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ABSTRACT
Nitriding is a cost-effective method to realize simultaneous improvements in 
tensile and fatigue properties and resistance to abrasion and corrosion. Previous 
studies reported that nitriding pure Fe enhances tensile strength by ~ 70% and 
fatigue limit by ~ 200%. It is due to the increase in surface hardness caused by the 
formation of γ′(Fe4N) and ε(Fe2-3N) nitrogen-containing intermetallic compound 
phases. However, the intermetallic compound layer is prone to brittle-like 
cracking. To better design nitrided steels, it is crucial to identify the crack growth 
mechanisms via analysis of the microstructural crack growth paths within the 
~ 4–6 µm thick nitride layer. In the current work, we statistically evaluate the crack 
propagation behavior in the γ′ Fe4N layer during monotonic and cyclic tensile 
deformation in nitrided low-carbon steel (0.1 wt% C). Since nitriding typically 
results in the formation of columnar grains, the effect of morphology needs to 
be clarified. To this end, the steel was shot-peened and subsequently nitrided 
to promote equiaxed nitride grains morphology (~ 16% increase). Crack growth 
paths were comparatively evaluated for multiple cracks, and no significant effect 
of nitride morphology was observed. {100}γ′ is the predominant transgranular 
crack path in the monotonic tensile tested specimen, followed by {111}γ′. It is 
despite the elastic modulus of {111}γ′ < {100}γ′. This contrary behavior is explained 
by {100}γ′ plane having the lowest surface energy (density functional theory 
calculations). In the cyclic tensile loaded specimen, experiments revealed that 
transgranular cracking along {100}γ′ (cracking via symmetric dislocation emission) 
or {111}γ′ (slip plane cracking) is equally likely.
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GRAPHICAL ABSTRACT 

Introduction

Surface hardness is crucial for material life associated 
with metal fatigue and abrasion [1–3]. Fatigue life in 
steels is predominantly controlled by fatigue crack 
initiation at the surface and subsequent small crack 
growth in a microstructural scale (within 1 mm) [3–5]. 
Therefore, surface modifications by thermal and 
mechanical treatment have been attempted to improve 
the steel surface [6–8]. One of the most promising and 
cost-effective treatments is nitriding, which realizes 
simultaneous improvements in resistance to fatigue 
and abrasion owing to a significant increase in surface 
hardness [9, 10]. Earlier studies have reported that 
nitriding of pure Fe can enhance the ultimate tensile 
strength [11] and fatigue limit [12–14] (failure strength 
of 107 cycles) by ~ 70% and ~ 200%, respectively. The 
increase in surface hardness is owing to the formations 
of γ ′ (Fe4N) and ε (Fe2-3N) nitrogen-containing 
intermetallic compound phases [15, 16].

Yet, there are some challenges in nitrided steels. 
Brittle-like tensile cracking occurs in the intermetal-
lic compound layer or at its interface to the matrix 
when high stress is loaded [17, 18]. Furthermore, the 
pores arising from the degassing of nitrogen (due to 

the decomposition of iron-nitride phases into N2 gas 
and Fe at higher temperatures) act as fatigue crack 
initiation sites [17, 19]. Therefore, in addition to crack 
initiation, fatigue crack growth behavior must also be 
controlled to endow robust resistance to fatigue. In 
particular, the small fatigue crack growth behavior 
in the thin nitride layer with a thickness of around 
4–6 µm must be well understood. A crucial feature of 
the small fatigue crack growth is the microstructural 
growth path [20]. Specifically, the crystallographic 
information enables the identification of the crack 
growth mechanisms [21]. For instance, when crack 
growth via symmetrical dislocation emission at the 
crack tip, the crack growth path is mid-plane of the 
two symmetrical slip planes [22–25]. In addition, when 
a persistent slip at a crack tip causes crack growth, the 
crack growth path is the slip plane [25–27].

Previously, crack propagation behavior within the 
γ′ Fe4N intermetallic compound layer in nitrided ultra-
low carbon steel (0.008 wt% carbon) was reported [17, 
18]. {100}γ′ and {111}γ′ planes were identified as the 
predominant crack growth paths in the monotonic 
and cyclic tests, respectively [17, 18]. While these are 
pioneering studies, the following critical aspects still 
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need to be understood, which is the aim of the current 
work:

1.	 Steels designed for engineering applications 
typically contain carbon concentration ≥ 0.1 wt%, 
hence, the corresponding crack propagation 
behavior needs to be studied.

2.	 Since crack propagation occurs with a mixture of 
multiple growth mechanisms, statistical data of 
crystallographic crack paths is required for a deep 
understanding of the small crack growth behavior.

3.	 During nitriding, grain orientations with the fast-
est growth rates will grow preferentially, resulting 
in a columnar morphology [28]. The effect of such 
a morphology needs to be evaluated.

4.	 First-principles calculations by Takahashi et al. [29] 
demonstrated that in γ′ Fe4N, the elastic modulus 
of ⟨111⟩γ� is the lowest, and that of ⟨001⟩γ� is the 
highest. It suggests that the {111}γ′ plane must be 
cracked when a cleavage fracture occurs. On the 
contrary, Koga et al. [17] reported {100}γ′ cleavage 
during monotonic tensile testing in the nitrided 
ultra-low carbon steel. This paradox needs to be 
clarified.

In this study, we aim to understand the crack propa-
gation behavior in the Fe4N intermetallic compound 
layer of nitrided (N) low-carbon steel (0.1 wt% carbon). 
The statistical data of the crack growth paths induced 
by monotonic and cyclic tensile loading are compara-
tively examined through electron backscatter diffraction 
(EBSD) analysis for multiple cracks. To study the effect 
of nitride grain morphology on the crack growth mecha-
nisms, shot peening and subsequent nitriding treatment 
(SN steel), which results in relatively fine grain size and 
equiaxed grain morphologies [30–33], are performed on 
the same low-carbon steel. Then, identical analyses are 
conducted in the nitrided layer of SN steel and com-
pared to the specimen without shot peening (N steel).

Methods and materials

Materials and processing

The chemical composition of the low-carbon steel used 
is presented in Table 1. Both N and SN steels were 
annealed for 900 s at 1223 K. Annealing was followed by 
water quenching. Tensile specimens for monotonic and 
cyclic testing were cut along the rolling direction (RD). 
The tensile specimens have a gauge length of 30 mm, 
a width of 4 mm, and a thickness of 2 mm. Detailed 
sample dimensions have been provided elsewhere [17]. 
Shot peening was carried out in an air blast shot peening 
machine (Fuji Manufacturing). Soda-lime glass beads 
with 550 HV hardness and a mean diameter of 53 µm 
were used. Shot peening was performed at an injection 
pressure of 0.4 MPa with 200% coverage. Subsequently, 
the specimens were subjected to gas nitriding at 843 K 
for 18 ks (5 h) in an atmosphere of NH3, N2, and H2. A 
nitriding potential (KN) of 0.35 Pa−0.5 was chosen based 
on the Leher diagram [19] to selectively generate the 
γ′ nitride layer. Post nitriding at 843 K, the specimens 
were air-cooled (~ 19 K min−1) to ambient conditions. 
The nitriding process is schematically depicted in Fig. 1.

Monotonic and cyclic tensile test

Both the monotonic and cyclic tensile loading experi-
ments were conducted using a Shimadzu Autograph 

Table 1   Chemical 
composition of the low-
carbon steel (weight %)

C Si Mn P S Ni Cr Fe

0.1 0.19 0.34 0.0027 0.0022 0.05 0.12 Balance

Figure 1   Schematic of the nitriding process to selectively gener-
ate the γ′ nitride layer.
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AG-20KNIST machine. The tensile test was performed 
at a strain rate of 2.8 × 10–4  s−1 (crosshead speed of 
0.5 mm/min). Cyclic loading tests (force control) were 
performed with a triangular waveform under a stress 
rate of 1 kN s−1 and a stress ratio of 0.1. The maximum 
stress in the cyclic loading tests corresponds to the 
yield stress (measured from monotonic tensile stress) 
of N and SN steels, 563 MPa and 583 MPa, respec-
tively. The cyclic tensile tests were interrupted after 
10,000 cycles (no necking observed), and the micro-
structure was characterized.

Characterization

The cross-section (perpendicular to transverse direc-
tion-TD) was mechanically polished to perform EBSD 
and electron channeling contrast imaging (ECCI). The 
EBSD and ECCI studies were carried out in a Carl 
Zeiss Merlin field emission scanning electron micro-
scope (FE-SEM) equipped with an EDAX Digiview 
5 EBSD detector. Typically, defects such as disloca-
tions and stacking faults appear with bright contrast 
in ECCI (when the grain is in channeling condition) 
[34]. EBSD data was analyzed using OIM Analysis 7 
software, and only data points with confidence index 
value ≥ 0.1 were considered. The grain size was esti-
mated from EBSD data using the intercept length 
method (edge grain included as half grains) over a 

width of 200 μm and 248 μm for N steel and SN steel, 
respectively. To assess the morphology of the Fe4N 
grains, the grains are approximated to an ellipse; the 
grain is identified as equiaxed if the ratio of the minor 
axis to the major axis (aspect ratio) is > 0.4. Since the 
EBSD step size was 40 nm, only grains with grain size 
> 100 nm were considered for the aspect ratio analysis. 
No edge grains were considered for the aspect ratio 
analysis.

Density functional theory (DFT) calculations

The density functional theory (DFT) calculations were 
performed to obtain the surface energy of low-index 
planes in γ′-Fe4N. Three surfaces were analyzed: (100), 
(110), and (111) surfaces. The surface energy was 
calculated by the following equation:

where Esurface, represents the surface energy per unit 
area. Eslab is the total energy of the slab model for a 
specific surface orientation, while Ebulk, corresponds to 
the total energy of the Fe4N in its bulk phase. The term 
A denotes the surface area of the slab model. The cal-
culation of surface state was performed with the slab 
model shown in Fig. 2. We employed the generalized 

(1)E
surface

=
E
slab

− E
bulk

2A

.

Figure 2   Slab models of 
Fe4N a (100), b (110), and 
c (111) surfaces. The purple 
spheres represent iron (Fe) 
atoms, while the blue spheres 
indicate nitrogen (N) atoms.
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gradient approximation type Perdew–Burke–Ernzerho 
(GGA-PBE) exchange–correlation functional, along 
with the DNP basis set and effective core potentials. 
Brillouin zone integrations were performed with the 
k-point at a grid spacing of < 0.05 Å−1. All DFT calcula-
tions were performed with DMol3 [35, 36].

Results and discussion

Initial microstructure: effect of shot peening

Table 2 summarizes the grain size, thickness, and mor-
phology (percentage of equiaxed grains) of the Fe4N 
layer in N and SN steels. The Fe4N compound layer 
thickness (averaged over 32 regions using secondary 
electron imaging) for N and SN steels is 5.40 µm and 
4.68 µm, respectively. This observation is contrary 
to the reports in the literature, wherein shot peen-
ing enhanced the nitride layer thickness owing to 
enhanced N diffusion due to grain refinement and 
plastic deformation at the surface [30, 32, 37]. How-
ever, understanding this phenomenon is beyond the 
scope of the present work.

While negligible pores (or voids) were present in the 
compound layer in the N steel, a significant number 
of pores were observed close to the surface in the SN 
steel (Fig. 3). This observation contradicts the results 
of Kikuchi and Komotori [38], wherein they observed 
that pre-treatment of fine particle peening (FPP) sup-
pressed the formation of pores in the compound layer. 
It was attributed to the FPP-induced depletion of Cr 
in the compound layer [38, 39]. However, the Cr con-
centration in the low-carbon steel investigated in the 
current work (Table 1) is significantly lower. Schwarz 
et al. [40] have observed that while pore formation was 
absent in single crystalline pure Fe, pores developed 
along grain boundaries in polycrystalline pure Fe 
and Fe-based binary alloys. Schwarz et al. [40] attrib-
uted the pore formation to grain boundaries acting 
as nucleation agents for N2 gas-filled pores. Thus, it 
is likely that in the absence of significant Cr content, 
the grain refinement caused by shot peening promotes 
pore nucleation.

To ensure statistical robustness, grain size and mor-
phology information (summarized in Table 2) of the 
nitride layer was extracted from 200 µm and 248 µm 
long EBSD scans for N and SN steel, respectively. 
Representative inverse pole figure (IPF) map of the 
γ′-Fe4N layer for N and SN steel is shown in Fig. 4a, 
b, respectively. We observe two prominent effects of 
shot peening on the Fe4N layer: (i) reduction in grain 
size and (ii) increase in the fraction of equiaxed grains. 
The reduction in Fe4N grain size due to shot peening 
is consistent with earlier findings [32]. Previous stud-
ies demonstrated that for pure Fe, γ′ Fe4N1−x initially 
nucleates at the Fe grain boundaries at the surface, 
subsequently growing laterally into the Fe grains [28, 

Table 2   Grain size and morphology of the Fe4N layer in N and 
SN steels

Grain size (µm) 
(intercept length)

Equiaxed grains 
(area fraction %)

Compound 
layer thickness 
(µm)

N steel 0.412 60.7 5.40 ± 0.44
SN steel 0.318 76.8 4.68 ± 0.67

Figure 3   Enhanced void for-
mation in the compound layer 
(close to the surface) of SN 
steel compared to N steel.
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41]. Since shot peening results in grain refinement [30, 
32, 37], the nucleation sites for γ′ Fe4N1-x nitride would 
enhance, and the area available for lateral growth of 
the nucleated nitride would decrease. This results in 
both a reduction in grain size and the promotion of 
equiaxed morphology in the Fe4N layer [28]. Competi-
tive growth between nitride nanograins of different 
orientations occurs during the thickening of the nitride 
layer [28, 42]. Grains with orientations corresponding 
to the fastest growth rates will grow preferentially, 
resulting in a mixed morphology of columnar and 
equiaxed Fe4N grains in the SN steel [28].

Crack propagation during monotonic tensile 
testing

Microstructural observations within the homoge-
neous deformation region (outside necking) post 
monotonic tensile fracture are shown in Figs. 5 and 
6. ECC micrographs in Fig. 5a, a’ indicate the colum-
nar Fe4N microstructure in N steel. Figures 5b, c and 
6a–e show the EBSD analysis results of crack propa-
gation paths during monotonic tensile testing in N 
and SN steels, respectively (evaluated from seven 
microcracks). We report the frequency of occurrence 
of each crystallographic crack path (Figs. 5c, 6e). Two 

Figure 4   Representative inverse pole figure (IPF) maps of the γ′-Fe4N layer for a N and b SN steel illustrating the decrease in grain 
size and increase in the formation of equiaxed grains in SN steel.

Figure  5   Microstructural observations in the  homogeneous 
deformation region (outside necking) after monotonic tensile 
fracture. ECC micrographs illustrate the a columnar Fe4N grains 
in the N steels, and a’ the presence of dislocations and stacking 

faults formed during monotonic tensile testing. b Phase map and 
b’ corresponding inverse pole figure (IPF) map around a micro-
crack formed in the N steel. c Frequency of occurrence of each 
crack path (seven microcracks were investigated).
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transgranular γ′-Fe4N cleavage planes are consid-
ered, namely {100}γ′ and {111}γ′ [17]. ‘Neither’ refers 
to the scenario wherein the transgranular crack does 
not correspond to either of the two planes (likely 
caused by the voids). Since the indexing of the crack 
path is based on two-dimensional EBSD trace anal-
ysis, there exist occasional cases wherein the trace 
of the cleavage plane corresponds to either of {100} 
and {111} planes (for instance, when the crack path is 
along < 011 > ). Such instances are labeled as ‘Either.

Grain boundary (GB) has not been considered as 
a crack pathway for monotonic specimens. This is to 
avoid the overestimation of intergranular cracking. 
The width of the majority of the cracks investigated 
in monotonic tensile samples is ≥ 1 μm (Fig. 5a). Occa-
sionally, we observed fine cracks in the monotonic 
tensile specimen wherein the width was ≤ 100  nm 
(possibly caused by the voids). For instance, a crack 
propagating towards the surface is shown in Fig. 6. 
A fine transgranular crack adjacent to a GB is high-
lighted with a white arrow in Fig. 6d. When the crack 
width is ~ 1 μm, a similar transgranular crack adjacent 
to a GB can be mis-indexed as intergranular cracking, 
causing an overestimation of GB cracking. It is due to 
the (i) preferential material removal at the edge during 

polishing and (ii) limited spatial resolution of EBSD 
(~ 30 nm) [43].

We observed that for both N steel and SN steel, 
the predominant transgranular crack path for the 
monotonic tensile specimen is {100}γ′, followed by 
{111}γ′ plane. Previously, Koga et al. [17] reported 
{100}γ′ cleavage during monotonic tensile testing. 
Koga et al. [17] noted that it contradicts the elastic 
anisotropy results by Takahashi et  al. [29] (E111 
(lowest) < E110 < E001, Table  3) that were obtained 
from first-principles calculations. Based on their 
experimental results, Koga et al. [17] concluded that 
E001 should be the lowest in γ′-Fe4N and further 
inferred that the elastic modulus behavior of γ′-Fe4N 
is identical to γ-Fe. In the current work, we propose an 
alternative explanation for {100}γ′ cleavage that does 
not contradict the density functional theory (DFT) 
results of Takahashi et al. [29].

The fracture toughness (KIC) of a brittle material 
in plane strain condition based on Griffith’s theory is 
typically estimated by [46, 47]:

(2)K
IC

=

√
2E�

s

1 − v
2

Figure 6   a Image quality map, b Phase map, c Grain reference 
orientation deviation (GROD) angle map, and d IPF map of a 
representative microcrack in the Fe4N layer in the SN steel after 
monotonic loading. The white arrow indicates a crack propagat-

ing adjacent to the GB. b The frequency of occurrence of differ-
ent crack paths (evaluated from EBSD studies on seven microc-
racks) .
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wherein E is Young’s modulus in the plane normal 
direction to the cleavage plane, �

s
 is the fracture sur-

face energy of the cleavage plane, and v the Poisson’s 
ratio. v for γ-Fe and γ′-Fe4N is taken to be 0.376 [45] 
and 0.36 [29], respectively. It has to be noted that the 
elastic anisotropy of FCC γ′-Fe4N is contrary to that 
of FCC Fe [29, 48]. The directional dependence of elas-
tic modulus in Fe4N and γ-Fe (FCC Fe–15 Cr–15 Ni) 
obtained from ab initio calculations by Takahashi et al. 
[29] is provided in Table 3. The surface energy of low-
index surfaces in γ-Fe using DFT-based calculations 
was reported by Yu et al. [44] as shown in Table 3. 
However, similar data for the γ′-Fe4N system was not 
available in the literature. To this end, we calculated 
the surface energies of low-index surfaces in γ′-Fe4N 
using DFT (“Density functional theory (DFT) calcu-
lations” section). The surface energies follow �100

s

 < 
𝛾110
s

< 𝛾111
s

 . Based on Eq. 2, fracture toughness exhibits 
the opposite trend with K111

IC

 < K110

IC

< K
100

IC

.
It is important to note that Eq. 2 is only applicable 

for elastic materials that undergo brittle fracture. We 
observed the presence of dislocations and stacking 
faults in Fig. 5a’ (which is consistent with previous 
report by Koga et al. [18]). Furthermore, the local-
ized plastic deformation in the γ′-Fe4N layer during 
crack propagation is evident from the grain refer-
ence orientation deviation (GROD) angle map [49], 
as shown in Fig. 6c. This indicates that the assump-
tion that plasticity is absent is incorrect. Linear 
elastic fracture mechanics (LEFM) approximation 
(Eq. 2) is valid when the crack tip plastic zone is 
small compared to the crack length [50]. However, 
in the present scenario maximum possible crack 
length is < 6 μm (nitride layer thickness), further 
explaining the limitation of the LEFM approach. The 
preferred cleavage plane {100}γ′ corresponds to the 
plane with lowest surface energy. Hence, it can be 

inferred that the cleavage during monotonic tensile 
testing is predominantly determined by the plane 
with lowest surface energy. It can be noted that in 
addition to {100}γ′ cleavage, we also observe {111}γ′ 
cracking which can be attributed to the lowest K

IC
.

Crack propagation during cyclic tensile testing

Fatigue crack initiation in nitrided steels can involve 
the following mechanisms:

(i)	 Surface crack formation [51, 52].
(ii)	 Crack initiation at the interface of the compound 

layer and the base material due to the local heter-
ogeneity caused by the difference in elastic modu-
lus, hardness, and plastic deformation behaviour 
[53, 54].

(iii)	 Crack initiation at the pores/voids formed during 
nitriding [17, 55, 56].

(iv)	 Formation of fresh cracks ahead of a crack tip [57, 
58].

(v)	 Sub-surface crack initiation at inclusions [59, 60].

However, the detailed statistical understanding of 
the crack initiation mechanisms is beyond the scope of 
the current work and constitutes future work.

Figure 7a–c show a discontinuous crack propagat-
ing towards the surface within the γ′-Fe4N layer in an 
SN steel subject to cyclic tensile tests. The GROD angle 
map of the crack tip region shown in Fig. 7d dem-
onstrates that the fatigue crack propagation involves 
plasticity evolution. This observation is consistent 
with previous transmission electron microscopy inves-
tigations of the γ′-Fe4N layer after cyclic tests, which 
showed the crack propagation mechanism involved 
plastic deformation at the crack tip [18]. These results 

Table 3   Summary of elastic 
anisotropy in plane normal 
direction, surface energies, 
Poisson’s ratio, and fracture 
toughness ( K

IC
 ) for {100}, 

{111}, and {110} planes in 
γ-Fe and γ′-Fe4N

Plane Elastic modulus in 
plane normal direc-
tion (GPa)

Surface energy 
(J m−2)

Poisson’s ration K
IC

(MPa m½)

γ-Fe {100}γ 103 (E001) [29] 2.13 [44] 0.376 [45] –
{111}γ 308 (E111) 2.08
{110}γ 206 (E110) 2.15

γ′-Fe4N {100}γ′ 230 (E001) [29] 1.94 This work 0.36 (This work) 0.716
{111}γ′ 127 (E111) 2.15 0.560
{110}γ′ 143 (E110) 2.12 0.590
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indicate that the crack propagation occurred via cyclic 
plasticity evolution at the crack tip.

When plasticity controls the fatigue crack growth, 
the crack growth is recognized to occur through two 
representative mechanisms. Figure 8a illustrates a 
schematic of fatigue crack propagation via sym-
metrical dislocation emission at the crack tip. The 
crack growth paths along {110}γ′ and {100}γ′ planes 
are the mid-plane of the two symmetrical {111}γ′ 
slip planes [22–25]. The fatigue crack propagation 
on {111}γ′ (Fig. 8b) is generally interpreted as slip 

plane cracking caused by persistent slip at a crack tip 
[25–27]. The crack propagation on the slip plane typi-
cally occurs when the crack length is smaller than the 
microstructure size, such as grain size.

The crack growth along {110}γ′ and {100}γ′ planes 
in Fig. 9a, c occurs via the symmetrical dislocation 
emission at the crack tip (Fig. 8a) [22–25]. The fatigue 
crack propagation occurs on {111}γ′ (Fig. 9a, c) corre-
sponds to the slip plane cracking mechanism (Fig. 8b) 
[25–27]. Figure 9d, e show the frequency of occurrence 
of crack paths after cyclic tensile testing in N steel 

Figure 7   a Secondary electron (SE) image, b IPF map, c Phase 
map, and d Grain reference orientation deviation (GROD) angle 
map of a discontinuous microcrack within the Fe4N layer in the 

SN steel after cyclic loading. Black boxes in a, b correspond to 
the GROD angle map in d.

Figure  8   Schematic of fatigue crack propagation via a symmetrical dislocation emission at the crack tip and b slip plane cracking 
(adapted from Ju et al. [23]) in Fe4N.
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and SN steel, respectively. It is based on EBSD inves-
tigations of ten microcracks for each N and SN steel. 
‘Either’ is a label for instances wherein the crack path 
could correspond to either {100}γ′ or {111}γ′. If the crack 
plane did not correlate to either of {100}γ′ or {111}γ′, we 
then checked for {110}γ′ cracking. ‘Neither’ refers to 
the cases wherein the transgranular crack path does 
not match with any of the three planes ({100}γ′, {111}γ, 
and {110}γ). It is likely that a transgranular crack in 
the case of ‘neither’ is caused by the coalescence of 
discontinuous cracks and coalescence of cracks with 
pre-existing voids (due to localization of plasticity). 

Further in-situ and quasi-in-situ experimental inves-
tigations are required to verify this hypothesis.

For both N and SN steels, we observe that trans-
granular cracking along {100}γ′ or {111}γ′ plane is 
equally likely (Fig. 9d, e, Fig. 10). Since the width of 
fatigue cracks for the N and SN steel is ≤ 200 nm, we 
can index and report GB cracks with reasonable confi-
dence (unlike monotonic testing). It can be noted that 
intergranular crack propagation is the predominant 
fatigue crack propagation pathway for both N and SN 
steels (Fig. 9d, e). As discussed in “Initial microstruc-
ture: effect of shot peening” section, Schwarz et al. [40] 

Figure 9   a Representative IPF map of crack propagation in cyclic 
testing in the N steel. b ECC micrograph of a microcrack in SN 
steel after cyclic tensile testing. (b’) ECC micrograph at a higher 
magnification revealing the presence of stacking faults and disloca-
tions (black box in b).The red box corresponds to the representa-

tive IPF map with various crack paths in c. d The frequency of 
occurrence of different crack paths in N steel after cyclic tensile 
loading (evaluated from EBSD studies on ten microcracks). e The 
frequency of occurrence of different crack paths in SN steel after 
cyclic loading (evaluated from EBSD studies on ten microcracks).
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reported that the grain boundaries act as nucleation 
sites for N2 gas-filled pores. Thus, it is likely that such 
grain boundary void formation results in enhanced 
intergranular cracking. However, the effect of pre-
existing voids on the crack growth pathways cannot 
be clarified via post-mortem investigations; it neces-
sitates in-situ (or quasi-in-situ) studies and constitutes 
future work.

Conclusions

Figure 10 summarizes the statistical assessment of the 
cracking behavior in the γ′ Fe4N layer during mono-
tonic and cyclic tensile deformation in a nitrided (N) 
and shot-peened and subsequently nitrided (SN) low-
carbon steel. Crack growth paths were comparatively 
evaluated through EBSD analysis for multiple cracks.

1.	 SN steel consisted of ~ 16% more equiaxed nitride 
grains when compared to N steel. Additionally, 
enhanced void formation within the compound 
layer (near the surface) was observed in the SN 
steels. Since no considerable difference exists in the 
crack paths between N and SN steels, it is likely that 
the effect of nitride morphology and pores within 
the compound layer on the crack growth paths is 
negligible.

2.	 Both elastic modulus and LEFM-based fracture 
toughness of {111}γ′ are lower when compared to 
{100}γ′. However, {100}γ′ is the predominant trans-

granular crack path in the monotonic tensile tested 
specimen, followed by {111}γ′. This contrary behav-
ior is explained by {100}γ′ plane having the lowest 
surface energy (obtained from DFT calculations).

3.	 A predominant intergranular fracture was observed 
in the cyclic tensile loaded specimen. Experiments 
revealed that transgranular cracking along {100}γ′ 
(cracking via symmetric dislocation emission) or 
{111}γ′ (slip plane cracking) is equally likely.

A material’s fatigue performance is dependent 
on both crack initiation and growth. This study pre-
sents a comprehensive understanding of the crack 
growth pathways. In addition, a statistical under-
standing of the crack initiation mechanisms is neces-
sary to design nitrided steels. To this end, in-situ or 
quasi-in-situ experiments can help elucidate the role 
of microstructure on crack initiation. It is a topic of 
future work.
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