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ABSTRACT
In the face of current energy and environmental challenges, electrochemical 
storage devices emerge as a promising alternative. Specifically, supercapacitors 
are highly valued for their exceptional ability to deliver rapid responses and 
exhibit high-power capabilities. Although rare-earth compounds have received 
less attention in the electrochemical storage field, the utilization of nanotechnol-
ogy tools allows for precise manipulation of their shape and size, which opens 
new possibilities for developing novel configurations with improved properties, 
presenting previously unexplored applications. Herein, we set a new electrode 
material consisting of nanospheres of gadolinium vanadate (GdVO4) synthesized 
by microwave-assisted hydrothermal method, which was a crucial component 
in preparing nickel foam-based electrodes. The material was thoroughly char-
acterized, revealing interesting properties for energy storage applications. The 
electrode delivered a high specific capacitance of 1203.75 F g−1 at 1 A g−1 and good 
cycling stability after 500 cycles. Then, an asymmetric supercapacitor was per-
formed, reaching 80.63 F g−1 at 1 A g−1 and 130.2 Wh kg−1 of energy density when 
the power density was 2880.18 W kg−1. Thus, this study highlights the potential 
of GdVO4 as an electrode material in electrochemical energy storage applications.

Introduction

Electrochemical storage devices can provide a 
highly effective answer to the growing energy and 
environmental crisis that society faces today [1–3]. 

Although domestic energy utilization is high due to 
the increasing per capita consumption of primary 
energy resources, the industrial segment accounts 
for a large proportion of the total produced energy of 
the world, which prompts assertive energy solutions 
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for this sector [4–6]. In this scenario, alternative 
energy sources such as solar, wind, geothermal, and 
tide energy offer significant advantages, including 
reduced greenhouse gas emissions, enhanced energy 
security, and the potential for long-term sustainabil-
ity [7]. However, fluctuations are inherent to these 
energy sources due to their intermittent nature, which 
demands rapid response energy storage solutions [8]. 
Thus, supercapacitors can leverage the field due to 
their fast response and high-power abilities, stabiliz-
ing the energy supply by enhancing grid stability and 
maximizing the integration of renewable energy into 
our energy systems [9, 10].

Although several studies have been conducted 
on transition metal oxides (such as NiO, Co3O4, and 
MnO2) as electrodes for supercapacitors due to their 
high specific capacitance [10, 11], a research segment 
has been focusing on rare-earth elements. Such com-
pounds tend to offer stable trivalent ions, in which 
their unpaired 4f electrons typically are not involved 
in chemical bondings and could represent unique 
properties for energy storage [12]. Extensive research 
focuses on rare-earth-based materials, mainly rare-
earth oxides, sulfides, hydroxides, and composites. 
These materials have acquired significant attention in 
scientific studies due to their unique properties and 
potential applications in storage systems [13]. Aim-
ing to introduce novel materials or configurations that 
could potentially incorporate rare-earth elements or 
their compounds in supercapacitor technology, recent 
research has been using nanotechnology tools to 
obtain shape and size control over the materials [14]. 
Also, their interaction with well-known ions that pre-
sent storage applications is important, aiming to raise 
properties not observed before.

Vanadium (V) is an abundant occurring element in 
the Earth’s crust [15]. Its ability to exist in multiple 
valence states results in various compounds in nature 
[16], which make vanadium-based materials suitable 
for utilization as electrode materials in supercapaci-
tors. Among several vanadium-based compounds, 
vanadates (VO4

3−) can undergo easily reversible redox 
reactions, which means they can efficiently store and 
release electrical energy through chemical transfor-
mations [17]. Gadolinium (Gd), a member of rare-
earth elements, is not commonly used as a material 
for supercapacitor electrodes itself. However, it finds 
application as a dopant for transition metal oxides or 
as a component of composites prepared with electro-
active polymers [18–20]. Also, gadolinium vanadate 

(GdVO4) is not extensively explored to prepare super-
capacitor electrodes.

Herein, we proposed an innovative preparation of 
an electrode for electrochemical storage comprised 
of well-defined nanospheres of GdVO4 prepared by 
a microwave-assisted hydrothermal (MAH) method. 
The material was fully characterized by field emis-
sion scanning electron microscopy (FE-SEM), X-ray 
photoelectron spectroscopy (XPS), Raman, and X-ray 
diffraction (XRD), giving rise to potential proper-
ties that match unprecedented performance in the 
literature using a Gd-based material. The electrode 
delivered a high specific capacitance of 1203.75 F g−1 
at 1 A g−1. An assembled asymmetric supercapacitor 
was also performed, reaching 80.63 F g−1 at 1 A g−1 and 
130.2 Wh kg−1 of energy density when the power den-
sity was 2880.18 W kg−1.

Experimental section

Sample preparation

GdVO4 nanospheres were synthesized using Gd2O3 
(99.99%, Sigma-Aldrich), NH4VO3 (99.9%, Sigma-
Aldrich), and HNO3 (65%, Synth) as precursors. The 
solutions were prepared as follows: Firstly, Gd(NO3)3 
solution was prepared by dissolving Gd2O3 in concen-
trated HNO3 solution under magnetic stirring at 60 °C. 
Separately, 1.0 mmol of the Gd(NO3)3 was added to 
45 mL of deionized water at 90 °C under stirring. Simi-
larly, NH4VO3 was dissolved in 45 mL of deionized 
water at 90 °C under stirring. Then, the two precur-
sors’ solutions were mixed under constant stirring for 
30 min. This procedure promoted the co-precipitation 
of the amorphous GdVO4 in the reactional mixture. 
This mixture was transferred to a 100-mL Teflon auto-
clave, reaching 90% of its total volume, allowing the 
maximum pressure efficiency. The autoclave was 
finally sealed and placed in the MAH system using 
2.45  GHz microwave radiation with a maximum 
power of 800 W. The reactional mixture was heated 
at 160 °C under a nominal heating rate of 140°/min (at 
800 W) by direct interaction of water molecules with 
microwave radiation and remained under a constant 
pressure of 2.5 bar for 32 min. After that, the autoclave 
was naturally cooled to room temperature. Finally, the 
solid product was water washed several times until 
neutral pH; then, it was dried at 80 °C for 12 h.
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Measurements and characterization

The nanocrystals were structurally characterized 
by X-ray diffraction (XRD) using a D/Max-2000PC 
Rigaku (Japan) diffractometer with Cu Kα radiation 
(λ = 1.5406 Å) in the 2θ range from 10° to 80° at a 
scanning speed of 2°/min in the normal routine. The 
average crystallite size ‘dDS’ was calculated using the 
Debye–Scherrer relation [Eq. (1)]:

where ‘β’ is the full width at half maxima 
(FWHM = 1.518 rad) in radians, ‘2θ’ is the diffraction 
angle in degrees (24.79°), and ‘λ’ is the wavelength 
(1.543 Å) of the X-rays employed.

Micro-Raman spectroscopy was conducted on a 
Horiba Jobin–Yvon (Japan) spectrometer equipped 
with a charge-coupled device (CCD) detector and 
argon-ion laser (Melles Griot, USA) operating at 
514.5 nm and a maximum power of 200 mW. X-ray 
photoelectron spectroscopy (XPS) was performed 
using a ScientaOmicron ESCA + spectrometer with 
a high-performance hemispheric analyzer (EA 125) 
with monochromatic Al Kα (hν = 1486.6 eV) radiation 
as the excitation source. The operating pressure in the 
ultrahigh vacuum chamber (UHV) was 2 × 10–9 mbar 
during analysis. The survey and high-resolution XPS 
spectra used energy steps of 50 and 20 eV, respec-
tively. The morphology and sizes of the nanocrystals 
were observed on a field emission scanning electron 
microscope (FE-SEM) model Inspect F50 (FEI Com-
pany, Hillsboro, OR) operating at 5 kV.

Electrochemical studies

The electrochemical tests were conducted using an 
Autolab PGSTAT302N potentiostat (Metrohm, The 
Netherlands) and the NOVA 2.1.4 software for data 
analysis. A three-electrode electrochemical cell con-
figuration was employed, consisting of an Ag/AgCl 
reference electrode, a platinum wire counter elec-
trode, and a working electrode comprising a nickel 
foam coated with the active material (A = 1.5 cm2). To 
prepare the ink for the working electrode, the follow-
ing procedure was followed: a weight ratio of 8:1:1 
for the active material, carbon black, and a solution 
of PVDF (Poly(vinylidene fluoride), Sigma-Aldrich) 
in N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich) 
was measured using a Kern 410 analytical balance. 

(1)d
DS

=
0.9�

� cos �

Subsequently, this mixture was homogenized for 
10 min in an agate mortar. Then, 20 µL of the result-
ing ink was deposited onto the nickel foam. The elec-
trode was then dried for 4 h at 60 °C and pressed onto 
a nickel rod.

The electrochemical studies were performed in 
KOH 2.0 M electrolyte solution. Cyclic voltammetry 
(CV) was tested at various scan rates: 5, 10, 20, 40, and 
80 mV s−1 at a potential range of 0.2–0.5 V. The gal-
vanostatic charge–discharge (GCD) studies were per-
formed at current densities range from 1 to 15 A g−1. 
To evaluate the stability of the material, a 3100-cycle 
test was performed with electrochemical impedance 
spectroscopy studies (EIS) in a range of 0.1–1000 Hz.

The specific capacitance (F g−1) was calculated from 
the GCD curves using Eq. (2):

where Cs is specific capacitance, I is the current, Δt 
in (s) is the discharge time, ΔV in voltage represents 
the potential drop, and m is the mass of the electrode 
material in mg.

To calculate the Coulombic efficiency (η), Eq. (3) 
was used [21]:

where td is the discharging time and tc is the charging 
time.

The asymmetric cell was performed in a configura-
tion of two electrodes, one working electrode contain-
ing the active material and the other with activated 
carbon. The preparation of both electrodes followed 
the same procedure mentioned above. First, the elec-
trochemical tests were performed with the carbon elec-
trode in the three electrodes’ configuration to obtain 
its current and specific capacitance values. These 
values were used with those of the active material to 
calculate the required amount of activated carbon for 
the electrode to be used in the asymmetric cell tests, 
following the mass/charge, according to Eq. (4) [21]:

where m+− and Q+− mean the mass/charge balance, m 
is the mass (mg),  Cs is specific capacitance, and ΔV 
in voltage represents the potential drop of activated 
carbon and the active material.

(2)Cs =
I × Δt

ΔV ×m

F g
−1

(3)� =
t
d

t
c

× 100 %

(4)
m+

m−
=

Q+

Q−
=

m × Cs × ΔV

m × Cs × ΔV
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The energy density (ED) was calculated using 
Eq. (5) [22]:

where Cs is the specific capacitance (F g−1) obtained 
in the GCD tests for the asymmetric supercapacitor 
and ∆V (V) is the potential range between the cathode 
and anode.

The power density (PD) was obtained with Eq. (6) 
[22]:

where ∆t (s) is the time of discharge of the device. All 
the tests were carried out at room temperature.

Results and discussion

Structural and morphological characterizations

Figure 1 shows the XRD pattern of the GdVO4 nano-
spheres. The material presents a tetragonal system 
with a zircon-type structure and I41/amd space group, 
corresponding to the lanthanide vanadates (LnVO4) 
structure. The reference pattern of pure GdVO4 
(JCPDS card No. 17-0260) was perfectly indexed to the 
experimental phase obtained, and the characteristic 
peak broadening observed was caused by the nano-
metric size of the crystallites [23, 24]. The most intense 
reflection peak observed at 24.9° corresponds to the 

(5)ED =
1

2

⋅ C
s
(ΔV )

2

(6)PD = 3600 ×
ED

Δt

(200) plane in the tetragonal structure. The average 
crystallite size ‘dDS’ was estimated to be around 94 nm, 
similar to the reported ones [24–26].

The structural order in the short range for the 
GdVO4 nanospheres was determined by Raman spec-
troscopy. GdVO4 crystallizes in the zircon-type struc-
ture with space group I41/amd. According to factor 
group analysis, there are 12 Raman active modes at the 
center of the Brillouin zone, as stated by the following 
irreducible representation: Γ = 2A1g + 4B1g + B2g + 5Eg. 
The modes observed in the region 260–1000 cm−1 are 
internal stretching and bending vibrations of the VO4 
tetrahedra, and the modes observed at 119, 154, and 
231 cm−1 are external ones [27]. Figure 2 shows the 
Raman spectra of the GdVO4 nanospheres excited 
at 514.5 nm. Intense and defined nine Raman modes 
are found at 119, 154, 231, 262, 378, 476, 791, 804, and 
866 cm−1, which can be assigned to the B1g, Eg, Eg, B2g, 
A1g, B1g, B1g, Eg, and A1g modes, respectively. They 
agree with the reported literature and confirm the 
structural short-range order of the nanospheres [28].

XPS analysis identified the chemical composition, 
binding energy, and oxidation state of elements on 
the GdVO4 nanospheres’ surface. The binding ener-
gies were obtained by calibrating the spectra through 
the C 1s peak at 285 eV. Figure 3A shows the survey 
XPS spectra of the sample, and it identified Gd 4d, V 
2p, and O 1s orbitals. The C 1s contamination peak 
observed can be ascribed to adventitious hydrocarbon 
from the XPS instrument.

A high-resolution XPS spectrum of each element 
was carried out to analyze the materials further. 

Figure 1   XRD diffraction pattern of GdVO4 nanospheres. Figure 2   Raman spectra of the GdVO4 nanospheres.
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The number of appropriate components was added 
for each spectrum, and a Shirley-type background 
was used for the fitting. The Gd 4d high-resolution 
XPS spectrum is shown in Fig.  3B. The spectrum 
presents two peaks at binding energy (BE) of 142.1 
and 146.9 eV due to Gd 4d5/2 and Gd 4d3/2 orbitals, 
which can be ascribed to the Gd3+ valence state [29, 
30]. The V 2p high-resolution XPS spectrum is shown 
in Fig. 3c. Except for the vanadium oxides, V metal 
gives asymmetric peak shapes in the V 2p region. V 
2p peak has significantly split spin–orbit components 
(Δmetal=7.6 eV), and the splitting Δ-value varies with 
the chemical state (ΔV2O5 = 7.4 eV). Also, FWHM for 
each spin–orbit component is the same, but for V 
2p, the V 2p1/2 component is much broader than the 

V 2p3/2 peak; as a result, the V 2p1/2 peak is much 
shorter than expected. The spectrum was fitted with 
two components at BE of 517.2 and 524.6 eV, corre-
sponding to V 2p3/2 and V 2p1/2,, respectively, which 
can be attributed to the V5+ oxidation state [30]. Also, 
there is no multiplet splitting upon deconvolution, 
as V+5 does not present any unpaired electrons. 
Consequently, these results attest that V+5 has not 
decayed, and other species (V+4, V+3, etc.) are absent 
due to symmetrical peak fit [31]. The O 1s high-res-
olution XPS spectrum is presented in Fig. 3D, which 
was deconvoluted into three peaks. The 530 and 
531.4 eV peaks correspond to V–O and Gd–O bonds 
in a tetragonal lattice of GdVO4, respectively. The 
533.1 eV peak can be ascribed to hydroxyl groups/

Figure 3   XPS spectra of the GdVO4 nanospheres. a survey; b Gd 4d; c V 2p; and d O 1s.
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surface-adsorbed oxygen [32–34]. These findings 
confirmed the successful formation of GdVO4 nano-
spheres and their surface elucidation.

FE-SEM images of GdVO4 nanospheres are shown 
in Fig. 4. The images show regular spherical nano-
particles in the 70–100 nm range. Despite the occur-
rence of some agglomeration resulting from the 
sample preparation process, it is evident that the 
particles exhibit distinct and well-defined spherical 
morphology. This characteristic is advantageous for 
our applications, as alternative morphologies could 
compromise the material’s performance. Moreover, 
the nanospheres demonstrate a uniform surface, as 
anticipated, owing to the favorable influence of the 

pressure and temperature employed in the MAH 
synthesis procedure, which promotes phase purity.

Electrochemical studies

CV and GCD tests were performed to evaluate the 
energy storage properties of the prepared GdVO4 
nanopheres (Fig. 5). The CV curves at different scan 
rates (5–80 mVs−1) are shown in Fig. 5A, demonstrating 
pseudocapacitive characteristics with distinct redox 
peaks within 0–0.5 V [35]. It is possible to observe the 
typical shift on the oxidation peaks for higher poten-
tials with the scan rate increase, followed by reduc-
tion peaks shifted to lower potentials. Considering the 
crystal structure of the material elucidated by XRD 
and the species revealed by XPS, it is believed that the 
charge transfer reaction occurs at the surface of the 
material, which could be represented as:

where x is the mole fraction of intercalated K+ ions. 
It is hypothesized that the presence of VO4

3− com-
ponents in the crystal contributes more significantly 
to electron transfer, owing to their high conductiv-
ity, possessing the ability to enhance the electrode 
capacitance substantially. Even though the shape of 
CV curves is not rectangular at any scan rate, this 
finding can be ascribed to the electrolyte effect and 
some possible contributions of the structure shape. In 
a parallel study, Fend et al. synthesized egg-shaped 
GdVO4 nanospheres using a 1 M H2SO4 electrolyte. 
Their research observed no detectable redox reaction, 
further reinforcing our discussion [28].

The redox peak currents versus the square root 
of the scan rates were plotted to evaluate the charge 
transfer behavior, according to Fig. 5B. A well-fitted 
linear regression with R2 of 0.9985 and 0.9962 for 
the anodic and cathodic peaks, respectively, shows 
a linearity that confirms that the electrodes possess 
the pseudo-capacitor energy storage mechanism [35, 
36]. The GCD tests were performed at current den-
sities range from 1 to 20 A g−1 (Fig. 5C). All graphs 
have a plateau, consistent with the CV curves. The 
values of specific capacitance, based on the discharge 
curves and calculated using Eq. (2), were 1203.75 F g−1, 
813.33 F g−1, 542.85 F g−1, 314.28 F g−1 and 214.28 F g−1 at 
the current density of 1 A g−1, 2 A g−1, 5 A g−1, 10 A g−1 
and 15 A g−1, respectively. The Coulombic efficiencies 
were calculated with Eq. (3): 93.15% (1 A g−1), 95.61% 

GdVO
4
+ xK

+
+ xe

−
→ K

x

(

GdVO
4

)

Figure 4   FE-SEM images of the GdVO4 nanospheres with dif-
ferent magnifications: A 50 k and B 150 k.
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(2 A g−1), 97.44% (5 A g−1), 100% (10 A g−1) and 100% 
(15 A g−1).

Subsequently, Fig. 5D illustrates the relationship 
between specific capacitance and current density, 
allowing for an assessment of the rate capability. As 
anticipated by prior studies, the specific capacitance 
values decreased as the current density increased [35, 
36]. This observation can be attributed to reduced ion 
diffusion and decreased ion adsorption on the elec-
trode, particularly at the outer surface of the pores. 
However, ions have sufficient time to access the elec-
trode’s inner and outer surfaces at lower current den-
sities, leading to a higher specific capacitance [21]. 
The specific capacitance of the GdVO4 nanospheres at 

1 A g−1 demonstrates excellent performance compared 
to previous studies, as indicated in Table 1, where it is 
possible to notice that the morphology and synthesis 
method influence the supercapacitor performance.

To further investigate the electrochemical perfor-
mance of the GdVO4 nanospheres for supercapaci-
tors, cycling stability was evaluated by performing 
3000 charge–discharge cycles at 20 A g−1 (Fig. 6). Fig-
ure 6A reveals a progressive increase in its specific 
capacitance during the initial 1000 cycles, reaching 
133 F g−1; this phenomenon can be attributed to the 
activation of the electrode material.[37]. Subsequently, 
a plateau was attained, succeeded by variations in spe-
cific capacitance, which decreased by 20%. Later, in 

Figure  5   a CV curves for GdVO4 nanospheres at differ-
ent scan rates; b redox peak current versus square root of scan 
rates; c GCD profiles for GdVO4 nanospheres at 1, 2, 5, 10, and 

15 A g−1; d specific capacitances versus current densities. All the 
tests were carried out in a 2.0 M KOH solution.
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the concluding cycles covering from 2350 to 3100, the 
system once again achieved a specific capacitance of 
133 F g−1.

To assess the resistance of GdVO4 nanospheres dur-
ing cycling, EIS was conducted on the as-prepared 
material and after 500 cycles. Figure 6B illustrates the 
corresponding Nyquist plots, in which a perfect line 
parallel to the imaginary axis could not be seen, indi-
cating that a constant phase element (CPE) would be 
needed in the system. Before utilizing the material, we 
observed that the data tended to have a higher imagi-
nary part, indicating a high capacitive contribution. 
After the cycling, the slope for this is equivalent to 0.5, 
suggesting that a mass transport limitation takes place.

To study the practical implementation of GdVO4 
nanospheres, an asymmetric supercapacitor cell (ASC) 
was assembled using it as the anode and activated 
carbon as the cathode. Upon substituting the values 

acquired from the prior GCD analysis into Eq. (4) for 
the three-electrode system, in conjunction with the 
outcomes from the activated carbon, a mass balance 
ratio of 10 was computed, leading to the preparation 
of the new activated carbon.

The results of the electrochemical tests are pre-
sented in Fig. 7. The rectangle-like CV curves (Fig. 7A) 
indicate the contribution of the pseudocapacitance 
mechanism for energy storage. An operating volt-
age window of − 0.2 to 1.6 V was obtained. The shape 
of the CV curves was maintained at high scan rates, 
showing a high-rate capability [21, 36, 41].

From the ASC (Fig. 7B), the specific capacitances 
were calculated using Eq. (2): 80.63, 70, 50, 40, 37.5, 
37.5, and 25 F g−1 at the current densities of 1, 2, 5, 
8,10,15, 20 A g−1, respectively. Figure 7C shows that 
the ASC kept rate performance upon increasing the 
current density, especially from 8 to 15 A  g−1. The 

Table 1   Comparison of specific capacitance (Cs) of GdVO4 nanospheres electrode with previously reported materials

Cs specific capacitance

Material Structure Synthesis Electrolyte Cs (F g−1) Current 
denstíty 
(A g−1)

References

GdVO4 Nanospheres Microwave-assisted hydrothermal 2 M KOH 1204 1 This study
Gd2O3/NiS2 Microspheres Hydrothermal 2 M KOH 354 0.5 [37]
Gd2NiMnO6 Double perovskite Wet chemical route 4 M KOH 400 1 [35]
Gd+3 doped V2O5/MXene Orthorhombic Wet chemical route 1.0 M K2SO4 1009 2 [38]
VO2(B) /rGO composite Nanobelts Hydrothermal 0.5 M K2SO4 353 1 [39]
VO2–N Microarray Organic–inorganic liquid interface 1 M Na2SO4 265 1 [40]

Figure 6   a Specific capacitances versus number of cycles at 12 A g−1 and b EIS analysis in as-prepared material and after 500 charge–
discharge cycles of the prepared GdVO4 nanospheres. Tests were performed in 2.0 M KOH solution.
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Coulomb efficiencies were 95.56% (1 A g−1), 94.92% 
(2 A g−1), 97.06 (5 A g−1), 94.44 (8 A g−1), and 100.00% 
(10.15 and 20 A g−1). The ASC led to a high energy 
density value of 130.2 Wh kg−1 at a power density of 
2880.18 W kg−1(at 1 A g−1 in 2.0 M KOH). These are 
outstanding results compared to the current litera-
ture, according to Table 2. The GdVO4 nanospheres/
activated carbon was subjected to cycling at 20 A g−1 to 
evaluate its stability (Fig. 7D). Similar to the three-elec-
trode system, the specific capacitance of this system 
experiences an initial increase in the first 1000 cycles, 
peaking at 142 F g−1. Subsequently, it exhibits two pla-
teaus: one at 129 F g−1 spanning cycles 1200 to 1950 
and another at 116 F g−1 between cycles 1951 and 3100.

Conclusions

This study highlights the potential of electrochemi-
cal storage electrodes, being a promising solution 
to address the current energy and environmental 
challenges. It also introduces a new electrode mate-
rial (based on GdVO4 nanospheres) synthesized 
using a microwave-assisted hydrothermal method, 
which is vital in preparing nickel foam-based elec-
trodes. A thorough characterization of the mate-
rial revealed its outstanding properties for energy 
storage applications. The electrode exhibited a 
high specific capacitance of 1203.75 F g−1 at 1 A g−1 
and demonstrated good cycling stability after 500 

Figure 7   a Cyclic voltammetry curves at different scan rates for 
the hybrid system and b charge–discharge profiles at 1, 2, 5, 8, 
10, 15, and 20 A g−1. c Specific capacitances versus current den-

sities. d stability after 3000 cycles at 20 A  g−1. Tests were per-
formed in 2.0 M KOH solution.
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cycles. Furthermore, an asymmetric supercapacitor 
constructed using the GdVO4 electrode achieved 
a specific capacitance of 80.63 F g−1 at 1 A g−1 and 
an energy density of 130.2 Wh kg−1, with a power 
density of 2880.18 W kg−1. These findings highlight 
the potential of rare-earth-based materials, par-
ticularly GdVO4, as a valuable electrode for energy 
storage applications. Overall, this study contributes 
to understanding rare-earth-based materials and 
their potential implications in advancing storage 
technologies.

Data and code availability

Available under request.
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