

Er³⁺ co-doped Sr_{1.956}MgSi₂O₇: 0.004Eu²⁺, 0.04Dy³⁺ phosphors and enhancement of luminescent properties

Yongfeng Cai¹ · Fengfeng Li¹ · Shiyan Chang¹ · Mingxi Zhang¹ · Zuotao Liu¹ · Yi Shen¹

Received: 11 December 2017 / Accepted: 16 March 2018 / Published online: 20 March 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

Long afterglow phosphors of $Sr_{1.956}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺ and $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ were successfully synthesized via the sol-gel method. The phase compositions and luminescent properties of the phosphors were analyzed by X-ray diffraction (XRD), fluorescence spectra and decay curves. Compared with the undoped phosphor, the crystallinity of Er³⁺ co-doping phosphors is decreased. Luminescence spectra show the main peak of excitation was 274, 356 nm and the main emission peak was 467 nm. Furthermore, $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ show excellent luminescent properties, and its initial luminous intensity increased by 1.4 times than $Sr_{1.956}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺. The mechanism of $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ enhancement has been discussed.

1 Introduction

For more than a decade now, $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} has become a concern for long afterglow phosphors, because of its advantages of luminescent properties [1–8]. In 2005, Alvani et al. [9] successfully prepared $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} via high temperature solid phase method, and discussed the performance and structure of the phosphor in detail. Subsequently, $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} phosphors have been research to preparation methods and doping rare earth elements by many researchers [10–14]. There are two important research aspects: doping rare earth elements and preparation methods.

An important factor of the luminescent to long afterglow phosphors is the doping type and doping concentration of rare earth elements. The luminescence properties of the $Sr_2MgSi_2O_7$ phosphors can be created by doping rare earth ions. The doping type and concentration of rare earth elements are both important factors to phosphors of luminescent properties. Sahu et al. [15] successfully prepared Eu^{2+} and Ce^{2+} co-doping $Sr_2MgSi_2O_7$ phosphors via high temperature solid-state reaction. They focus on the effect of the Eu²⁺ and Ce³⁺ ion radius to decay curve. Wu et al. [16] synthesized the Eu²⁺ and Er³⁺ co-doping Sr₂MgSi₂O₇ phosphors with high temperature solid-state reaction. The results show that the afterglow time in Sr₂MgSi₂O₇: Eu²⁺, Er³⁺ is than Sr₂MgSi₂O₇: Eu²⁺, Er³⁺ is 1.2 times stronger than that in Sr₂MgSi₂O₇: Eu²⁺. In addition to the two rare earth ions co-doping Sr₂MgSi₂O₇ phosphors, Song et al. [17] also attempted that three rare earth ions of Eu²⁺, Dy³⁺ and Nd³⁺ co-doping Sr₂MgSi₂O₇ phosphors.

Although the advantages of high temperature solid-state reaction possesses are less synthesis steps and simple operation, it restricts development to high sintering temperature and unstable luminescent properties. Furusho et al. [18] researched the effect of different sintering temperatures on the luminescent properties. The result indicated the high temperature will influence the structure and phase purity of the Sr₂MgSi₂O₇ phosphors. Then, the researchers tried to reduce the synthetic temperature for improving the crystal structure and luminescent properties of the Sr₂MgSi₂O₇ phosphors by different preparation methods. Pan et al. [19] successfully synthesized Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphors via co-precipitation method. The solid phase reaction can be completed at 1000 °C, indicating the particle size was uniform and the average particle size was about 1 μ m. The Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphors [17] was synthesized via combustion method with average particle size of about 20 nm. Zhang et al. [20] successfully prepared Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphors via sol-gel method. This method has obvious advantages for

[⊠] Yi Shen shenyicyf@126.com

¹ Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China

preparing phosphors, such as a lower synthetic temperature and a fine powder.

In this paper, $Sr_{1.956}MgSi_2O_7$: $0.004Eu^{2+}$, $0.04Dy^{3+}$ and $Sr_{1.94}MgSi_2O_7$: $0.004Eu^{2+}$, $0.04Dy^{3+}$, $0.016Er^{3+}$ phosphors were successfully prepared via sol–gel method, and the luminescent properties were improved. Er^{3+} ions are doped into $Sr_{1.956}MgSi_2O_7$: $0.004Eu^{2+}$, $0.04Dy^{3+}$ lattice improve the persistent luminescence due to the formation of exceedingly dense trapping levels situated at appropriate depth. Furthermore, the effects of and Er^{3+} on the phase compositions and luminescent properties of $Sr_2MgSi_2O_7$: Eu^{2+} , Dy^{3+} phosphor were also discussed. The mechanism of $Sr_{1.94}MgSi_2O_7$: $0.004Eu^{2+}$, $0.04Dy^{3+}$, $0.016Er^{3+}$ enhancement has been discussed.

2 Materials and methods

2.1 Preparation of the Sr_{1.956}MgSi₂O₇: 0.004Eu²⁺, 0.04Dy³⁺ (SMSED) and Sr_{1.94}MgSi₂O₇: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ (SMSED) phosphors

The SMSED and SMSEDE samples were prepared via sol-gel method. The rawmaterials $Sr(NO_3)_2$, Mg(NO₃)₂·6H₂O and H₂BO₃ were dissolved in H₂O to form solution A ,B and C, and the H₃BO₃ content was 7.5% of Sr₂MgSi₂O₇. The Dy₂O₃, Eu₂O₃ and Er₂O₃ was dissolved in 3.6M HNO₃ to form solution D,E and F. The Si(OC₂H₅)₄ was dissolved in absolute ethylalcohol to form solution G. All solutions were fully dissolved under mechanical stirring, respectively. The solutions of B, C, D, E, F were added to solution A under mechanical stirring, affording a mixture solutions. Then, the solution G was slowly added to the mixture and stirred at 70 °C for 2 h. The mixed solution became wet gel after 2 h and the resulting wet gel was dried in an oven at 70 °C for 72 h to obtain a dry gel. Finally, the dry gel was calcined in a muffle furnace at 1100 °C for 3 h. SMSED was prepared when F was not added.

2.2 Characterization

The X-ray diffraction (XRD) patterns were recorded using an X-ray diffractometer (Rigaku D/Max-2500) with Cu Ka radiation ($\lambda = 0.15406$ nm), and diffraction angles ranging from 10° to 80°. The luminescence spectra and decay curves were obtained via a Hitachi F-7000 fluorescence spectrophotometer (Japan) equipped with a 450W Xe lamp as the excitation light-source.

3 Results and discussion

Figure 1 shows the X-ray diffraction (XRD) patterns recorded for SMSED and SESEDE phosphors. It can be seen that all the phosphors are indexed to tetragonal $Sr_2MgSi_2O_7$

phase with the space group P-421m (No.113) according to JCPDF card no.75-1736. The three peaks (201), (211) and (212) are no offset. Er^{3+} co-doping has no significant influence on the structure of the phosphors. However, phosphors of Er^{3+} co-doping reduce the intensity of the peak resulting in a decrease in crystallinity. Eu^{2+} , Dy^{3+} and Er^{3+} ions are regarded to occupy the Sr^{2+} sites in the cell because of the similar covalent radius ($\text{R}_{\text{Sr}} = 1.95$ Å, $\text{R}_{\text{Eu}} = 1.98$ Å, $\text{R}_{\text{Dv}} = 1.92$ Å, $\text{R}_{\text{Er}} = 1.89$ Å) [21, 22].

Figure 2 shows the three-dimensional fluorescence spectra of SMSEDE phosphor. The center of strong emission region appeared at 390 and 467 nm, but the emission region at 390 nm is obviously weaker than 467 nm. This indicates that the best emission wavelength for the Eu²⁺ in the host crystal was 467 nm. These two strong emission peaks attributed to the 4f⁶5d \rightarrow 4f⁷ transitions of Eu²⁺. Sr²⁺ at two different positions in the host lattice can be replaced by Eu²⁺ to form two emission centers Eu₁ and Eu₂ corresponding to emission at 390 and 467 nm [23]. This because that the R_{Sr} = 1.95 Å is close to R_{Eu} = 1.98 Å. The main excitation peaks are 274 and 356 nm, but due to the impact of instrument peak and peak intensity, the experiment will choose the monitoring wavelengths are 356 and 467 nm for emission spectra and excitation spectra, respectively.

Figures 3 and 4 shows that the excitation spectra and emission spectra of the phosphors. This indicates that emission spectra and excitation spectra show that the fluorescence intensity is significantly increased after Er^{3+} co-doping. As shown in Fig. 3, under the monitoring wavelength of 467 nm, both of the two phosphors showed two different excitation ranges of 250–330 and 335–450 nm, and the main excitation peak were 274 and 356 nm, indicating that Er^{3+} had almost no influence to the excitation peak. The reason why the excitation spectra of SMSEDE is enhanced

Fig. 1 XRD patterns of SMSED and SESEDE

Fig. 2 Three-dimensional fluorescence spectra of the SMSEDE

Fig. 3 Excitation spectra of the SMSED and SMSEDE

is that Er^{3+} as a co-doping ion that is Eu^{2+} ions makes the distribution of the Eu^{2+} ions becomes random and deep throughout the lattice. This result in enhancement of the two excitation peaks at 274 and 356 nm due to the increase of electrons excited by the two characteristic excitation wavelengths. The excitation peak at 274 nm can be attributed to the charge transition of $Eu^{2+}-O^{2-}$; the excitation peak at 365 nm can be attributed to the typical 4f–5d emission of Eu^{2+} in $Sr_2MgSi_2O_7$ [24]. As shown in Fig. 4 under the 356 nm excitation wavelength, emission spectra show that the fluorescence intensity is significantly increased after Er^{3+} co-doping. The reason why lattice defects are increased after

Fig. 4 Emission spectra of the SMSED and SMSEDE

the introduction of Er^{3+} and it acts as an trap to capture and release for electrons or holes [25]. The process affects the recombination of electron-hole pairs to make the intensities of the fluorescence spectra stronger. The emission of 467 nm was assigned to the $4f^{6}5d^{1} \rightarrow 4f^{7}$ transition of Eu^{2+} . The emission peak presented broad-featured, which could be attributed to the stronger crystal field strength of the host material. The characteristic emission peaks of Dy^{3+} and Er^{3+} are not detected, indicating the Eu^{2+} acted an activator, but Dy^{3+} and Er^{3+} were as co-activators in $\mathrm{Sr}_2\mathrm{MgSi}_2\mathrm{O}_7$ phosphors. The maximum brightness is achieved when Er^{3+} and Dy^{3+} auxiliary luminescent particle are incorporated into the host lattice. The Commission Internationale de l'Eclairage (CIE) chromaticity diagrams [26] of the prepared phosphors are presented in Fig. 5. For all the prepared samples, the CIE chromaticity diagrams fall in the bright blue region.

Figure 6 is shows the decay curve of SMSED and SMSEDE phosphors. Under the 467 nm excitation wavelength and the 356 nm emcitation wavelength, The afterglow decay process usually consists of three sub-decay processes, which can be described by a three-exponential function. The form of the equation is as follow [27]:

$$I = I_0 + I_1 \exp(-t/\tau_1) + I_2 \exp(-t/\tau_2) + I_3 \exp(-t/\tau_3)$$
(1)

where I is phosphorescent intensity, I_0 , I_1 , I_2 , I_3 are the constants, t is the time, τ_1 , τ_2 and τ_3 are time decay constants, respectively. The fitting results of the parameters of I_0 , I_1 , I_2 , I_3 , τ_1 , τ_2 and τ_3 are listed in Table 1.

The intensity of initial fluorescence (I₀) of SMSEDE is 1.4 times stronger than that in SMSED, because Er^{3+} codoping could deepen the trap level allowing more free electrons to be trapped. As shown in Fig. 7, the ground state of Eu^{2+} transitions to the excited state ($4f^7 \rightarrow 4f^65d^1$) and then some of the electronic enter into the trap during excitation through the lattice. During the afterglow process, electrons are released from the trap to the excited state through thermal excitation and returned to the ground state of the Eu^{2+} from the excited state. In other words, the electron transition can be attributed to the $4f^65d^1 \rightarrow 4f^7$. Compared with the undoped phosphor, the trap depth of Er^{3+} co-doping

Fig. 5 Chromaticity diagram of SMSED and SESEDE

Fig. 6 Decay curves of SMSED and SMSEDE. (Color figure online)

phosphors is increased, so that the fluorescence intensity and afterglow performance will be enhanced.

4 Conclusions

In this paper, the $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ phosphor were successfully prepared via sol-gel method. The results show that phosphors of Er³⁺ co-doping reduce the intensity of the peak resulting in a decrease in crystallinity. Moreover the luminescent intensity and afterglow performance of Er³⁺ co-doping $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺ phosphors is improved and the $Sr_{1.94}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺, 0.016Er³⁺ phosphor initial luminous intensity increased by 1.4 times than $Sr_{1.956}MgSi_2O_7$: 0.004Eu²⁺, 0.04Dy³⁺ phosphor. Table 1 Constants of decay

curves

Sample	Initial luminance [I (a.u.)]				Decay time $[\tau (s)]$		
	I ₀	I ₁	I_2	I ₃	$\overline{\tau_1}$	τ_2	τ_3
SMSED	0.99	353.41	172.51	31.98	0.15	26.95	172.51
SMSEDE	1.89	486.68	283.35	54.72	0.22	31.83	283.35

Fig. 7 The schematic diagram of long-afterglow phosphorescence mechanism of SMSEDE

Acknowledgements This work is supported by the National Science Foundation Project of China (Grant Nos. 51572069 and 51772099).

References

- H. Furusho, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, Y. Okajima, A. Yamamoto, Probing lattice defects in Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺. J. Lumin. **128**, 881–884 (2008)
- W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin, J. Ye, Enhanced luminescent properties of long-persistent Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphor prepared by the co-precipitation method. J. Lumin. **128**, 1975–1979 (2008)
- R. Shrivastava, J. Kaur, Characterisation and mechanoluminescence studies of Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺. J. Radiat. Res. Appl. Sci. 8, 201–207 (2015)
- H. Wu, Y. Hu, X. Wang, Investigation of the trap state of Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphor and decay process. Radiat. Meas. 46, 591–594 (2011)
- H. Wu, Y. Hu, Y. Wang, C. Fu, Influence on the luminescence properties of the lattice defects in Sr₂MgSi₂O₇: Eu²⁺, M (M = Dy³⁺, La³⁺, or Na¹⁺). J. Alloy. Compd. **497**, 330–335 (2010)
- H. Homayoni, L. Ma, J. Zhang, S.K. Sahi, L.H. Rashidi, B. Bui, W. Chen, Synthesis and conjugation of Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ water soluble afterglow nanoparticles for photodynamic activation. Photodiagn. Photodyn. 16, 90–99 (2016)
- L. He, B. Jia, L. Che, W. Li, W. Sun, Preparation and optical properties of afterglow Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ electrospun nanofibers. J. Lumin. **172**, 317–322 (2016)
- P. Dorenbos, Mechanism of Persistent Luminescence in Eu²⁺ and Dy³⁺ codoped aluminate and silicate compounds. J. Electrochem. Soc. **152**, H107–H110 (2005)

- A.A.S. Alvani, F. Moztarzadeh, A.A. Sarabi, Preparation and properties of long afterglow in alkaline earth silicate phosphors co-doped by Eu₂O₃ and Dy₂O₃. J. Lumin. **115**, 147–150 (2005)
- S.H.M. Poort, H.M. Reijnhoudt, H.O.T.V.D. Kuip, G. Blasse, Luminescence of Eu²⁺ in silicate host lattices with alkaline earth ions in a row. J. Alloy. Compd. **241**, 75–81 (1996)
- O. Hai, H. Jiang, D. Xu, M. Li, The effect of grain surface on the long afterglow properties of Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺. Mater. Res. Bull. **76**, 358–364 (2016)
- Y. Lin, Z. Tang, Z. Zhang, X. Wang, J. Zhang, Preparation of a new long afterglow blue-emitting Sr₂MgSi₂O₇-based photoluminescent phosphor. J. Mater. Sci. 20, 1505–1506 (2001)
- H. Wu, Y. Hu, Y. Wang, B. Zeng, Z. Mou, L, Deng Influence on luminescent properties of the Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺, Nd³⁺ codoping. J. Alloy. Compd. **486**, 549–553 (2009)
- L. Xiao, J. Zhou, G. .Liu, L. Wang, Luminescent properties of R⁺ doped Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺, (R⁺ = Li⁺, Ag⁺) phosphors. J. Alloy. Compd. **712**, 24–29 (2017)
- I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Luminescence properties of Eu²⁺, Dy³⁺-doped Sr₂MgSi₂O₇ and Ca₂MgSi₂O₇ Phosphors by solid state reaction Method. Res. Chem. Intermediat. 41, 6649–6664 (2015)
- H. Wu, Y. Hu, L. Chen, X. Wang, Enhancement on the afterglow properties of Sr₂MgSi₂O₇: Eu²⁺ by Er³⁺ codoping. Mater. Lett. 65, 2676–2679 (2011)
- F. Song, D. Chen, Y. Yuan, Synthesis of Sr₂MgSi₂O₇: Eu, Dy and Sr₂MgSi₂O₇: Eu, Dy, Nd by a modified solid-state reaction and their luminescent properties. J. Alloy. Compd. **458**, 564–568 (2008)
- H. Furusho, J. Hölsä, T. Laamanen, M. Lastusaari, J. Niittykoski, Y. Okajima, Probing lattice defects in Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺. J. Lumin. **128**, 881–884 (2008)
- W. Pan, G. Ning, J. Wang, Y. Lin, J. Ye, Erratum to "Enhanced luminescent properties of long-persistent Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ phosphor prepared by the co-precipitation method". J. Lumin 129(2009), 584 (2008)
- F. Ye, S. Dong, Z. Tian, S. Zhou, S. Wang, Fabrication and study of properties of the PLA/ Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ long-persistent luminescence composite thin films. Opt. Mater. 40, 130–135 (2013)
- C.R. Kesavulu, V.B. Sreedhar, C.K. Jayasankar, K. Jang, D.S. Shin, S.S. Yi et al., Structural, thermal and spectroscopic properties of highly Er³⁺-doped novel oxyfluoride glasses for photonic application. Mater. Res. Bull. **51**, 336–344 (2014)
- 22. D. Singh, V. Tanwar, A.P. Samantilleke, B. Mari, S. Bhagwan, K.C. Singh, P.S. Kadyan, I. Singh, Synthesis of $Sr_{(1-x-y)}Al_4O_7$: Eu_x^{2+} , Ln_y^{3+} (Ln = Dy, Y, Pr) nanophosphors using rapid gel combustion process and their down conversion characteristics. Electron. Mater. Lett. **13**, 222 (2017)
- X. Wei, Y. Shen, G. Zuo, L. Hou, Y. Meng, F. Li, Preparation of porous Sr₂MgSi₂O₇: Eu²⁺, Dy³⁺ energy storage carriers via solhydrothermal synthesis. Ceram. Int. 41, 13872–13877 (2015)
- W. Tian, K. Song, F. Zhang, P. Zheng, J. Deng, J. Jiang, J. Xu, H. Qin, Optical spectrum adjustment of yellow-green Sr_{1.99}SiO_{4-3x/2}N_x: 0.01Eu²⁺ phosphor powders for near ultraviolet-visible light application. J. Alloy. Compd. 638, 249–253 (2015)

- 25. F. Li, Z. Li, X. Wang, M. Zhang, Y. Shen, P. Cai, Crystal structure and luminescent property of flaky-shaped $Sr_4Al_{14}O_{25}$: Eu²⁺, Dy^{3+} phosphor doped with Er^{3+} ions. J. Alloy. Compd. **692**, 10–21 (2017)
- 26. D. Singh, V. Tanwar, A.P. Simantilleke, B. Mari, P.S. Kadyan, I. Singh, Rapid synthesis and enhancement in down conversion

emission properties of $BaAl_2O_4$: Eu^{2+} , RE^{3+} ($RE^{3+}=Y$, Pr) nanophosphors. J. Mater. Sci.: Mater. Electron. **27**, 2260–2266 (2016)

 I. Chen, T. Chen, Sol-gel synthesis and the effect of boron addition on the phosphorescent properties of SrAl₂O₄: Eu²⁺, Dy³⁺ phosphors. J. Mater. Res. 16, 644–651 (2001)