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ABSTRACT

The impact of crushing on the macroscopic mechanical characteristics of gran-

ular materials from a microscopic perspective has recently been revealed using

the discrete element method (DEM). The influence of the self-organized, mass

conservation and volume conservation of daughter particles in the fragment

replacement method (FRM) on particle breakage is complex and crucial. In this

paper, 14-ball Apollo directly filling method (DFM) and expansion method are

combined to keep balance among particles before and after crushing, considered

to establish DEM to simulate granular material. By considering the influence of

volume loss on the micro-fracture condition of the samples, the macro-responses

of mechanical and deformation characteristics, the gradation change and the

critical state are studied. The effect of inter-particle interaction on macroscopic

properties is also analyzed from the microscopic perspective. The rationality of

the volume expansion method is verified. The comparisons of samples with

volume conservation and volume loss show that the stress development process

and the volumetric strain are affected. The existence of the balance point of

volume effect is related to the stress level which lead to the difference in stress

and strain. Through analysis of relative breakage index (Br) and the statistical

number of microscopic particles, it can be seen that the gradation deviation

comes from the two-way influence of the volume loss on the crushing of par-

ticles. The volume loss has no effect on stress ratio in the critical state, but has a

significant effect on stress change during shearing process, and results in the

critical state void ratio to decrease with increasing confining pressure. The

rationality of daughter particles’ volume conservation are analyzed from the

motion, displacement development and force chain evolution.

Handling Editor: M. Grant Norton.

Address correspondence to E-mail: xcs_2017@163.com

https://doi.org/10.1007/s10853-023-08260-6

J Mater Sci (2023) 58:3231–3248

Computation & theory

http://orcid.org/0000-0002-6390-3202
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-023-08260-6&amp;domain=pdf
https://doi.org/10.1007/s10853-023-08260-6


Introduction

As typical granular materials, geotechnical materials

have crushing characteristics. Rockfill, gravel, cal-

careous sand, and other easily broken particles [1–3]

are widely used as main building materials in dam

construction, foundation filling of high-speed rail-

ways, and offshore engineering, which are related to

the long-term safety of the project. The crushing of

granular materials will significantly affect the overall

strength and deformation characteristics of the soil.

Therefore, it is of great significance for related engi-

neering research to explain the crushing laws and

their macro- and micro-characteristics responses.

At present, the traditional method of obtaining the

stress–strain and shear band changes of samples

through experiments and the Discrete Element

Method (DEM), which was originally described by

Cundall et al. [4] in the 1970s, are applied to the study

of particle crushing. Coop et al. [5] conducted a series

of ring shear tests to study the variation of calcareous

sand breaking with strain. Ghafghazi [6] and Yu [7]

investigated characteristics of particle breakage with

different stress levels in triaxial shear. Although the

results of the experimental method are more intu-

itive, the method has the disadvantage that the

specimens and experimental conditions cannot be

accurately replicated, which will inevitably lead to

unnecessary errors. The DEM allows precise control

of external stress conditions while satisfying the

reproducibility of samples. It is well suited to

understand the motion between a given combination

of particles during loading and is applied to develop

and verify the intrinsic relationships of soils, pro-

viding an important avenue for particle fragmenta-

tion studies. There are mainly two DEM methods to

simulate particle breakage: one is the Bonded-Particle

Method (BPM) [8], in which multiple small particles

are bound into one large particle through contact

connections. The large particle will be broken, when

the force is greater than the set binding force. Cheng

et al. [9] applied BPM to simulate single-particle

crushing as well as triaxial tests on cubical samples

made of 389 agglomerates, which provided valuable

insights into plasticity on crushable soils from

micromechanics. McDowell and Harireche [10, 11]

et al. simulated the fracture of granular materials by

this method and further investigated the yield stress

of sand based on oedometer tests. BPM is suitable for

simulating particles of different shapes and can

reflect the strength characteristics of particle breakage

and complex interactions between particles to a cer-

tain extent. However, the strength and size effects can

only be well reflected if the premise of large-scale

particle aggregate crushing is satisfied, which leads

to a significant reduction in computational efficiency.

And most critically, the internal sub-particles cannot

be crushed multiple times. Another method is the

Fragment Replacement Method (FRM), which repla-

ces the parent particle with a series of inner-filled

daughter particles when fragmentation occurs. Lobo-

Guerrero and Vallejo [12] obtained the sub-particle

evolution law by simulating two-dimensional parti-

cle fragmentation, but the discussion of critical void

fraction under two-dimensional conditions is very

limited. Marketos and Bolton [13] investigated the

particle cementation bond strength and fragmenta-

tion condition for the compacted region by three-di-

mensional DEM, which provided an idea for the

study of compaction band initiation and propagation.

FRM has the advantage of high computational effi-

ciency, but the accuracy of the simulation results

depends on the determination of particle failure cri-

terion and arrangement of the daughter particles. De

Bono and McDowell [14, 15] performed a series of

one-dimensional normal compression simulations of

granular materials but did not address the mass loss

problem in crushing. The two main problems of the

FRM are the mass conservation (volume conserva-

tion) and the number of the generated daughter

fragments, which have been studied by many schol-

ars on these two points [16–18]. Bun-Nun et al. [19]

used a self-organized form of split particles without

mutual overlap, which can avoid additional inter-

particle forces, but the discriminant condition for

fragmentation is still the characteristic strength of

individual particles and does not fully consider the

effect of local stress concentration in the particles. To

ensure mass conservation, Shi et al. [20] used BPM for

the first crushing and FRM method for subsequent

crushing. But this method still has a non-negligible

mass loss for the re-crushing of particles with larger

particle size. Cleary [21] and Sinnott [22] improved

the organization pattern of sub-particles to reduce the

mass loss to some extent, but their results were not

the actual grade change. Li [23] et al. used overlapped

particles to substitute, which ensured the conserva-

tion of mass and volume and reflected the real gra-

dation change. But additional work is introduced in
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the process of breakage, which changes the condition

of contact force and results in the change of crushing

amount. While most of the existing studies on the

conservation of mass focus on the fragmentation

evolution law after the improved self-organization

pattern, and rarely study the effect of volume loss on

macroscopic properties under the change of confin-

ing pressure. However, the effect of volume differ-

ences on the macroscopic mechanical properties and

the accuracy of simulation results is unclear. There-

fore, it is necessary to study the volume conservation

problem.

Breakage is defined as the process of turning large

particles into small ones under the action of external

forces. The problem of volume conservation mainly

arises from the form of self-organization of daughter

particles during the fragmentation of parent particles

to secondary particles. The contact rupture between

BPM clusters can visually reflect the particle crushing

state, but the accuracy of the results is limited by the

particle base. While the breakage of FRM reflects the

real crushing situation. The triaxial compression

process of fracturable materials is accomplished by

both particle rearrangement and particle breakage.

Cracking occurs when the local force state of the

particles exceeds a given threshold during com-

paction, and the crack extends from the contact point

leading to crushing. The existing failure criteria can

be divided into two categories, respectively, the

overall particle stress state and the maximum contact

force acting on the particle as a criterion to discrim-

inate crushing. The overall stress of the particles is

mostly based on the classical fracture criterion, and

the average particle stress is usually considered. Such

as McDowell et al. [15, 24, 25] applying the Von Mise

criterion, Zhou et al. [26] applying the Mohr–Cou-

lomb criterion, and Ben-Nun et al. [27] applying the

Drucker-Prager criterion are from this perspective.

However, it is also therefore necessary to introduce

additional factors to consider the stress concentration

in the formulation. When the overall stress does not

meet the crushing conditions, the local stress

exceeding the ultimate strength of the particle may

still cause crushing. Because of the phenomenon of

stress concentration, using the maximum contact

force of the particles as the limit condition for judging

crushing [20] is more in line with the actual crushing

situation. Jaeger [28] suggested that the tensile

strength of an individual particle can be defined as its

failure tensile stress. Therefore, it is more reasonable

to use the maximum contact force as the criterion for

breakage.

To sum up, this paper combines the discrete ele-

ment method with different FRM daughter particle

self-organization modes to consider the effect of

newly spawned particles’ volume loss introduced by

breakage. By establishing a discrete element triaxial

compression model, the role of the volume effect in

the variation of specimen grain size distributions

(GSDs), the stress–strain characteristics, and the crit-

ical state is further discussed. The effect of the par-

ticle motion law on the macroscopic properties is

analyzed from the microscopic point of view, and

then the rationality of using the expansion method to

maintain volume conservation is verified.

DEM model of particle breakage

Particle failure criteria

The particle failure criteria need to relate the limita-

tion on certain characteristic strengths to the contact

forces acting on the particles. In this paper, the stress

concentration in the particle contact process is con-

sidered, and the simulation is carried out using the

maximum contact force. Fracturing and compression

simulations performed by De Bono and Mcdowell

[14, 15, 29] for silica sand used two different particle

failure criteria and investigated in detail their cor-

rectness under normal compression conditions. Rus-

sell et al. [30] obtained a two-parameter maximum

contact force breakage criterion by performing point

load tests on a single spherical particle, which pro-

vided a more reliable estimate of compressive

strength, and extended it to compression tests with

different particle sizes. He [31] then proved that the

criterion is also applicable to spherical particle

groups with different coordination numbers and

indicates that rupture occurs when the maximum

contact force exceeds a threshold particle strength

value. Under the assumption that the sphere is elas-

tic, jmob at any point will be proportional to the

applied load. As the applied load is increased, the

maximum jmob attains a value equal to the available

strength j.Therefore, the relationship between the

limit condition can be expressed as

jmob � j ð1Þ

J Mater Sci (2023) 58:3231–3248 3233



where jmob is the mobilized strength and j is the

intrinsic strength, which is related to the uniaxial

tensile and compressive strengths.

When a sphere is subjected to contact forces, a

certain amount of this available strength, denoted by

mobilized strength jmob, will use up. The forces are

assumed to act normal with a small area on the sur-

face of the sphere defined by the subtended angle h0
and radius R (Fig. 1). The symmetrical maxima of

jmob is located on and near the diameter of the con-

necting load center. Under the above stress condi-

tions, the value of mobilized strength jmob can be

expressed as Eq. (2). When h0 is small, q given by

Hiratsu and Oka [32] can be approximately regarded

as the average pressure obtained by dividing the

contact force F by the action area Af.

jmob ¼ fðv; mÞ F

pR2 sin h0
ð2Þ
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where m is the Poisson ratio; v is a parameter that

reflects the microstructural properties of the material,

f(v,m) is shown in Eq. (3) as a function of the Poisson

ratio of the material and its own properties[30], and

its value is between 10 and 170, proposed by Chris-

tensen [33]; F is the load value of the particle; R is the

radius of sphere; h0 is the central angle enclosed by

the edge point radius and the normal radius through

the action of the normal force F. In general, the

stresses acting on a given particle can be defined as a

second-order tensor in discrete element method. The

stress tensor can be expressed as

rij ¼
1

V

X

Nc

Ici J
c
j ð6Þ

where V is the volume of the particle, Nc is total

number of contacts on the particle, Ii
c is the i-th

component of contact vector, and Ji is the force acting

on j-th component of the contact point. The critical

contact force can be obtained from the limit condition

F0 � j
fðv; mÞAf ) rlim ¼ j

fðv; mÞ ð7Þ

From Eq. (7), it can be seen that the ultimate force

F0 is affected by the ultimate strength rlim of the

particle and the contact area of the force Af.rlim is

related to the experimental material and its value

increases with decreasing particle size. As the ulti-

mate strength of single particle follows Weibull

statistics distribution [34, 35], the relationship

between the rlim and the tensile strength of the par-

ticle rn under diametrical loading can be related to

size by:

r ¼ r0
d

d0

� ��3=m

ð8Þ

rlim ¼ 0:9rn ð9Þ

where r0 is the characteristic particle strength at

diameter d0, which is a value of the distribution such

that 37% of the particles survive, m is the Weibull

modulus, which decreases with increasing strength.

Self-organization form of fragments

The fragment spawning procedure is another

important issue related to particle fragmentation

DEM modelling in addition to the particle breakage

criterion. The spawned particles are assembled

according to the Apollonian sphere packings pro-

posed by Borkovec et al. [36] after a fragmentation

event. The limiting fractal dimension of the apollo-

nian packings in most geotechnical materials is closeFigure 1 Range of spherical particles affected by point load and

induced equivalent stress.
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to that found by Coop et al. [5] for particle frag-

mentation, with a final value of 2.47. Ciantia et al.

[17, 37] studied the number of filled daughter parti-

cles in a 3D model and showed that 14 non-over-

lapping spheres satisfy the accuracy condition while

ensuring computational efficiency. But the 14 inscri-

bed daughter spheres of the mother particle, which is

called the direct filling method (DFM) here, lost more

than 40% of the original particle volume after the first

crushing. This results in a mass loss of up to 47% at

constant sphere density. To ensure the two conser-

vation principles, the method of linear expansion of

the volume of the daughter fragments to satisfy the

mass conservation after the original crushing and

filling are adopted. An overlap-free spawned parti-

cles layout by the expansion method is achieved

(Fig. 2), the algorithm is shown in Table 1.

In case of particle fragmentation, the radius and

position of the sub-particles can be determined based

on Apollo filling. The sub-particles expand as indi-

viduals until volume conservation before and after

fragmentation is satisfied. In the expansion phase, to

avoid local breakage effects caused by excessive sub-

particle velocity, a zeroing setting is performed when

the velocity exceeds the limit, and multiple expan-

sions are also used to reduce local disturbances.

Crushing causes a local imbalance in the contact of

the particles. In this case, the combined forces on the

daughter particles can rise abruptly and the force

chain including the mother particle breaks, resulting

in local collapse. To solve the local imbalance and

sub-particle diameter expansion problem, a reduced

critical time step in a global–local framework is nee-

ded to ensure its stable operation. By means of two

discrete dynamic time steps-local time step and glo-

bal time step, the effects of excessive local stresses

between particles as well as internal stress variations

can be eliminated by multiple low-velocity expansion

in local time step. Thus, the conservation of mass, the

conservation of volume and the non-overlapping

sub-particle layout are realized. Simplified breakage

algorithm is shown in Fig. 3. The particles are dis-

criminated according to the contact force and particle

position under the global time step. If no fragmen-

tation occurs, the particle remains under the global

time step. If fragmentation occurs, the IDs and posi-

tions of sub-particles are updated in the local time

step. The sub-particles undergo iterative expansion.

In particular, under the expansion process, the values

of spin and velocity are set to 0 in order to avoid the

extra kinetic energy caused by expansion. After the

expansion is completed, the parent particle is

replaced by the sub-particle cluster and the parent

particle is deleted.

Figure 2 Sub-particle layouts of FRM after breaking with apollo

filling.

Table 1 Sub-particle expansion algorithm

J Mater Sci (2023) 58:3231–3248 3235



Discrete element model validation

A series of numerical triaxial tests were performed to

simulate drained shear conditions. In this paper, a

cylindrical particle aggregate with a height of 40 mm

and a diameter of 20 mm was used as the specimen

in the numerical model, and the minimum particle

size that could be crushed was set at dlim = 0.25 dmin,

which dminwas the minimum particle size of the ini-

tial material. Both physical test and numerical simu-

lations use specimens with the same gradation

distribution. Physical triaxial tests are irregularly

shaped particles, while numerical simulations are

spherical particles. The particle size of the assembly

ranges from 1 to 3 mm. The initial specimen particle

size is adopted from the test gradation in Fig. 4.

Percentage passing is the percentage of the total mass

of the specimen by the mass of a particle passing

through a certain millimeter mesh sieve. Since the

study of the effect of volume loss on the simulation

was the main purpose, the stress variation of the

numerical method was calibrated mainly using the

results of triaxial tests of calcareous sand in Fig. 5 to

determine the corresponding particle parameters and

particle fragmentation criterion parameters. In the

soil mechanics, the compression direction is taken as

Figure 3 Simplified breakage

algorithm.

Figure 4 Initial gradation curve of different crush methods. Figure 5 Simulation of triaxial test results of calcareous sand.
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the positive direction. The ratio of r1- r3 to r3 is the

deviatoric stress ratio and the difference between the

deformation length and the original length of the

specimen axially divided by the original length is the

axial strain. It can be seen that the discrete element

model is in general agreement with the macroscopic

stress–strain characteristics of the physical tests

under different confining pressures. In critical state

soil mechanics, the state in which shear drives gran-

ular soil toward a state of constant volume and con-

stant shear stress at a constant mean stress is called

the critical state. [38] In the triaxial compression test,

the critical state needs to be reached at a larger axial

strain. 30% of the termination strain is selected in the

text. The average value in the strain range of 29%-

30% is chosen as the representative value of the

critical state.

To validate the DEM model, the input parameters

are shown in Table 2.The Hertzian contact model was

used [15, 17]. In the plane of void ratio and spherical

stress, the critical state line needs to be determined by

sufficient critical state points. Therefore, in this paper,

five confining stress levels, i.e., 50 kPa, 100 kPa,

500 kPa, 1 MPa, and 2 MPa are used and 0.63 is used

as the initial void ratio. The model tests aim to reveal

the effect of volume conservation on the deformation

characteristics, macroscopic gradation differences,

and critical state of the specimens.

Analysis of numerical test results

To explore the role of volume effects in two forms of

daughter particles’ self-organization, a numerical

model without particle fragmentation is combined.

And the comparison is mainly made in three aspects

of grain size distributions, change of stress–strain

difference and critical state, and the particle micro-

scopic motion mechanism is analyzed in depth.

Variation of GSDs

Many scholars have proposed different fragmenta-

tion parameters by physical experiments to trace the

changes in gradation curves [39–42], and the relative

breakage ratio (Br) used in this paper is the concept of

relative fragmentation proposed by Hardin to quan-

titatively describe the GSDs [41], which is shown in

Table 2 Input parameters of FRM method for simulation

Input parameter Value

Contact law Hertzian

Smallest particle diameter, dmin: mm 1.0

Voids ratio 0.63

Density, qs:kg/m
3 2790

Initial number of particles 2929

Shear modulus, G: GPa 0.08

Poisson’s ratio, m: 0.3

Particle friction coefficient, fu 0.57

Wall friction coefficient 0.2

Weibull modulus, m 10.0

Limit strength of characteristic particle, rlim;0:MPa 500

Comminution limit, dlim:mm 0.25 dmin

Figure 6 Illustration for relative breakage ratio of particle

crushing amount.

Figure 7 Grain size distributions of two kind of samples under

triaxial tests.
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Fig. 6 to describe the gradation distribution

quantitatively,

Br ¼
Bt

Bp
ð10Þ

where Bt is the total breakage potential, defined as the

area enclosed by the 0.074 mm size line, the current

grading, and the initial grading curve, Bp is the initial

breakage potential, which can be expressed as the

area surrounded by the initial grading curve and

0.074 mm particle size line.

In the past, the FRM focused more on changes in

the number of crushed particles and paid less atten-

tion to the post-crushing gradation changes. How-

ever, it is worth noting that microscopic volume

change has a two-way effect on the macroscale.

Figure 7 shows the changes in GSDs in the two

methods. At low confining pressure, the crushing

amount of both methods is small and has little effect

on the gradation. As the confining pressure increases,

both gradation curves shift upward, and the differ-

ence between the methods is getting bigger, and the

expansion method is obviously higher than the

directly filling method. Under 2 MPa confining

pressure, the difference in grading between the two

methods becomes smaller again. Figure 8 shows the

volume change after shearing at different confining

pressures. It can be seen that the difference in volu-

metric strain between the two methods is small at low

perimeter pressure. The difference between the vol-

umetric strains becomes as the confining pressure

increases. At high confining pressures, the difference

between volumetric strains becomes smaller again.

The reduction of the volume of the filled particles by

the Apollo method leads to an upward shift of the

grading curve; at the same time, due to the reduction

of the sub-particle volume, the ultimate strength of

the single-particle increases and further prevents the

crushing, which in turn reduces the magnitude of the

upward shift of the grading curve. In this paper,

while counting the number of crushed and uncru-

shed particles, the effect of volume loss on the rela-

tive breakage ratio is investigated, which in turn

quantitatively describes the different patterns reflec-

ted by the two filling methods in terms of gradation

changes.

The relative breakage ratios caused by the two

methods are shown in Fig. 9 and Table 3. Br of

specimens filled directly by the Apollo method under

50 kPa confining pressure is slightly lower than that

of the expansion method specimens following vol-

ume conservation. By counting the number of parti-

cles, it is clear that the volume loss leads to an

increase in the ultimate particle strength with little

difference in the number of uncrushed particles. At

the same time, the crushing volume is less than the

Figure 8 Relationship between volumetric strain and confining

pressure after shear completion.

Figure 9 Relationship between Br and confining pressure.

Table 3 Br of two samples under different confining pressures

Confining pressure DFM Br Expansion method Br

50 kPa 0.0244 0.0261

100 kPa 0.0457 0.0356

500 kPa 0.1508 0.1226

1 MPa 0.2341 0.2894

2 MPa 0.3636 0.3713
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volume conserving specimens obtained by the

expansion method due to the limitation of the lower

confining pressure level. The differences in the gra-

dation curves at this stage are mainly influenced by

the ultimate strength of the sub-particles. However,

due to the small amount of crushing, little difference

is reflected in the gradation curves. When the con-

fining pressure increases to 100–500 kPa, the differ-

ence between the grading curves of different methods

is more obvious, and the volume loss of the Apollo

method is larger than the volume conservation

expansion method. The stress concentration phe-

nomenon caused by the volume reduction of

daughter particles due to the change of the confining

pressure conditions promotes the fragmentation of

adjacent particles in the Apollo method. The particle

volume expansion causes the stress concentration

effect to be reduced, but the number of broken par-

ticles is much higher than that of the directly filling

method shown in Table 4, due to the volume effect of

the expanded particles reducing the ultimate strength

of individual particles, which are the main source of

the number of broken particles. The difference in the

number of crushed particles at this stage is greater

than that at the previous stage. While the number of

uncrushed particles for the directly filling method is

significantly less than that for the expansion method.

Therefore, the main factor causing the upward shift

of the grading curve at this stage originates from the

number of uncrushed particles. When confining

pressure increases to 1–2 MPa, the expansion method

specimens upward shift more than the direct Apollo

filled specimens. The variability of the grading curves

again decreases with the increase of the surrounding

pressure. A further increase in stress level leads to

more initial particle fragmentation. Larger volume

sub-particles have a higher fragmentation probabil-

ity. With these two effects, the expansion method far

exceeds the Apollo direct filling method in terms of

the number of crushed particles. Therefore, there

exists the equilibrium point of the volume loss effect

mentioned before, which leads to the alternating

position of the grading curve. And there is a volume

loss point that makes the maximum difference in the

gradation curves. Beyond this point, as the confining

pressure increases, the two gradation curves start to

approach each other and converge to the ultimate

crushing curve at the same time.

Characteristics of strength and deformation

Previous studies have concluded that the Apollo

layout has a small effect on the strength properties of

the particles. Figure 10 shows the results of the vol-

umetric strain and stress–strain simulation consider-

ing the volume loss factor in this paper. The

specimens reached the peak strength at the beginning

of shear at a small shear displacement. As the con-

fining pressure increases, the shear strain required to

reach the peak strength increases. The post-peak

strength undergoes different degrees of stress drop,

which is consistent with strain softening characteris-

tics. Under the condition of lower confining pressure,

the amount of particle breakage is very small. The

unbroken particles play a major role, and the main

skeleton of the sample still dominates the stress

maintenance. The stress curve is therefore not subject

to mass loss. The stress variation trends of the two

forms of self-organization are almost the same, but

both strengths are lower than that of unbroken par-

ticles. The crushing of the direct filling method

specimens surges with increasing confining pressure.

The effect of mass loss on stress variation starts to

come to the fore. The volume loss effect due to the

direct filling method is further enhanced at 500 kPa

confining pressure. The difference between the two

stress variation curves is more obvious, and even the

difference between strain-softened and strain-hard-

ened types appears. This is due to the reduction in

the volume of the replacement sub-particles resulting

in larger voids in the specimen. The stress concen-

tration phenomenon tends to be obvious, and more

Table 4 Statistics of broken particles and unbroken particles of samples

50 kPa 100 kPa 500 kPa 1 MPa 2 MPa

Broken Unbroken Broken Unbroken Broken Unbroken Broken Unbroken Broken Unbroken

DFM 1519 2827 2451 2675 10868 2199 26834 1891 46827 1473

Expansion Method 1931 2818 5349 2779 18946 2390 43297 1728 70478 1428
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initial particles produce crushing. However, their

volume loss leads to a larger single-particle ultimate

strength, which has an inverse effect on the amount

of crushing. At low confining pressure levels, this

crushing equilibrium effect is not sufficient to affect

the stress trend. As the confining pressure level

increases, it causes the crushing difference to be

accentuated. From the simulation results, it can be

concluded that there is a volume loss effect equilib-

rium point. Exceeding this point leads to a

Figure 10 Stress–strain

curves of two different crush.
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divergence of stress trends. Its positive promotion

effect on the crushing volume starts to gradually

exceed the negative hindrance effect. In contrast, the

replacement sub-particles by expansion do not affect

their ultimate strength and do not change the force

conditions of the surrounding initial particles. This

directly leads to the difference in the trend of stress

change between the two. The particles in Fig. 11 are

crushed particles. The crushed particles produced by

the directly filling method are more dispersed, while

the crushed particles produced by the expansion

method are mostly concentrated within the circle.

Meanwhile, it can be seen that the expansion method

results in volume conserved specimen following a

pattern of fragmentation along with the shear band.

The stress changes of the expansion method and

the direct filling method converge again for the cases

of 1 and 2 MPa of the confining pressure. This is since

the fact that the ultimate strength of the latter sub-

particles is higher than that of the former at high

confining pressure levels. The reverse hindrance of

crushing is enhanced by the direct filling method.

From the strain curves of the three specimens, it is

clear that the volumetric strain of the unbroken

specimens is only related to the degree of void

compression. The dilatancy phenomenon eventually

appeared in the specimens under each confining

pressure condition. However, as the force level

increases, the shear contraction is significantly

enhanced while the shear dilatation is weakened. The

shear contraction of the expansion method specimens

is further enhanced compared to the uncrushed

specimens. This is due to the filling of voids by small

crushed particles, resulting in a further reduction of

the volumetric strain. It is noteworthy that under the

500 kPa confining pressure condition, there is still a

tendency for shear dilatation in the expanded speci-

mens. The direct filling method is more fully crushed,

resulting in increased porosity, smaller sub-particles,

and more adequate filling of the voids. Affected by

these two aspects, the shear contraction of the speci-

mens is more obvious compared with the expansion

method. With the increase of the confining pressure

to more than 1 MPa, both crushed specimens were

contracted, which also proved the existence of the

equilibrium point of the volume loss effect.

Figure 11 Comparison of broken bond of two samples under triaxial tests.

Figure 12 Critical state line in q-p plane.
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Critical state lines

The critical state lines in the q–p plane are shown in

Fig. 12 were obtained by critical state point fitting.

The critical state lines of all three simulated speci-

mens in this plane pass through the coordinate ori-

gin. All three fitting coefficients R2 are up to 0.99 or

more, which can be expressed by the equation

q = Mp. The critical state stress ratio of unbroken

particles is Munbroken = 1.762, the critical state stress

ratio of volume loss particles is Mloss = 1.853, and the

critical state stress ratio of volume conserved parti-

cles is Mequal = 1.851. The critical state stress ratios of

the two broken specimens are approximately equal.

Therefore, it can be seen that volume loss does not

affect the final critical state stress ratio.

Figure 13a shows the distribution of the critical

void ratio state points for the numerical tests of three

different samples. Since the gradation and initial void

ratio of the three are the same, the shift of the critical

state line mainly comes from the difference in frag-

mentation. The state line where particle breakage

does not occur is called the initial critical state line.

From the fitting curve results of the critical state

point, the initial critical state line gradually decreases

with the increase of the confining pressure. The

compression causes the critical void ratio to drop.

The curve of the expansion method shifts overall to

below the initial critical state line. The change of the

critical void ratio is influenced by the initial void

being compressed. At the same time, the filling of the

specimen by crushed sub-particles leads to further

compression. The specimens of the direct filling

method did not affect the critical state line under the

initial confining pressure. As the force level increases,

the critical state line gradually shifts downward. The

larger the confining pressure is, the larger the

downward shift is. The volume loss has two effects

on the critical state. On one hand, the particle volume

reduction causes the porosity to be elevated and the

compressibility to become stronger. The volumetric

strain thus increases and there exists a positive effect

on the compression. On the other hand, sub-particle

volume loss and filling of voids by fine particles

make the specimen denser and prevents the volume

Figure 13 Critical state line in e-p plane.

Figure 14 Particle trajectory of samples under 1 MPa confining

pressure.
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from being compressed. The reduction in daughter

particle volume leads to increased difficulty in

crushing. This creates resistance to continued filling

and produces a negative effect. However, the nega-

tive effect gradually decreases at large shear dis-

placements. And the effect on the void ratio

diminishes as the stress level increases.

Li et al. [43] found that the critical state lines in the

e - lgp plane of sandy soils are irregular curves.

However, it can be approximated by a straight line in

the e� p=pað Þn plane, which is given by

ec ¼ eC � kc
p

pa

� �n

ð11Þ

where ec is the critical void ratio, eC is the critical void

ratio when the effective spherical stress is 0, kc is the
slope of the critical line, n is the material parameter,

which is taken as 0.7 in this paper, and Pa is the

atmospheric pressure. The slopes of the fitted curves

for the expansion method and the unbroken samples

were 0.0431 and 0.0411, respectively, which were

approximately parallel. While the slope of the direct

filling method fitted straight line is 0.0812 and the

fitting accuracy is lower than the other two lines as

shown in Fig. 13b.

Microscale responses

The trajectory of particle motion, as well as the par-

ticle motion velocity vector center profiles of the

specimens under 1 MPa confining pressure, are given

in Figs. 14 and 15. Both methods have intense motion

in the particle crushing zone, while the motion at the

initial particles is not obvious. The trajectory of the

direct filling method is mainly concentrated in the

particle crushing region and shows disorder. While

the overall motion trend of the expansion method is

extended from the upper and lower loading plates to

the middle of the specimen. The trajectory covers the

broken particles, and the end triangle region is

obviously broken. From the velocity vector, it can be

seen that the sub-particles of the direct filling method

are affected by the plunge at replacement and cannot

maintain the original motion direction. The expan-

sion method makes the upper and lower end tapered

sections move approximately vertically, which can be

identified as the elastic region. In the middle of the

profile the velocity turns horizontally and the closer

to the middle the more obvious the deflection is,

showing a symmetrical decreasing phenomenon.

Figure 16 gives the displacement nephogram in the

central longitudinal section under different strains of

the two specimen numerical models. The comparison

shows that the initial displacement development is

approximately the same. As the axial strain increases,

the difference in particle displacement is gradually

accentuated. The direct filling method shows a cer-

tain regularity in shear morphology at the time of

damage. That is, the end effect is obvious, but the

particle displacement variability in the middle of the

specimen is small and always shows uniform

expansion. The overall displacement variation of the

expansion method is more clear. Its nephogram bet-

ter reflects the formation of the shear zone. The par-

ticles in the middle part of the specimen exhibit non-

uniform dilatation when the specimen is damaged.

This leads to a difference in displacement, which

results in an ‘‘X’’ shaped distribution of the shear

zone.

As the mechanism of force transmission in discrete

elements, the evolution and distribution of the force

chain play a crucial role. Figure 17 shows the central

profile of force chain development under different

axial strains. With the increase of axial strain, the

force chain appears to develop gradually from an

initial more uniform distribution toward the end. In

combination with Figs. 15 and 16, the application of

the expansion method results in a more regular

movement of the end particles. The axial force chains

are transferred early through the contact generated

by the particle motion. The number of force chains is

significantly more than that of the direct filling

method specimens. With increasing shear

Figure 15 The particle velocity vector figure of samples under

1 MPa confining pressure.
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displacement, the force chain development tends to

be consistent for the specimens of both methods. In

addition, the coordination number, as an index to

evaluate the overall contact stability of the specimens,

is also important for the distribution of force chains.

The critical coordination number of the volume con-

served specimen is 5.212189, and the critical coordi-

nation number of the volume lost specimen is

5.154938. The difference between them is very small.

The force chain distribution and the coordination

number together determine that the critical stress

ratios of the two methods are approximately equal.

Comparative analysis with physical tests

The effect of model parameters has a great influence

on the simulation results, but the final simulation law

obtained needs to be consistent with the triaxial

experiment (Fig. 18). The triaxial test materials and

test conditions are shown in Table 5. Based on the

consideration of the correctness of the numerical

model, the influence of the expansion method on the

simulation results is analyzed.

Figure 19 shows the comparison between the

results of the expansion method and the physical

experimental method under 400 kPa confining pres-

sure, respectively. It can be seen that for the stress

variation trend, the variability between the numerical

simulation results and the experimental results is

relatively small. However, the volume of the sub-

particles plays a crucial role in the axial strain versus

the volumetric strain. Both physical experiments and

expansion method simulation results show signifi-

cant shear dilatation. However, the direct filling

method continuously maintains shear contraction

with volume loss due to crushing. Although the

stress changes of both the direct filling method and

the expansion method meet the experimental results

Figure 16 Numerical

simulation displacement

nephogram at different axial

strains.
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at lower envelope pressures, the difference in volu-

metric strains between the two is significant as the

crushing proceeds. Therefore, the expansion method

ensured the reasonableness of the volume change.

Conclusions

A three-dimensional discrete element model is

established based on the mass conservation and

volume conservation considerations of daughter

particle’s self-organization. The response of volume

effect to macroscopic properties such as deformation

characteristics, GSDs, and critical line variation is

analyzed and concluded as follows.

1. The existence of the equilibrium point of the

volume loss effect is verified. This point affects

the stress–strain variability and is directly related

to the stress level of the specimen. The softening

curve is converted to hardening by the influence

of this point. The volumetric strain is also

influenced by this point from shear dilatation to

shear contraction.

2. It can be seen that the difference in GSDs

originates from the bidirectional influence of the

volume loss of sub-particles on the crushing

through quantitative analysis of the crushing rate

and the number of particles. At a low-stress level,

the volume loss promotes the crushing, and the

gradation difference becomes larger with increas-

ing stress levels. At a high-stress level, the

volume loss hinders crushing and the gradation

curve tends to move to the ultimate crushing

curve and the difference becomes smaller.

3. The effect of volume loss on the critical state line

is complex. Although the volume loss has a

significant effect on the stress change during

shear, it don’t affect the critical stress ratio. The

decrease in the critical void ratio due to volume

loss increases with the increase in the confining

pressure.

4. From the microscopic displacement develop-

ment, particle motion, and force chain develop-

ment, it is clear that the microscopic

Figure 17 Development of contact force chain in the center

section of samples under 1 MPa confining pressure.

Figure 18 Triaxial test specimen.

Table 5 Test scheme
Sand type Confining pressure(kPa) Gs Dry density(g/cm3) Drainage conditions

Calcareous sand 400 2.79 qmax = 1.653

qmin = 1.267

CD
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characteristics of the expansion method are more

consistent with the crushing law. Its macroscopic

mechanical characteristics reflect more

reasonably.

The expansion method is verified by the results

of triaxial tests. The application of this method

needs to be further research on experimental

comparison studies. This study was only per-

formed in same GSD. The macro and micro

characteristics due to particle breakage needs to

be investigated in other conditions.
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Soils Géotechn 8(1):22–53. https://doi.org/10.1680/geot.19

58.8.1.22

[39] Marsal RJ (1967) Large-scale testing of rockfill materials.

J Soil Mech Found Division 93(2):27–43. https://doi.org/10.

1061/JSFEAQ.0000958

[40] Lade PV, Yamamuro JA, Bopp PA (1996) Significance of

particle crushing in granular materials. J Geotechn Eng

122(4):309–316. https://doi.org/10.1061/(ASCE)0733-9410(

1996)122:4(309)

[41] Hardin BO (1985) Crushing of soil particles. J Geotechn Eng

111(10):1177–1192. https://doi.org/10.1061/(ASCE)0733-9

410(1985)111:10(1177)

[42] Einav I (2007) Breakage mechanics part I: theory. J Mech

Phys Solids 55(6):1274–1297. https://doi.org/10.1016/j.jmp

s.2006.11.003

[43] Li XS, Dafalias YF (2000) Dilatancy for cohesionless soils
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