *Qf* values were related to the amount of LBSCA addition and sintering temperatures. The specimens obtained near-zero temperature coefficient ($\tau_{\rm f}$) values through the compensation on the positive $\tau_{\rm f}$ of Li₂TiO₃ and the negative $\tau_{\rm f}$ of Li₂ZnTi₃O₈. The 0.73Li₂ZnTi₃O₈-0.27Li₂TiO₃ ceramic with 0.75 wt% LBSCA addition and sintered at 900 °C for 3 h exhibited excellent microwave dielectric properties of ε_r =23.907, *Qf*=63050 GHz and τ_f =1.2 ppm/°C, which was very suitable for LTCC (low temperature co-fired ceramics) applications.

1 Introduction

With the rapid development of wireless communication technology, an increasing number of studies have focused on materials with brilliant microwave dielectric properties. At the same time, to achieve the miniaturisation and integration of microwave devices, many studies have investigated the LTCC technology, which plays an important role in microelectronic applications [1-3]. Ag is widely used as internal-electrode material in LTCC devices to ensure their low cost and high conductivity. Considering that Ag has a melting point of approximately 961 °C, the typical sintering temperature of LTCC materials must be reduced to approximately 900 °C or lower to better co-fire with Ag internal electrodes [4–6]. Low-melting-point glasses were usually used as sintering aids in LTCC materials, which reduced the sintering temperature and achieved optimal microwave dielectric properties. Furthermore, near-zero τ_{f} of LTCC

materials are important to obtain stable LTCC microwave components [7–12]. Near-zero τ_f LTCC materials can be obtained by properly compounding the materials with negative and positive τ_f .

Li₂ZnTi₃O₈ ceramics had excellent microwave dielectric properties with ε_r values of ~25.8, a Qf value of ~74,200 GHz and a τ_f value of – 13 ppm/°C [13]. However, the $\tau_{\rm f}$ value of Li₂ZnTi₃O₈ ceramics was negative. On the other hand, Li₂TiO₃ had attracted considerable attention in microwave dielectric ceramics because of its positive $\tau_{\rm f}$ value and relatively outstanding microwave dielectric properties [14]. In the present work, we combined $Li_2ZnTi_3O_8$ with Li_2TiO_3 to obtain materials with near-zero τ_f values. And LBSCA glass was adopted as sintering aid to lower the sintering temperature of Li₂ZnTi₃O₈-Li₂TiO₃ compound ceramics because it had very low softening temperature point and efficient help-melting effect [15, 16]. The effects of LBSCA glass addition on the sintering behaviour, microstructure and microwave dielectric properties of the ceramics were investigated and discussed.

Xiaoli Tang tangtang1227@163.com

¹ State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China

² Dongguan Chengqi Cichuang Innovation Materials Co., Ltd., Dongguan, China

2 Experimental procedure

 $Li_2ZnTi_3O_8$ - Li_2TiO_3 ceramic samples were prepared by the conventional solid-state reaction. High-purity Li₂CO₃ (99%), ZnO (99.5%) and TiO₂ (99%) were used as starting materials. Li₂ZnTi₃O₈ calcined powders were produced by ballmilling Li₂CO₃, ZnO and TiO₂ in a 1:1:3 molar ratio. Then the mixed powders were dried and calcined at 900 °C for 3 h. Li₂TiO₃ calcined powders were produced by ball-milling Li_2CO_3 and TiO_2 in a 1:1 molar ratio. Then the mixed powders were dried and calcined at 820 °C for 3 h. LBSCA glass was prepared by the quenching technology. The oxide raw materials were mixed and melted at 1000 °C for 2 h using an alumina crucible at a Li₂O:B₂O₃:SiO₂:CaO:Al₂O₃ molar ratio of 52.45:31.06:11.99:2.25:2.25 [15, 16]. The solution was removed from the furnace and then poured into cold water to obtain the glass. Then, approximately 0-1.5 wt% of LBSCA glass was added into 0.73Li₂ZnTi₃O₈-0.27Li₂TiO₃ compounds respectively (0.73:0.27 was the weight ratio of Li₂ZnTi₃O₈ and Li₂TiO₃ calcined powders, which was calculated by their respective τ_f to obtain near-zero τ_f in the compound materials). The mixtures were milled in nylon pots with zirconia balls. After drying and granulation, the powders were pressed into cylinders, which were final sintered at 875-950 °C for 3 h.

Crystalline phase structures were analysed through X-ray diffraction (XRD:DX-2700) using Cu K α radiation. Bulk densities of the sintered samples were measured using the Archimedes method, and the densities were obtained by the ratio of mass and volume. Sample micrographs were examined by scanning electron microscopy (SEM:JEOL JSM6490LV). The microwave dielectric properties of the sintered ceramics in microwave frequency were measured using the Hakki–Coleman method and Agilent N5230A network analyser (300 MHz–20 GHz) in a resonant cavity. $\tau_{\rm f}$ values were measured at a temperature range of 20–80 °C. The values were calculated from the following formula:

$$\tau_f = \frac{f_T - f_0}{f_0 (T - T_0)} \times 10^6$$

where f_T and f_0 are the resonant frequencies at 80 and 20 °C, respectively.

3 Results and discussion

Figure 1 shows the XRD patterns of $0.73 \text{Li}_2\text{Zn-Ti}_3\text{O}_8$ -0.27Li₂TiO₃ ceramics with different LBSCA glasses and sintered at 900 °C for 3 h. All samples contained Li₂ZnTi₃O₈ and Li₂TiO₃ phases, no other phases were detected. All peaks were indexed in terms of Li₂ZnTi₃O₈

Fig. 1 XRD patterns of $\text{Li}_2\text{Zn}\text{Ti}_3\text{O}_8$ - $\text{Li}_2\text{Ti}\text{O}_3$ ceramics with x wt% LBSCA additive and sintered at 900 °C for 3 h. (*a*) x=0, (*b*)=0.25, (*c*)=0.5, (*d*)=0.75, (*e*)=1, (*f*)=1.25, and (*g*)=1.5

(PDF #44-1037) and Li₂TiO₃ (•, #33–0831). Li₂ZnTi₃O₈ is a cubic structure which belongs to the P4332 space group. Zn²⁺ and 1/2 of the Li⁺ are located in the centre of [ZnO₄] and [LiO₄] tetrahedral units [17]. Ti⁴⁺ and the remaining 1/2 Li⁺ are located in the [TiO₆] and [LiO₆] octahedron centre. Li₂TiO₃ is a monoclinic structure which belongs to the C2/c(15) space group [18]. Ti⁴⁺ is located in the centre of [TiO₆] octahedron, and the octahedrons are connected to each other through six-coordinated Li⁺. Due to the large crystal structure difference between Li₂ZnTi₃O₈ and Li₂TiO₃, the Li₂TiO₃ phase beneficially coexisted with the Li₂ZnTi₃O₈ phase in the 0.73Li₂ZnTi₃O₈–0.27Li₂TiO₃ ceramics. LBSCA addition was undetectable, which indicated that LBSCA existed in the amorphous phase.

Figure 2 shows the SEM micrographs of $0.73Li_2Zn-Ti_3O_8-0.27Li_2TiO_3$ ceramics with different LBSCA glasses. LBSCA addition significantly influenced the densification and average grain size of the compound ceramics. Figure 2a presented a porous microstructure with many intergranular pores. Figure 2b, c showed that the intergranular pores decreased, the grain size increased and the samples became dense with the increase of LBSCA glass content. This phenomenon was due to that LBSCA glass formed a liquid phase during sintering, which accelerated mass transfer and promoted sintering [19]. Figure 2d showed that the sample obtained a dense and uniform microstructure, which was doped with 0.75 wt% LBSCA glass. Figure 2e–g showed that the microstructure of the samples did not change significantly with further increasing LBSCA glass content.

Figure 3 presents the variation in sintered densities of the samples with different LBSCA contents. The sintered densities initially increased and reached their maximum with x = 0.75 wt% and then gradually decreased. The first

increase in densities was due to the liquid phase of LBSCA formed during sintering effectively promoted the densification of the materials [20]. The densities monotonously decreased with further increasing LBSCA content, which could be attributed to two reasons. One reason was that excessive grain boundary amorphous LBSCA glass hindered the further densification of the materials. The other reason was that the content ratio of low-density glass addition contributed to the decrease in densities of the samples.

Fig.3 Sintered densities of $Li_2ZnTi_3O_8$ - Li_2TiO_3 ceramics with different LBSCA glass and sintered from 875 to 950 °C

Fig.4 Permittivity of $Li_2ZnTi_3O_8$ - Li_2TiO_3 ceramics with x wt% LBSCA glass and sintered from 875 to 950 °C

Figure 4 shows the variation in ε_r values of the ceramics with different LBSCA glass contents and sintered under different temperatures. Obviously, the tendency of ε_r variation was consistent with that of density. As LBSCA content increased, ε_r gradually increased and reached the maximum with 0.75 wt% LBSCA. After that, ε_r slightly decreased with further increasing LBSCA content. Similar to the variation of density, this trend remained the same under different sintering temperatures. Therefore, sintered density was the main factor determining the ε_r value of the ceramics.

Figure 5 shows the Qf values of $0.73 \text{Li}_2\text{Zn}$ -Ti₃O-0.27Li₂TiO₃ ceramics with different LBSCA contents and sintered at 875–950 °C. The Qf values initially increased and then decreased with increasing LBSCA content. The maximal Qf values were obtained with 0.75 wt% LBSCA

Fig.5 Qf values of Li₂ZnTi₃O₈-Li₂TiO₃ ceramics with different LBSCA glass and sintered from 875 to 950 °C

Fig. 6 τ_f values of Li₂ZnTi₃O₈-Li₂TiO₃ ceramics with different LBSCA glass and sintered at 900 °C for 3 h

content, in spite of different sintering temperatures. After that, Qf values gradually decreased with further increasing LBSCA content. This phenomenon was very close to the variation of density. The microwave dielectric losses can be divided into internal and external losses [21]. Internal losses are related to the internal crystal structure of the dielectric material and are mainly caused by the lattice vibration modes, whereas extrinsic losses are associated with many factors, such as second phases, oxygen vacancies, grain size and densification. Therefore, the initial increase in Qf values might be attributed to the increase in densification and average grain size. The subsequent decrease in Qf values was mainly due to the reduced density. Furthermore, the relatively high loss of glassy phase was also responsible for the decrease of Qf values.

Figure 6 shows the τ_f values of $0.73 Li_2 Zn$ -Ti₃O₈–0.27Li₂TiO₃ ceramics sintered at 900 °C for 3 h. $\tau_{\rm f}$ can be tuned by the mixtures of dielectrics with opposite $\tau_{\rm f}$ values. A previous report showed that Li₂ZnTi₃O₈ has a negative τ_f value of -13.75 ppm/°C, whereas Li₂TiO₃ had a positive τ_f value of 35.78 ppm/°C. Therefore, the expected near-zero τ_f values could be achieved by the compensation of the positive τ_f of Li₂TiO₃ and the negative τ_f of Li₂ZnTi₃O₈ in $0.73 \text{Li}_2 \text{ZnTi}_3 \text{O}_8 - 0.27 \text{Li}_2 \text{TiO}_3$. Furthermore, τ_f altered from -6 to 7 ppm/°C with increasing LBSCA content in this study. This fact might due to the influence of the glass's $\tau_{\rm f}$ and the variation of sintered densities. The specimen with 0.75 wt% LBSCA and sintered at 900 °C could obtain very high *Qf* value (which was 63,050 GHz) and near-zero $\tau_{\rm f}$ of 1.2 ppm/°C, which was considered suitable for LTCC applications.

4 Conclusion

In this study, the effects of LBSCA addition on the phase formation, sintering characteristic, microstructure and microwave dielectric properties of the $0.73Li_2Zn-Ti_3O_8-0.27Li_2TiO_3$ ceramics were investigated. Proper LBSCA glass addition could effectively densify the samples and improve the microwave dielectric properties. No chemical reaction occurred between the Li₂ZnTi₃O₈ and Li₂TiO₃ ceramics. A near-zero τ_f value was obtained through the compensation of the positive τ_f of Li₂ZnTi₃O₈ and Li₂TiO₃ sample with 0.75 wt% LBSCA glass addition and sintered at 900 °C presented excellent dielectric properties with ε_r = 23.907, Qf=63,050 GHz and τ_f =1.2 pm/°C. The proposed ceramic was a perfect candidate material for LTCC applications.

Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant Nos. 61471096 and 61771104 and Sichuan science and technology program. Special Projects on Science and Technology of Guizhou Province [2016]3011. And Dongguan entrepreneurial talent program.

References

- P. Kumari, P. Tripathi, O. Parkash, D. Kumar, Low temperature sintering and characterization of MgO-B₂O₃-SiO₂ glass-ceramics for LTCC substrate applications. Trans. Indian Ceram. Soc. 75, 229–233 (2016)
- Y. Lai, C. Hong, L. Jin, X. Tang, H. Zhang, X. Huang, J. Li, H. Su, Temperature stability and high-Qf of low temperature firing Mg₂SiO₄-Li₂TiO₃ microwave dielectric ceramics. Ceram. Int. 43, 16167–16173 (2017)
- C.C. Xia, G.H. Chen, C.L. Yuan, C.R. Zhou, Low-temperature cofired LiMnPO₄–TiO₂ ceramics with near-zero temperature coefficient of resonant frequency. J. Mater. Sci.: Mater. Electron. 28, 13970–13975 (2017)
- 4. H. Zhou, J. Huang, X. Tan, N. Wang, G. Fan, X. Chen, Compatibility with silver electrode and microwave dielectric properties of low

firing CaWO₄-2Li₂WO₄ ceramics. Mater. Res. Bull. **89**, 150–153 (2017)

- A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, Microwave dielectric properties and chemical compatibility with silver electrode of Li₂TiO₃ ceramic with Li₂O– ZnO–B₂O₃ glass additive. Physica B 457, 57–61 (2015)
- N.-X. Xu, J.-H. Zhou, H. Yang, Q.-L. Zhang, M.-J. Wang, L. Hu, Structural evolution and microwave dielectric properties of MgO– LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 40, 15191–15198 (2014)
- J.-X. Xu, X.Y. Zhang, C. High-Isolation, LTCC Diplexer using common stub-loaded resonator with controllable frequencies and bandwidths. IEEE Trans. Microw. Theory Tech. 65, 4636–4644 (2017)
- Y. Li, Y. Xie, R. Chen, L. Han, D. Chen, H. Su, A multilayer power inductor fabricated by cofirable ceramic/ferrite materials with LTCC technology. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 1402–1409 (2017)
- X.Y. Zhang, X.-F. Liu, Y.C. Li, W.-L. Zhan, Q.Y. Lu, J.-X. Chen, LTCC out-of-phase filtering power divider based on multiple broadside coupled lines. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 777–785 (2017)
- W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, LTCC wideband bandpass filters with high performance using coupled lines with open/ shorted stubs. IEEE Trans. Compon. Packag. Manuf. Technol. 7, 602–609 (2017)
- D. Zhou, L.-X. Pang, D.-W. Wang, C. Li, B.-B. Jin, I.M. Reaney, High permittivity and low loss microwave dielectrics suitable for 5G resonators and low temperature co-fired ceramic architecture. J. Mater. Chem. C 5, 10094–10098 (2017)
- D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, I.M. Reaney, Novel temperature stable high-er microwave dielectrics in the Bi2O3–TiO2–V2O5 system. J. Mater. Chem. C 4, 5357–5362 (2016)
- H. Zhou, N. Wang, X. Tan, J. Huang, X. Chen, Glass-free Li2Zn-Ti3O8 low temperature cofired ceramics by pretreating raw materials. J. Mater. Sci.: Mater. Electron. 27, 11850–11855 (2016)
- L.-X. Pang, D. Zhou, Microwave dielectric properties of low-firing Li₂MO₃ (M = Ti, Zr, Sn) ceramics with B₂O₃-CuO addition. J. Am. Ceram. Soc. 93, 3614–3617 (2010)
- Z. Ding, H. Su, X. Tang, H. Zhang, B. Liu, Low-temperaturesintering characteristic and microwave dielectric properties of (Zn0.7Mg0.3)TiO₃ ceramics with LBSCA glass. Ceram. Int. 41, 10133–10136 (2015)
- S. Zhang, H. Su, H.W. Zhang, Y.L. Jing, X.L. Tang, Microwave dielectric properties of CaWO₄-Li₂TiO₃ ceramics added with LBSCA glass for LTCC applications. Ceram. Int. 42, 15242–15246 (2016)
- M. Bari, E. Taheri-Nassaj, H. Taghipour-Armaki, Phase evolution, microstructure, and microwave dielectric properties of reaction-sintered Li₂ZnTi₃O₈ ceramic obtained using nanosized TiO₂ reagent. J. Electron. Mater. 44, 3670–3676 (2015)
- Y. Wu, D. Zhou, J. Guo, L.-X. Pang, H. Wang, X. Yao, Temperature stable microwave dielectric ceramic 0.3Li₂TiO₃-0.7Li(Zn0.5Ti1.5) O₄ with ultra-low dielectric loss. Mater. Lett. 65, 2680–2682 (2011)
- H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectricconstant LiAlO₂ ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)
- H. Chen, H. Su, H. Zhang, Y. Gui, H. Zuo, L. Yang, X. Tang, Low temperature sintering and microwave dielectric properties of the LBSCA-doped (Zn0.95Co0.05)₂SiO₄ ceramics. J. Mater. Sci.: Mater. Electron. 26, 2820–2823 (2015)
- J. Bi, Y. Niu, H. Wu, Li₄Mg₃Ti₂O₉: a novel low-loss microwave dielectric ceramic for LTCC applications. Ceram. Int. 43, 7522– 7530 (2017)