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ABSTRACT

Eggshell membrane (ESM) has recently gained interest for various applications

in the field of biomedical engineering, materials science and environmental

engineering. It is a routinely generated waste material which makes it easily

available and an affordable biomaterial. ESM is a protein-rich, thin, fibrous

membrane composed of collagen and hyaluronic acid, a composition similar to

that found in human tissues. The physicochemical properties of ESM make it

suitable for tissue engineering applications such as regeneration of skin, bone,

cartilage, tympanic membrane, nerve and blood vessels. Further, ESM has been

used either as nanoparticles or as a platform to deliver nanoparticles for various

therapeutic applications. The review discusses the intrinsic structural and

chemical properties of ESM, the techniques to isolate ESM, the various forms in

which it has been used and its varied tissue engineering and nanomedicine

applications, thereby highlighting its potential as an ideal natural biomaterial

for biomedical applications. It also highlights the challenges to the utility of ESM

and the unmet needs.
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GRAPHICAL ABSTRACT

Introduction

Avian eggs are a popular food worldwide, with over

1012 eggs consumed globally per year. Eggshell and

eggshell membrane (ESM) are discarded as waste by

households and industries. The eggshell is a hard,

outermost covering composed of calcium and phos-

phate. ESM is a protein-rich membrane that underlies

the shell and around the egg white, and is a source of

a variety of biomolecules such as proteins, gly-

cosaminoglycans (GAGs), monosaccharides, and

lipids [1]. Since ESM is a natural extracellular matrix

(ECM) of the egg, it has been found to possess great

potential as a material for various biological

applications.

ESM has been used as a traditional wound dressing

by the Chinese population for a long time. In 1982, it

was identified as a suitable biocompatible material

for cell culture studies, and in 1984, it was first used

as a scientifically proven burn wound dressing [1]. In

Japan, it is still widely used by sumo wrestlers to

treat injuries. ESM is also sold as a dietary supple-

ment for treating osteoarthritis [2]. ESM is semiper-

meable in nature owing to its fibrous network-like

structure, large surface area, porosity, good

mechanical strength, biocompatibility, and

biodegradability. It is inexpensive, easy to procure,

eco-friendly, and non-toxic, and the functional

groups of its constituents can be chemically modified

to enhance its properties [1].

Recently, ESM has been increasingly used in water

purification, heavy metal ion removal, enzyme

immobilization, and tissue engineering. Although

ESM has been used historically, a publication in 1995

by Wu et al. first demonstrated the application of

ESM as a biomaterial owing to its structure and

composition [2, 3]. Previous review articles on avian

eggs have focused on the materials science uses of

ESM [1, 3] and tissue engineering applications of

either solubilized ESM [2] or different components of

eggs [4]. Shi et al. described diverse biomedical and

materials science applications of ESM with a lesser

focus on the tissue engineering aspect and a major
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focus on its isolation, solubilization, and safety [5].

Jana et al. discussed the biomedical applications of

various waste-derived biomaterials, including ESM

and its isolated proteins, with a focus on xenografts

[6]. This review discusses the applications of different

forms of ESM in tissue engineering and nanomedi-

cine and intends to provide a comprehensive

understanding of ESM to readers by including stud-

ies on structural and functional characterization,

chemical composition, and applications of ESM.

Structure of ESM

The ESM structure was first discovered in 1957. ESM

is a semi-permeable, double-layered, collagen-based

fibrous matrix between the eggshell and egg white. It

acts as a physical barrier to the entry of microbes due

to its mesh-like structure [1]. It is structurally and

functionally equivalent to the ECM of mammalian

tissues and is impregnated with calcium carbonate

[2]. It is composed of three layers (Fig. 1a): the outer

membrane, inner membrane, and limiting

membrane. The outer membrane remains attached to

the tips of the calcified eggshell and has knob-like

structures that provide a rough texture. The inner

membrane lies between the outer and limiting

membranes and has a smooth texture with compact

bundled fibers. The limiting membrane is the inner-

most membrane, adjoining the inner membrane and

remaining in contact with the egg white [3].

The outer and inner membranes adhere closely to

each other, except at the blunt end of the egg, where

they can be distinguished by the air space [7]. The

thicknesses of the outer and inner membranes are

50–70 lm and 15–30 lm, respectively [1, 3]. The

limiting membrane is the thinnest layer, measuring

between 0.09 and 0.15 lm [7]. It surrounds the egg

white and appears as particles that fill the spaces

between the fibers of the inner membrane [3, 8]. The

diameter of collagen fibers is 1–7 lm in the outer

membrane and 0.1–3 lm in the inner membrane

[1, 3]. Collagen fibers in the inner layer are more

densely packed than those in the outer layer (Fig. 1b),

with a pore size of approximately 5 lm, which

ensures the permeability of gas and water [1]. The

Figure 1 Structure of eggshell membrane (ESM). a Schematic

cross-sectional representation of eggshell and ESM. b Scanning

electron micrographs showing the microstructure of outer and

inner ESM, and limiting membrane (scale bar = 20, 50 and 4 lm,

respectively). Picture courtesy for outer and inner ESM—Cell and

Tissue Engineering Laboratory, Indian Institute of Technology

Bombay. Image for limiting membrane has been adapted with

permission from Balaz et al. [3].
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fibers are randomly oriented and are made of fibrils

that have a collagen-rich inner core and a glycopro-

tein-rich outer mantle [2, 3]. Often, the mantle of

adjacent fibers coalesces to form a branched appear-

ance [7]. The inner and limiting membranes can be

easily separated by mechanical force, but the outer

membrane is firmly embedded in the eggshell and

can be isolated by harsh acidic treatment with acetic

acid, hydrochloric acid, ethylenediaminetetraacetic

acid, or the dissolved air flotation method [3]. ESM

plays a vital role in the mineralization of eggshells,

while preventing the mineralization of egg whites.

Hence, its outer layer is also slightly mineralized,

which manifests as knob-like structures of calcite

deposits [1, 3].

Composition of ESM

ESM constitutes 80–85% of the organic content, which

includes C (36–47.5%), H (5–6.8%), N (11–15.3%), O

(12.0%), and S (2–3.0%) (Fig. 2a) [9, 10]. Among the

structural proteins, collagen is the most abundant in

ESM [7]. While the outer ESM is rich in collagen I, the

inner ESM contains collagen I and V at a ratio of

100:1. Collagen X is present in both layers [2, 3]. Other

structural proteins include keratin, laminin, agrin,

ovoglycan, desmozine, isodesmozine, ovoglycopro-

tein and ovocalyxin-36 [11]. CREMPs (cysteine-rich

eggshell membrane proteins) form disulfide linkages

between collagen domains, providing strength to the

structure [2] while simultaneously making ESM

water-insoluble [3]. Lysyl oxidase, an enzyme, pro-

vides maturation and stabilization to collagen via

crosslinking [8]. Proline, glutamic acid, and glycine

are the most abundant amino acids in ESM [12],

whereas tryptophan is the least abundant amino acid

[13].

It also contains lysozyme, gallinacin, gallin, mucin,

ovocalyxin and ovomucoid that provide antimicro-

bial properties. Egg white proteins such as ovalbu-

min, ovotransferrin, and clusterin are also highly

abundant in ESM and provide cytoprotective and

chaperone-like functions [10]. The distribution of

proteins in different compartments of the egg is as

follows:[ 500 in eggshell and ESM, 148 in egg white,

137 in vitelline membranes, and 316 in egg yolk [3].

The total protein content of ESM is 21.5 ± 2.8 mg [9].

The presence of amine and amide groups, exhibiting

peaks at 1545 and 1655 cm-1, and hydroxyl groups,

depicting peaks at 3200–3500 cm-1, was confirmed

by FTIR (Fig. 2b) [9, 10].

Sugars, such as glucose, galactose, and mannose,

represent 70% of the carbohydrate content in ESM.

Minor quantities of fructose, xylose, glucosamine,

and galactosamine have also been reported [7]. GAGs

such as hyaluronic acid (HA), dermatan sulfate, and

chondroitin sulfate are present in ESM [2, 3]. Small

quantities of lipids have also been isolated from ESM,

including mono-, di-, and triglycerides, free fatty

acids, cholesterol and its ester counterparts, sphin-

gomyelin, lecithin, lysolecithin, and cephalin [7].

The inorganic content of ESM is largely composed

of calcium carbonate [2, 3]. Calcium ions interact with

acidic functional groups of proteins, resulting in

calcite formation, contributing to the mechanical

strength of the membrane [2]. Other inorganic ele-

ments in ESM include trace amounts of potassium,

Figure 2 Chemical

characterization of ESM.

a Elemental composition of

ESM powder. b FTIR

spectrum of ESM. (Adapted

with permission from Saha

et al. [9]).
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sodium, zinc, manganese, copper, aluminum, and

boron [7].

Tissue engineering relevant properties
of ESM

Physical properties

The Hen ESM is a soft substrate with a density of

1.358 g/cm3 [10]. The weight and nitrogen content of

ESM decreases with increase in age of hens. However,

the percentage of total lipids remains constant. ESM

thickness also tends to decrease with increasing age

and varies among different breeds of hens [14]. Torres

et al. reported that the Young’s modulus of hen ESM

ranges from 5.5 to 235 MPa, depending on environ-

mental conditions such as humidity, temperature, and

strain rate [15, 16]. Due to a high protein content, its

thermal stability is low, with denaturation beginning

at 50–55 �Cowing to collagendegradation, as depicted

by DSC analysis [3]. XRD analysis shows that ESM has

a semi-crystalline nature at low temperatures due to

the presence of collagen and calcite but transforms into

a crystalline material at higher temperatures [13].

Zeta-potential of ESM decreases from 10 to - 21

mV, with an increase in pH from pH 2 to pH 11. This

property allows the production of different types of

nanoformulations using ESM [13]. ESM is a trans-

parent membrane with a transmittance above 80%,

making it an ideal wound dressing for skin and

corneal wounds. Mensah et al. reported that the

porosity of ESM is * 56% with a fluid absorption

capacity of * 230% enabling it to absorb wound

exudate [17]. Moreover, the outer ESM can serve as a

barrier to moisture loss and pathogen invasion owing

to its interwoven fibrous structure, whereas the inner

membrane, being hydrophilic, can interact with cells

in wounds and promote healing [18]. ESM of various

bird species, such as hens, ducks, quails, and turkeys,

has been found to possess suitable dielectric proper-

ties for producing capacitors [19]. Although some

properties of ESM tend to be similar across various

bird species, a few properties can vary greatly

(Table 1).

Antioxidant properties

Oxidative stress is defined as an imbalance between

reactive oxygen species generation and cellular

antioxidant defense production. Solubilized ESM has

been reported to exhibit antioxidant properties by

scavenging free radicals and preventing DNA dam-

age [23, 24]. Similarly, enzymatic hydrolysates of

ESM also possess antioxidant activity, as proved by

in vitro and in vivo studies (Fig. 3a) [25–27].

Anti-inflammatory properties

It has been established that ESM can reduce the

expression of various inflammatory cytokines like

tumor necrosis factor-a (TNF-a) and interleukin (IL)-

1b, both in vitro and in vivo, through nuclear factor

Kappa light chain-activator (NFjB) pro-inflammatory

pathway [29]. Vuong et al. discovered that ESM, both

in its powder and extract forms (carbohydrate frac-

tion), exerts an immunomodulatory effect on macro-

phages and monocytes by decreasing NF-jB activity,

TLR-4 and ICAM-1 mRNA transcription, CD44

expression, and pro-inflammatory cytokine produc-

tion, while increasing IL-10 secretion [30]. Kul-

shreshtha et al. showed that powdered ESM can

reduce accumulation of nitric oxide (NO) in a dose-

dependent manner in RAW 267.4 macrophages, as

depicted in Fig. 3b [28].

In a similar manner, ESM fraction with[ 10 kDa

proteins has been shown to suppress NO formation

[31]. Benson et al. investigated the anti-inflammatory

effects of soluble ESM (SESM) on peripheral blood

mononuclear cells and observed that it reduces

lymphocyte proliferation and secretion of pro-in-

flammatory cytokines such as IL-6, IFN-c, and TNF-a
[32]. In a subsequent study, SESM blended with -

Nerium oleander leaves and Aloe vera extract was

found to enhance the activation factors in natural

killer cells and the production of cytokines involved

in wound healing [33].

ESM has also been clinically proven to reduce

symptoms such as joint stiffness and pain in

osteoarthritic conditions [34, 35]. Oral supplementa-

tion of ESM powder in rats has been shown to reduce

the levels of IL-1b and TNF-a while increasing IL-10

levels, thereby establishing the mechanism underly-

ing the anti-inflammatory activity of ESM in

osteoarthritis [36]. Kiers et al. reported that ESM

could drastically reduce knee joint pain and stiffness

and improve the overall quality of life of patients

with osteoarthritis when supplemented orally [37].

Furthermore, Jia et al. demonstrated the anti-fibrotic

role of ESM by showing that ESM hydrolysate
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reduced TGFb-1 induced pro-collagen expression in

human hepatocytes and attenuated the hyperactivity

of liver enzymes and oxidative stress [38].

Antibacterial properties

The presence of lysozyme has been reported to

impart antibacterial properties to ESM, as confirmed

by microsequencing and western blotting [39].

Lysozyme is also present in high concentrations in

most mammalian fluids [40]. Raw ESM possesses

better antimicrobial activity than autoclaved or sol-

ubilized ESM [41]. However, ESM hydrolysates pre-

pared by chemical treatment exhibit varying degrees

of antibacterial activity against various pathogens

[31]. A study showed that ESM in particle form is

more effective against gram-positive microorgan-

isms, such as S.aureus (Fig. 3c), than against gram-

negative microbes, namely P. aeruginosa [28].

Biomimicry properties

Natural biomaterials are known to enhance cell

attachment, ECM synthesis, interaction with host

tissues, and angiogenesis [42]. ESM, which is also a

natural biomaterial, has a well-defined molecular

structure, biocompatibility, and a composition similar

to that of human ECM [34, 35]. The diverse con-

stituents of ESM make it ideal for tissue regeneration

[2]. ESM contains collagen I, V, and X, with collagen

type I being the major constituent, which is also

predominant in the human ECM. SEM imaging has

proven that ESM has randomly oriented collagen

fibers with irregular lumps of calcite deposits

(Fig. 3d) [9, 15].

HA in ESM aids in the formation of hydrogen

bonds with other constituents, and imparts stiffness

and hydrophilicity. In humans, an essential part of

the ECM is HA, which aids in shock absorption and

lubrication of synovial joints. HA also acts as a

scavenger of free radicals, modulates inflammatory

cells, and participates in bone mineralization and

osteogenesis [2].

Fibronectin is a glycoprotein that exists in the

dimeric form of two closely resembling polypeptides,

each of which is a monomer consisting of three

modules arranged in a manner that allows proteins to

bind along the length of the monomer. Module 3

contains arginine-glycine-aspartate (RGD) peptide

sequences that play a key role in wound healing by

facilitating the attachment and migration of cells via

interactions with integrins on cell membranes [2].

Osteopontin is a phosphorylated glycoprotein

expressed in human bones and other cell types such

as endothelial cells, macrophages, and smooth mus-

cle cells. Osteopontin also contains RGD motifs, and

regulates physiological processes such as bone min-

eralization, inflammation, and tissue remodel-

ing. Calcium carbonate is a key inorganic element in

bone mineralization and wound healing [2]. Thus, the

constituents of ESM demonstrate its suitability for

tissue engineering applications.

Isolation and processing of ESM

Isolation of ESM

Isolation of ESM from eggshells is difficult because

the outer membrane is strongly integrated into the

mammillary cone of the eggshell. ESM can be isolated

Table 1 Difference in properties of ESM between different bird species

Physical parameters Hen ESM Ostrich ESM

Thickness 0.008 ± 0.0018 cm [3] 0.14 ± 0.04 cm [20]

Young’s modulus 235 MPa in air at 20 mm/min [15] 5.04 MPa in air at 10 mm/min [21]

Thermal degradation by TGA 250 �C [3] 310–460 �C [21]

Porosity 56% [22] 21.23% [21]

Elemental composition C = 36–47.5%,

N = 11–15.3%,

H = 5–6.8%,

S = 2–3%,

O = 12% [9, 10]

C = 47.03%,

N = 15.25%,

H = 6.74%,

S = 3.86%,

O = 27.12% [21]
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from eggshells, either mechanically or chemically.

The mechanical or manual detachment method is

widely employed [43]. Dissolved air flotation (DAF)

is another method that allows ESM to be separated

from eggshells. Ground eggshell waste is placed in

the separation unit of the DAF instrument, followed

by the injection of an air–water mixture from the

bottom of the unit. The dissolved air causes ESM to

float up, whereas heavier eggshell particles settle at

the bottom [44]. Herein, 96% of the membrane and

99% of calcium carbonate can be retrieved within two

hours [3]. Hydrochloric acid, acetic acid, sulfuric

acid, and ethylenediaminetetraacetic acid are used

for chemical isolation [43]. Furthermore, the passage

of eggshell fragments through a series of processes

involving an aqueous environment heated by steam

followed by separation in a cyclone is a commercially

used method [45].

Figure 3 Tissue engineering relevant properties of ESM.

a Antioxidant property—cellular antioxidant activity of crude

extract and purified fractions of solubilized ESM measured via

DCFH-DA dye in Caco-2 cells. b Anti-inflammatory property—

Quantification of nitric oxide production by Greiss assay in LPS

stimulated RAW 264.7 macrophages following treatment with

different sized ESM powder. c Antimicrobial activity—

Quantification of growth inhibition of S.aureus by different

sized ESM powder. d Biomimicry property—Scanning electron

micrograph of ESM showing randomly-oriented collagen fibers

with calcite deposits (scale bar = 1 lm). Reproduced with

permission from Ref. [9, 26, 28].
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Processed forms of ESM

Since ESM can serve as an organic matrix that pro-

motes cell proliferation and ECM synthesis, it has

been used in different forms to develop appropriate

scaffolds for various tissue engineering applications

(Fig. 4).

Native ESM

Native ESM has been used to develop scaffolds in

different forms such as raw ESM (RESM), autoclaved

ESM (AESM), and powdered ESM. In a study by Yi

et al., it was found that RESM showed slight cyto-

toxicity towards NIH3T3 cells owing to the presence

of a harmful mucilaginous layer, which was elimi-

nated after autoclaving the membrane [46]. Pow-

dered ESM prepared by cryo-chilling and subsequent

grinding via ball milling [47], mortar and pestle [48],

or micronizing in a cyclone vortex [49] has been

successfully used for various tissue engineering

applications [50]. Powdered ESM has been used as a

filler to enhance the physical and biological proper-

ties of composite scaffolds owing to its higher surface

area than the native membrane, while retaining its

microfibrous structure [48, 49]. Pillai et al.

incorporated powdered AESM in silk fibroin-poly-

vinyl alcohol scaffolds and found that as the con-

centration of powdered AESM increased, the surface

area, porosity and mechanical strength of the scaffold

also increased [48]. Bio-cellular glass–ceramics sup-

plemented with ESM powder as a source of calcium

phosphate have been used in bone and dental tissue

engineering [51]. ESM has also been used for topical

application in cosmetic formulations due to its rich

collagen content, wherein ESM powder was dis-

persed in cream, body lotion, face mask, gel, and

foundation formulations and tested on human skin.

These formulations significantly reduced wrinkles,

blemishes, acne and dry skin, proving the anti-aging

properties of ESM [47].

To probe the role of ESM as a dietary supplement

for maintaining healthy joints and connective tissues,

Ruff et al. investigated the toxicological effects of

powdered ESM, and found it to be cytocompatible up

to 100 lg in keratinocytes and non-genotoxic against

auxotrophic bacteria, even at high concentrations

(5000 lg). Additionally, rat studies revealed that

consumption of powdered ESM for 90 days did not

show any signs of toxicity, suggesting its safety for

human use [52].

Figure 4 Different forms of

processed ESM for tissue

engineering applications:

native ESM, powdered ESM,

solubilized ESM, and ESM

hydrolysate. These various

forms can either be used as it is

or used to develop

scaffolds. Reproduced after

permission from Makkar et al.

[11] and Nakano et al. [12].
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Solubilized ESM

A major limitation of using native ESM for scaffold

fabrication is the difficulty in controlling the shape, size,

and subsequent incorporation of native ESM into scaf-

folds.Hence,ESMhasbeen solubilized toobtain soluble

eggshell membrane proteins (SEP) using a variety of

solvents such as NaOH:ethanol mixture (3:1) [53],

3-mercaptopropionic acid and acetic acid [54], and

1,1,1,3,3,3-hexafluoro-2-propanol [55]. SEP improves

mechanical properties when blended with other bio-

compatible polymers such as silk fibroin [56], PCL [57],

PLGA [58], chitosan [59], PEO [60], PLA (poly lactic

acid), and PPC (poly propylene carbonate) [55].

The biocompatibility of SEP is comparable to that

of collagen type I [46, 56]. However, the total protein

content of SEP is lower than that of native ESM

because of the harsh solvent treatment [47]. More-

over, SEP can also be made water-insoluble using

10% acetic acid without hampering its biocompati-

bility [54]. Topical application and ingestion has been

shown to improve skin elasticity in healthy human

volunteers [61].

ESM hydrolysates

ESM hydrolysates are water-soluble derivatives of

ESM, prepared by enzymatic digestion, to break the

disulfide bonds that make it insoluble. ESM hydro-

lysate has better digestibility than native ESM in rats,

with no alteration in protein utility by the body [62].

By combining enzymatic digestion with ultrasonica-

tion, stable emulsions of ESM protein hydrolysates

can be prepared [63]. The anti-inflammatory proper-

ties of ESM hydrolysate is also well-established both

in vitro and in vivo [26, 27].

Tissue engineering applications of ESM

ESM has been widely used as a biomaterial for ‘gui-

ded tissue engineering’ due to its physicochemical

properties such as high tensile strength, lipid and

proteinaceous content, and permeability that help

mimic the human ECM.

Skin tissue engineering

The most significant contribution of ESM as a bio-

mimetic scaffold is in skin tissue engineering. ESM

has been used either in its native form or as an

additive component in scaffolds. The application of

native ESM in both human and rodent wounds has

demonstrated rapid healing [64, 65]. Studies have

shown that the surface modification of ESM with

metallic nanoparticles helps increase hydrophilicity,

imparts antibacterial properties, and enhances

wound healing in animals through vascularization

and reduction in inflammation (Fig. 5a) [66–68].

Similar results were obtained by coating ESM with

antimicrobial peptides [69]. Moreover, coating of

ESM with a nanofibrous layer of PCL-chitosan was

found to increase the mechanical strength, provide

barrier properties, and enhance healing in animals

[70, 71]. The therapeutic potential of ESM for dermal

injuries was enhanced by modification with the

thermoresponsive polymer poly(N-isopropylacry-

lamide) (PNIPAAm) and drug-loaded silver

nanoparticles (AgNPs) [72].

ESM powder has anti-inflammatory and growth

factor-like properties that aid healing [49, 73]. Fur-

thermore, impregnation of ESM powder into poly-

meric films such as chitosan improves hydrophilicity,

tensile strength, water permeability, and resistance to

degradation [67, 74]. ESM powder can also act as a

physical crosslinker for scaffolds without affecting

their physical or biological properties [9].

Solubilized forms of ESM electrospun with various

natural and synthetic polymers have demonstrated

promising results in skin regeneration applications

[57, 75, 76]. PCL-ESM nanofibrous mats were syn-

thesized by electrospinning to develop wound

dressings with improved biocompatibility and

antibacterial activity [77]. PCL combined with silk

fibroin, SESM, and aloe vera gel was used to develop

electrospun nanofibrous scaffolds to induce basal

stem cell to keratinocyte differentiation and skin

regeneration [78]. Detachable bilayered dermal pat-

ches loaded with SESM and curcumin nanoparticles

exhibited better wound healing than commercial

dressings [79]. SESM immobilized on culture dishes

elevated the expression of MMP2, type III collagen,

and decorin in HADF cells [80]. Topical application

of SESM was found to increase type III collagen

expression in the papillary dermis of mice and

improve the elasticity of the arms while reducing

facial wrinkles in humans, thereby demonstrating its

anti-aging effect [81].

J Mater Sci (2023) 58:6865–6886 6873



Bone tissue engineering

ESM serves as a natural bio-template for the mineral-

ization of calcareous eggshells, thus making it an

excellent biomaterial for bone and cartilage regenera-

tion [15, 83]. Chen et al. utilized ESM as a biomineral-

ization template to form an ESM-hydroxyapatite

scaffold for bone tissue engineering. The hydroxyap-

atite improved the thermal stability and hydrophilicity

of the scaffold and increased alkaline phosphatase

activity expression of osteogenesis-related genes, and

proteins in MC3T3-E1 cells [84]. Durmus et al. used

native and powdered ESM to treat cranial defects in

rabbitswhich showedbetter bone regeneration than the

untreated group [85]. Furthermore, SEP combinedwith

other polymers has been observed to induce the osteo-

genic differentiation of mesenchymal stem cells and

promote bone formation in mice (Fig. 5b) [82, 86]. Park

et al. developed scaffolds with nanotopography fiber

alignment by nanoimprint lithography using ESM

solution. The scaffolds enhanced osteogenic differenti-

ation and growth factor secretion by osteoblasts,

thereby demonstrating their potential for bone regen-

eration [87].

Cartilage tissue engineering

Pillai et al. compared RESM and AESM obtained

from hen eggs as potential biomaterials for cartilage

tissue engineering. They reported that autoclaving

facilitated greater attachment of human meniscus

cells to AESM and increased the resistance to

degradation and thermal stability, implying that

AESM is superior to RESM [88]. In a subsequent

study, AESM was incorporated into a scaffold made

of silk fibroin and polyvinyl alcohol, which exhibited

mechanical properties similar to those of native

human cartilage [48]. In addition, SEP in combination

Figure 5 a Macroscopic appearance of full-thickness wounds in

mice in control (untreated), treated with vaseline gauze, EM

(ESM), EM/PD (polydopamine coated ESM), EM/AgNPs (ESM

decorated with silver nanoparticles) groups. b Micro-CT (left) and

hematoxylin and eosin stained (right) images showing the effect of

uncoated, SEP-coated flat and nano-topographic PCL patches on

bone regeneration in mice after 3 weeks. Reproduced with

permission from [68, 82].
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with various materials such as chitosan, silk, and

agarose, fabricated into three-dimensional scaffolds,

provide good swelling properties, biodegradability,

antimicrobial activity, and biocompatibility for suc-

cessful chondrocyte regeneration [89, 90].

The tympanic membrane (TM), also known as the

eardrum, is a delicate cartilaginous membrane that

receives sound vibrations and transmits them to the

auditory ossicles. The major constituents of this dou-

ble-layered fibrous membrane are collagen types I, II

and III [91]. Minor traumatic TM perforations heal on

their own, but major damage requires surgical inter-

ventions [92]. ESM, being a natural collagenous

matrix, has been utilized as a biomaterial for TM

regeneration and has been demonstrated to facilitate

faster healing in human patients with small, moderate,

and large perforations of the TM (Fig. 6a) [93, 94].

Vascular tissue engineering

Several researchers have demonstrated the use of

ESM for the development of vascular grafts. A

bilayered, wavy-structured graft (Fig. 6b) with ther-

moplastic polyurethane as the external layer and

heparin- and dopamine-coated ESM as the internal

layer was developed, resulting in enhanced blood

flow and higher human umbilical vein endothelial

cell attachment and proliferation [95]. In another

study, small-diameter vascular grafts using ESM

extract and heparin-incorporated expanded polyte-

trafluoroethylene were fabricated, which showed

improved hydrophilicity and cytocompatibility [96].

Li et al. synthesized polyethylene glycol diacrylate-

coated ESM-based vascular grafts with mechanical

properties similar to those of native human blood

vessels [97].

Nerve tissue engineering

Application of ESM for nerve regeneration has

demonstrated that ESM-based nerve grafts help in

proliferation of primary hippocampal neurons [98]

and neural precursor cells, such as PC12 cells

[99, 100], under in vitro conditions. Similarly,

Figure 6 a Healing time

recorded in patients with

different grades of tympanic

membrane perforation

showing reduced time of

healing with ESM than the

approximation (suturing)

group for moderate-to-large

perforations. b Digital

photograph and scanning

electron micrograph of cross-

section of double layered

vascular graft made of ESM/

thermoplastic urethane (TPU)

(scale bar = 2 mm).

Reproduced with permission

from [92, 95].
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experiments in rats with an incised sciatic nerve of

the thigh also proved that ESM plays a vital role in

nerve regeneration by improving various essential

parameters (Fig. 7a) compared to treatment with

autograft [101–103].

Tissue engineering in dentistry

Researchers have discovered that modification of

ESM with a graphene coating can help improve the

mechanical strength and hydrophilicity of the scaf-

fold and aid the proliferation of dental pulp cells with

simultaneous enhancement of mineralization and

secretion of essential growth factors by the cells [104].

Powdered ESM facilitates periodontal regeneration in

rats at a rate similar to commercial grafts [105].

Animal studies have demonstrated that oral admin-

istration of SESM with vitamin C can increase colla-

gen production and accelerate orthodontic tooth

movement (Fig. 7b) [106]. Gempita et al. synthesized

calcia partially stabilized zirconia (Ca-PSZ) using the

sol–gel method with ESM as a dental filler [107].

Moreover, hyaluronic acid extracted from ESM can

promote significant regeneration of interdental

papillae in guinea pigs, underlining the efficacy of

the constituents of ESM [108].

Nanomedicine applications of ESM

Nanoparticles are extensively explored for enhancing

drug bioavailability via targeted delivery. ESM has

been used either as nanoparticles or as a platform to

deliver nanoparticles for various therapeutic appli-

cations (Table 2).

Challenges in application of ESM

ESM is a promising and emerging biomaterial which

has been used for diverse applications with signifi-

cant application in the biomedical field. Conse-

quently, numerous patents exist for ESM processing

and related products (Table 3). Despite extensive

research, only a few products have been commer-

cialized. Examples of such products include Ovo-

met�, NEM�, Biovalex� (supplements to maintain

healthy human joints); DermarepTM (an affordable

wound dressing that provides rapid and scarless

Figure 7 a Light microscopic

images of toluidine blue

stained cross-sections of

regenerated nerves, 90 days

after surgery, showing

myelinated axons (arrow) in

normal nerve, autograft and

ESM treated group (scale

bar = 10 lm). b Schematic

(left) showing a spring

attached to the first molar

following tooth movement

between the first (M1) and

second molar (M2) was

measured; (Right)

Quantification of tooth

movement. Reproduced with

permission of [101, 106].
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healing); BiovaBioTM, Ovoderm�, Biovaderm� (skin

care products).

Some obstacles need to be overcome to improve the

ease of usage and scalability of ESM-based products.

Quality and chemical characteristics tend to vary

depending on the source of the eggs, which could

impact the reproducibility of the finished product,

thereby limiting its industrial scale-up. There may be

a risk of microbial contamination of the product if

ESM is collected from waste disposal areas and not

carefully sterilized. Manual peeling of ESM is

laborious and time-consuming. Thus, automation of

the isolation process could make industrial scale-up

feasible. Although numerous patents are available for

ESM-based products, further trials are needed to

commercialize such potential products. Awareness of

the nutritional value of ESM must be promoted more

aggressively to enhance its usage. Thus, recycling

of egg-derived wastes would prove to be profitable to

small-scale industries, culminating in more human

employment, and channelized utilization of ESM for

biomedical applications.

Table 2 Application of ESM in nanomedicine

No Forms of ESM

used

Study Application References

1 Nanoparticles

(NPs)

NPs with an outer shell of powdered ESM and inner

core of liposoluble vitamin-E

Vitamin E delivery [109]

SEP-catechin NPs Dressings, adsorption membranes and

biofilters

[110]

SEP loaded chitosan-fucoidan nanoparticles Mitigation of inflammation to treat

inflammatory bowel disease

[111]

2 Synthesis of NPs

on native ESM

(bio-template)

Silver (Ag) Tannic acid immobilization for catalysis of

azo dyes

[112]

C-ZnO/ZnS Photocatalytic application [113]

Iron (Fe) Catalytic reduction of organic

contaminants

[114]

Copper (Cu) Adsorption of dye [115]

Tin oxide Supercapacitor [116]

Cadmium oxide-zinc oxide nanocomposite Antibacterial bio-membrane [117]

V2O5/ZnO Antibacterial bio-membrane [118]

Synthesis of platinum or gold NPs on ESM followed

by immobilization of enzymes such as glucose

oxidase or horseradish peroxidase

Biosensors for glucose sensing [119–121]

3 Native ESM Growth of calcium carbonate crystals on ESM Biomineralization [122]

4 Synthesis of

quantum dots

from ESM ash

Microwave assisted spherical CQDs (5 nm diameter) Fluorescent probes with an excitation and

emission spectrum of 275 nm and

450 nm for labeling glutathione

[123]

Water-soluble and fluorescent CQDs Detection of mercury in water samples [124]

5 Native ESM In vitro penetration of sialic acid ointment through

ESM

In vitro topical drug/irritant penetrability

studies

[125]

In vitro penetration of smokeless tobacco forms In vitro topical drug/irritant penetrability

studies

[126]

6 Native ESM Acyclovir encapsulated ethyl cellulose-Carbopol

974P NF microspheres

In vitro platform for mucoadhesion

evaluation of drugs

[127]

Buccoadhesive tablets such as gelatin-hydroxypropyl

methyl-cellulose, gelatin-sodium

carboxymethylcellulose and gelatin-hydroxypropyl

cellulose were compared with benzylamine and

metronidazole tablets

In vitro platform for mucoadhesion

evaluation of drugs

[128]
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Conclusions and future outlook

The aim of this review is to provide a holistic view on

the diverse applications of ESM. However, its appli-

cation in tissue engineering has yet to be fully

explored. According to the global ESM market 2019,

hydrolyzed ESM outsold the unhydrolyzed form of

ESM because hydrolysis increased the bioavailability

of its bioactive constituents [154]. Thus, innovative

technologies should be developed to obtain func-

tional forms of ESM that contain bioactive compo-

nents and produce bench-to-bedside products. More

studies must be conducted, including isolation of

individual biomacromolecules, to understand their

role in the process of tissue regeneration.

Table 3 Patents on biomedical applications of ESM

S.

No

Patent title Patent No Year Reference

1 Tissue engineering scaffolds comprising particulate egg shell membrane US11045578B2 2016 [129]

2 Method and apparatus for the enhanced separation of calcium eggshell from organic

membrane

US9873616B2 2015 [130]

3 Hepatic protection agent containing eggshell membrane and pharmaceutical composition,

food additive and food using the same

US20150164962A1 2015 [131]

4 Activator of gene expression of molecular chaperone gene comprising eggshell membrane

component and composition thereof

US20150196606A1 2015 [132]

5 Method and apparatus for the enhanced separation of calcium eggshell from organic

membrane

US9873616B2 2015 [130]

6 Methods for treating glucose metabolic disorders US8679551B2 2014 [133]

7 Wound care product with egg shell membrane US10166260B2 2013 [134]

8 Eggshell film-containing micropowder, tablet, method for producing eggshell film-

containing micropowder, and method for producing tablet

CN103300357A 2013 [135]

9 A cement material for renewal of damaged dental tissues WO2014021797A2 2013 [136]

10 Dietary supplements for promotion of growth, repair, and maintenance of bone and joints WO2012096883A1 2012 [137]

11 Pulverized eggshell membrane and chitosan as bio-cream and lotion JP7223935 2011 [138]

12 A composition comprising powdered eggshell membrane for use in treating a pre-diabetic

mammals

EP2842563A1 2011 [139]

13 Novel process for solubilizing protein from a proteinaceous material and compositions

there of

20110034401 2011 [140]

14 Fiber-treating liquid, modified cloth, and process for producing the same US20090176423A1 2009 [141]

15 Fiber comprises an eggshell membrane component useful for producing a fiber assembly,

which is used as a wound dressing or a cosmetic sheet

US2009031691A1 2009 [142]

16 Hydrolysed shell membrane produced from shell membrane of hen’s egg with proteinase,

method for producing the same and functional material added therewith

JP2008007419A 2008 [143]

17 Fiber, fiber assembly, and fiber producing method EP2020455A2 2008 [144]

18 Avian eggshell membrane polypeptide extraction via fermentation process 20070017447 2007 [145]

19 Therapeutic, nutraceutical and cosmetic applications for eggshell membrane and

processed eggshell membrane preparations

US20080063677A1 2007 [146]

20 Protein hydrolysates and method of making US8101377B2 2007 [147]

21 Anti-inflammatory activity of eggshell membrane and processed eggshell membrane

preparations

20070178170 2007 [148]

22 Preparation of hyaluronic acid from eggshell membrane US6946551B2 2003 [149]

23 Adhesive plaster JP2003225298A 2002 [150]

24 Anti-peroxide external preparation for skin US5415875A 1993 [151]

25 Process for using eggshell compositions for promoting wound healing US3558771A 1968 [152]

26 Assisting healing of skin-denuded areas on the body with dried non-fibrous egg-shell

membrane products and compositions therefore

US3194732A 1960 [153]
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ESM can also be used in everyday healthcare

applications, such as for reducing post-chemotherapy

side effects or as a supplement for enhancing muscle

and bone strength in athletes. It could also serve as

an alternative reinforcement material for ceramic

particles. Although the utility of ESM as a biosensor,

bio-template, bio-sorbent, and medicinal product has

been well established, its high adsorption capacity

can be further utilized to develop novel drug delivery

systems and biomedical detection kits by immobi-

lizing biomolecules and growth factors. Although the

biocompatibility of ESM with stem cells has been

studied, whether ESM plays a role in stem cell dif-

ferentiation remains to be elucidated. 3D-bioprinting

of ESM derivatives or SEP with or without further

modifications is a promising field that is yet to be

explored. ESM may also be used to develop bio-

plastics in the future. These strategies will pave the

way for its wider use as a biomaterial in novel ways.
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