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Abstract In order to make sure the co-operation of

substrate temperatures and post-deposition annealing on

the structure and performance of the a-SiOx:H for n-Cz-

Si wafer passivation, three series a-SiOx:H films bifacial-

deposited on n-Cz-Si wafers were made. In which, the

first series was deposited at room temperature and post-

deposition annealing with different temperature; the

second series was deposited with different substrate

temperature and without post-annealing; and the third

series was deposited with different substrate temperature

and post-annealed at the optimized 275 �C. Effective

lifetime of the samples was tested by QSSPC method,

and the imaginary part of dielectric constant (e2) and film

properties of the films were analyzed by Spectroscopic

Ellipsometry and Fourier Transform Infrared Spec-

troscopy. It is concluded that (1) the structure and pas-

sivation effect of a-SiOx:H films on n-Cz-Si wafer are

sensitive to the substrate temperature and post-deposition

annealing, and the optimum scheme is depositing the

film at 100 �C and post-annealing the wafer at 275 �C;
(2) the microstructure parameter R*of the a-SiOx:H is

*0.67 for the samples with the optimum passivation

effect.

1 Introduction

The intrinsic passivation layers play a key role to reduce

the surface state density of the silicon wafer and improve

the photoelectric conversion efficiency of the crystalline

silicon heterojunction solar cells [1]. It is one of core

technologies behind the record conversion efficiency for

HIT solar cell of Panasonic Corporation [2]. In which

oxygen doped amorphous silicon (a-SiOx:H) is a good

choice for the material of the intrinsic thin-layer [1]. It is

well known that the substrate temperature during the film

deposition has great effect on the properties of the a-

SiOx:H films [3], and on the effect of the film on the c-Si

wafer passivation [4]. Muller et al. [5] also showed that the

low temperature (250 �C) post-annealing process has effect

on the passivation of a-SiOx:H film on c-Si wafer. For the

mechanism of the temperature of the thermal processing

affecting on the a-SiOx:H passivating the c-Si wafer sur-

face, there is no exact explanation. Jaran et al. [6] men-

tioned that the Si–(OH)x, Si–O–Si bonds in the film have

some effect to reduce the defects in the films and improve

the passivation effect. It is thought that this is not exact

enough to show the mechanism of the c-Si surface passi-

vation by a-SiOx:H, for the Si–Hx bonds [7], crystalline

quality [8] also changed during the thermal processing. In

order to understand the performance and the mechanism

more clearly, some series of samples with widely arranged

temperatures for the as-deposition and post-annealing

processes for the a-SiOx:H films on c-Si wafer were

designed. The samples were analyzed with Spectroscopic

Ellipsometry (SE) and Fourier Transform Infrared Spec-

troscopy (FTIR), in order to understand the influence the

temperature of deposition and post-deposition annealing

have on the property and performance of the a-SiOx:H

films more unequivocal.
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2 Experimental

The silicon wafers used are n type Czochralski

monocrystalline Si (100), with a thickness of 180 lm,

resistivity of 3 X cm and a size of 40 9 40 mm2. Before

passivation layers deposition, the wafers were cleaned by

acetone, then etched about 25 lm each side by KOH

solution (20 wt%, 85 �C) for 20 min, then cleaned by SC1

solution (80 ml H2O2 ? 80 ml NH4OH ? 400 ml H2O,

80 �C) for 10 min and SC2 solution (80 ml H2O2 ? 80 ml

HCl ? 400 ml H2O, 80 �C) for 10 min, last dipped in HF

solution (2 vol%) for 1 min to removing the native oxide

layers.

The passivation layer is hydrogenated amorphous sili-

con sub-oxides (a-SiOx:H) on both sides of the n-Cz-Si

wafers by AC glow discharge of plasma (13.56 MHz, CCP

type) enhanced chemical vapor deposition (PECVD, HW-

PECVD-1E, Weina Ltd. China), and the source gases are

silane (SiH4), hydrogen (H2) and carbon dioxide (CO2). All

the thicknesses of the deposited layers are about 100 nm.

Gas flux ratios are SiH4:H2:CO2 = 3:15:0.6 (sccm), air

pressure is 22 Pa; power is 12 W, 10 min.

After deposition, some samples are post-annealed for

1 h by Halogen-lamp heating furnace, in argon atmosphere

and under atmospheric pressure.

The lifetime of the samples before and after the post-

annealed processes was tested by RF-PCD method, Sinton

WCT-120. The hydrogen bonds structure of the passivation

layers was tested by Fourier infrared spectrometer (FTIR,

Nicolet 380). The imaginary dielectric factor of the wafers

was analyzed by Spectroscopic Ellipsometry (Semilab,

GES5-E).

3 Results and discussions

3.1 The influence of the post-deposition annealing

temperature

The post-deposition annealing temperatures of each wafer

are 200, 250, 275, 300, and 350 �C respectively. The

effective lifetime of an as-deposited wafer and all the post-

annealed wafers are shown in Fig. 1.

Figure 1 shows the results of effective lifetime of n-

Cz-Si wafers passivated by a-SiOx:H, with and without

post-annealing. Figure 1a shows that passivation effect of

a-SiOx:H deposited at room temperature is poor. The

post-deposition annealing has great effect on improving

the passivation effect of the a-SiOx:H layers as Fig. 1b,

for the lifetime of the post-annealed wafer increases

greatly. The maximum value of the lifetime of the wafers

belongs to the wafer post-annealed at 275 �C, the value is

1371 ls (at a minority carrier density of 1 9 1015 cm-3).

For calculation of surface recombination velocity (SRV)

Seff, it is assumed that both surfaces provide a sufficiently

low recombination velocity (less than D/4w [9, 10], D is

the diffusion coefficient, about 35 cm2/s, w is the thick-

ness of wafer, about 180 lm), and have the same values

Seff = Sfront = Sback, as the sample structure is symmetric.

The surface recombination velocity can be deduced by

Eq. (1) [5]:

Seff ¼
1

seff
� 1

sbulk

� �
� w

2
ð1Þ

In which w is the wafer thickness, sbulk is set infinity (an

upper limit of the SRV is calculated for the case that no

SRH recombination is considered by setting sbulk ? ? in

Eq. 1). From Eq. (1) Seff of the wafer annealed at 275 �C is

4.7 cm/s. The results of imaginary part of dielectric con-

stant (e2) and Raman spectra of samples are shown in

Fig. 2.

Figure 2a shows e2 spectra of n-Cz-Si passivated by a-

SiOx:H at room temperature without and with annealing.

The spectra of the samples with annealing temperature

below 300 �C show peaks at about 3.6 eV, are typical of

amorphous silicon characteristic spectrum [8, 11, 12]. The

Raman results of Fig. 2b show that a-Si peak of the films

covered wafers appear obviously around 480 cm-1 com-

pare to that of the naked Si wafer, but the peak density of

the Si–O–Si bond does not depend on a-SiOx:H film. It is

unambiguous that the films in this series are amorphous

silicon structure without detectable SiO2 structure [5, 10].

With the increasing of the thermal annealing temperature,

e2 peak slightly shifts to higher energy, but significantly

turns to lower energy when the temperature is higher than

300 �C. It can be explained that the SiHn stretching modes

change in the films [13, 14], the FTIR spectra and

microstructure parameter R*of the samples are fitted by

‘‘multiple peak fit’’ function of Origin in Fig. 3. The R*

defined by Eq. (2) [15]

R� ¼ I2090

I2000 þ I2090
ð2Þ

Figure 3 is SiHn of the samples with different post-de-

position annealing temperatures and microstructure

parameters R*. The ratio of the fitted peaks area can be

characterized with the relative content of SiH and SiH2

bonds in the a-SiOx:H films [2]. The peaks are at 2000 and

2090 cm-1 corresponds to SiH bond and SiH2 bond,

respectively. Because of oxygen attachment, the peak of

SiH2 shifts to a higher wave number [6]. Figure 3 can infer

that the passivation effect is the best when R* at an

appropriate proportion.
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(a) (b)

Fig. 1 The effective lifetime of n-Cz-Si wafers passivated by a-SiOx:H. a As-deposited; b post-annealed at different temperatures

(a) (b)

Fig. 2 a The e2 of the annealed wafers with different annealing temperature; b Raman spectra

(a) (b)

Fig. 3 a SiHn of the samples

with different post-annealing

temperatures; b microstructure

parameters R*
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3.2 The co-operation effect of the substrate-heating

during the deposition process and the post-

deposition annealing process

This series of samples is deposited at different substrate

heating temperatures, and post-annealed at 275 �C for 1 h.

The substrate heating temperature during film deposition

are 25, 100, 180, 200, 220, and 250 �C, respectively. The
tested effective lifetimes of the wafers as-deposited and

post-annealed are shown in Fig. 4.

Figure 4 shows the effective lifetime of the post-an-

nealed n-Cz-Si wafers with passivation layers at 275 �C.
The insert shows the lifetime of the same wafers with a-

SiOx:H layers as-deposited at different substrate tempera-

tures. It is clear that with the substrate temperature

increasing, the effective lifetime increases firstly and then

decreases, the optimum passivation effect is gained at the

substrate temperature of 220 �C with the highest lifetime of

747 ls (at a minority carrier density of 1 9 1015 cm-3).

The result is similar with the optimum temperature 210 �C
in Ref. [9].The post annealing process at 275 �C has great

effect on improving the effective lifetime of most of the

samples significantly. The highest effective lifetime value

is 2135 ls (at a minority carrier density of 1 9 1015 cm-3)

and belongs to the sample with the films deposited at

100 �C. Since the thickness of the wafer is 130 lm, the

surface recombination velocity is 3.1 cm/s according to the

Eq. (1), which is good enough for silicon heterojunction

solar cells. The e2 and Raman spectra of samples are shown

in Fig. 5.

Figure 5a is the e2 spectra of n-Cz-Si wafers before and

after the post-annealing deposited a-SiOx:H films with

different temperature. All the spectra show a broad peak at

around 3.6 eV, which shows that thin films in the samples,

are amorphous silicon structured [8, 16]. The hollow

symbols in Fig. 6 represent the e2 spectra of wafers after

(a) (b)

Fig. 4 a The lifetime of the same wafers with a-SiOx:H layers as-deposited at different substrate temperatures; b annealed at 275 �C

(a) (b)

Fig. 5 a The e2 spectra of samples before and after the post-annealing process; b the Raman spectra of samples after post-annealing
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annealing with 275 �C. It is shown that the amplitude and

peak position decrease with increasing post-annealing

temperature, significantly for the samples of deposited

temperature higher than 200 �C. It can be explained that

with the increasing of temperature, these trends are con-

sistent with hydrogen in the films reducing at higher tem-

peratures [15]. From the Raman spectra of the samples

shown in Fig. 5b, it can be further clarified that the films on

the samples are mainly amorphous silicon structure. The

SiHn microstructure and its parameter R*of samples are

shown in Fig. 6.

Figure 6 indicate that SiHn bonds composition and

microstructure parameter R* change with deposition tem-

perature increasing, although the samples underwent the

same post-annealing process. According to Figs. 3 and 6,

passivation effect is optimum when R* is about 0.67, the

performance of a-SiOx:H films is highly sensitive to the

content of H and SiHn bonds composition [13, 17], the H

content and SiHn bonds composition of a-SiOx:H film is

closely affected by the thermal processes, both deposition

and post-annealing.

4 Conclusions

In order to understand the effect of temperature of the

deposition and post-annealing processes on intrinsic a-

SiOx:H film for n-Cz-Si wafer passivation, three series

samples with different film deposition temperature or/and

different post-annealing temperature are prepared and ana-

lyzed. It can be concluded that: (1) the structure and passi-

vation effect of a-SiOx:H films on n-Cz-Si wafer are

sensitive to the temperature of the deposition and post-an-

nealing processes, the optimum scheme is depositing at

100 �C and post-annealing at 275 �C; (2) the microstructure

parameter R*of the a-SiOx:H is *0.67 for the samples with

the optimum passivation effect.
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