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ABSTRACT

Themean-field theory proposed byHumphreys iswidely used to predict or interpret

abnormal grain growth induced by nonuniform grain boundary properties. Based on

this theory, the abnormal growth conditions of a specific grain can be expressed as a

function of only three parameters: the size ratio, boundary energy ratio, andmobility

ratio between the specific grain and its surrounding matrix grains. However, quan-

titative and systematic validation of this theory is not yet reported neither in experi-

ments nor simulations. In this study, to elucidate the validity of themean-field theory,

we perform large-scale phase-field simulations for two-dimensional and three-di-

mensional abnormal grain growth. The multi-phase-field numerical model and par-

allel graphics processing unit computing are employed, which enables the accurate

analyses of abnormal growth in large-scale systems with several hundreds of thou-

sands of grainswhile accounting for the nonuniformity in grain boundary properties.

Systematic simulations are performed while varying the size ratio, boundary energy

ratio, and mobility ratio between the specific grain and matrix grains. The simulated

results and theoretical predictions on the abnormal grain growth behaviors, i.e.,

whetherornot theabnormalgrowthoccursand themaximumsize that canbe reached

by an abnormally growing grain, are compared in detail. The large-scalemulti-phase-

field simulations reveal for thefirst time the agreement between themean-field theory

andnumerical simulationquantitatively,demonstrating that themean-field theory isa

versatile means for describing abnormal grain growth.
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GRAPHICAL ABSTRACT

Introduction

During the processing of polycrystalline materials,

the competitive growth of crystal grains, i.e., grain

growth, is one of the most important metallurgical

phenomena, because it determines the final

microstructures and resultant physical properties of

the materials [1, 2]. Grain growth phenomena can be

classified into two categories: normal and abnormal

growth. The normal grain growth ubiquitously

occurs in the heat treatment of materials, through

which the microstructures are coarsened in a uniform

manner. On the other hand, the abnormal grain

growth is observed only for limited cases; once this

phenomenon takes place, a few ‘‘abnormal’’ grains

emerge from normally growing grains and under-

goes preferential growth. Since the abnormal grain

growth plays a decisive role in producing high-per-

formance materials such as textured materials [1, 3]

and single crystals [4, 5], the ability to predict the

onset and growth behaviors of abnormal grains is of

great technological importance.

There are several factors causing abnormal grain

growth, including the pinning by second-phase par-

ticles [1, 6, 7], surface drag on thin films [8, 9], and

nonuniformity in grain boundary properties (energy,

c, and mobility, M) due to the crystallographic ani-

sotropy and complexion transitions [1, 3, 10–13]. In

particular, the abnormal growth induced by

nonuniform grain boundary properties is considered

the commonest one, being observed in a wide variety

of systems from single-phase pure materials to alloys

[14–16]. Furthermore, several studies have suggested

that this type of abnormal grain growth could be a

dominant mechanism for important heat treatment

phenomena, e.g., the nucleation of recrystallized

grains [10, 17] and texture development [3, 18]. As a

simple but useful theory for predicting or interpret-

ing the nonuniform property-induced abnormal

grain growth in two-dimensional (2D) and three-di-

mensional (3D) systems, the mean-field theory pro-

posed by Humphreys [17] is well known. In the

mean-field theory, a polycrystalline system is mod-

eled as constituting of two ingredients (see Fig. 1),

namely a specific grain with a size R and its sur-

rounding matrix grains with an average size hRi.
Here, all of the grain boundaries of the specific grain

are assumed to have a same energy c and mobility

M. Similarly, all the boundaries between the matrix

grains take a constant energy hci and mobility hMi,
whose values are different from those of the specific

grain (i.e., hci = c and hMi = M; this corresponds

to the ‘‘nonuniformity’’ in boundary properties). The
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growths of the specific grain and matrix grains are all

assumed to be purely curvature-driven. Based on this

modeling and the mean-field analysis of Hillert [6],

the theory allows for predicting the abnormal growth

behavior of the specific grain (i.e., whether or not the

abnormal growth occurs and the maximum grain size

that can be reached when the abnormal growth

occurs) using only three parameters: the grain size

ratio q = R/hRi , boundary energy ratio C = c/hci ,
and mobility ratio l = M/hMi . Furthermore, the

theory can be easily extended such that it accounts

for more complicated metallurgical factors such as

particle pinning [19]. We note that Rollett and Mul-

lins [20] published an abnormal grain growth theory

independently of Humphreys; although their theory

is limited to 2D systems because it is derived from the

von Neumann–Mullins law [21], the resultant equa-

tions are rather similar to those of the Humphreys

theory.

In the original paper of Humphreys [17], he

applied the mean-field theory to the analysis of

abnormal growth in textured materials, deriving the

occurrence conditions of abnormal growth and the

maximum size of abnormally growing grains

depending on the texture strength (average

misorientation angle of grain boundaries); the ana-

lyzed results were proved to be in a qualitative

agreement with a few experimental observations

[17, 22]. After that, several studies [23–29] have

compared the mean-field theory to experimental

results for the annealing of pure or alloyed metals

and reported that the occurrence of abnormal growth

[23, 24, 26, 29, 30] and the limiting sizes of abnormal

grains [25–28] seem close to the theoretical predic-

tion. The mean-field theory is therefore considered as

a simple but useful framework that can interpret

experimental results, and widely employed for ana-

lytical/numerical studies of abnormal grain growth

and related phenomena [19, 31–36]. However, the

previous studies so far have tested the mean-field

theory only for limited samples in a qualitative (or

semiquantitative) manner, and the systematic and

quantitative validation of the theory is still not

reported. This is largely attributable to the difficulties

in the experimental or numerical verifications of the

theory. That is, for experiments, it is not straightfor-

ward to prepare an idealized model system (such as

that shown in Fig. 1) in specimens and to correctly

quantify the characteristics (e.g., sizes) of 3D abnor-

mal grains and their surrounding matrix from usual

observations on 2D surfaces or cross sections of the

sample. Since computer simulations can easily treat

systems with arbitrary geometrical and physical

conditions while measuring the 3D characteristic of

grains, numerical investigations on abnormal grain

growth are frequently attempted based on contin-

uum-based grain growth models, including the

Monte Carlo [10, 13, 37, 38], cellular automaton [39],

phase-field [40–43], and level-set [44] models. How-

ever, in a usual computational scale employed to date

(* several hundreds or thousands of grains), suffi-

ciently long-term observation of abnormal grain

growth is not feasible, and therefore, it is difficult to

compare the maximum size reached by the abnormal

grains with the theoretical predictions. To quantita-

tively elucidate the validity of the classical mean-field

theory, very large-scale simulations of abnormal

growth should be achieved.

Lately, there have been great advances in grain

growth simulation using the phase-field model: The

multi-phase-field (MPF) models developed in several

works [45–49] and the active parameter tracking

(APT) algorithm proposed by three groups [50–52]

allowed for the effective computation of grain growth

while avoiding the artificial coalescence of grains.

Figure 1 Idealized polycrystalline system for modeling abnormal

grain growth. The system consists of a specific grain with a size

R and its surrounding matrix grains with an average size hRi . All
of the grain boundaries of the specific grain are assumed to have a

same energy c and mobility M. Similarly, all the boundaries

between the matrix grains take a constant energy hci and
mobility hMi , whose values are different from those of the

specific grain (i.e., hci = c and hMi = M).
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The MPF models were also proved to accurately

handle grain boundary migrations under nonuniform

boundary properties [53, 54]. Moreover, thanks to

recent developments in high-performance comput-

ing, very large-scale phase-field simulation is

becoming possible. For instance, by enabling mas-

sively parallel graphics processing unit (GPU) com-

puting on a supercomputer, our previous studies

achieved large-scale phase-field simulations on vari-

ous solidification phenomena [55–59]. Very recently,

we have applied the parallel GPU computing to a

MPF model [48], and succeeded in simulating 3D

normal grain growth with an extra-large number

(orders of 105–106) of initial grains [60–62]. This

computational scale allowed for correctly quantifying

the statistical behaviors of normal grain growth.

These findings suggest that large-scale MPF simula-

tion will also provide a prominent means for

describing the abnormal grain growth induced by

nonuniform boundary properties with statistical and

numerical accuracy.

Given the above background, we aim to elucidate

for the first time the validity of the mean-field theory

of abnormal grain growth [17] through comparison to

very large-scale MPF simulations. As a first step, this

study mainly focuses on 2D abnormal growth that is

computationally easy to handle, and systematically

investigates the effects of the size ratio q = R/hRi ,
boundary energy ratio C = c/hci , and mobility ratio

l = M/hMi on the abnormal growth behaviors.

Although computational scales such as the time

duration of simulations are limited, we also attempt

the evaluations on 3D abnormal growth. The

remainder of this paper is organized as follows: First,

in Sect. 2, the mean-field theory of abnormal grain

growth is briefly outlined. Next, Sect. 3 describes the

methodology and computational conditions for MPF

grain growth simulations. The parallel GPU

scheme [60–62] is applied to abnormal grain growth,

enabling systematic simulations on greatly enlarged

scales. In Sect. 4, we discuss the validity of the mean-

field theory based on the simulations. While varying

the initial size ratio, boundary energy ratio, and

mobility ratio between matrix grains and a poten-

tially abnormal grain, 2D and 3D simulations are

systematically performed and compared to the theo-

retical predictions. Finally, in Sect. 5, we conclude

this paper with a summary and some remarks on

future work.

Mean-field theory of abnormal grain
growth

We briefly describe the mean-field theory of abnor-

mal grain growth proposed by Humphreys [17]. Let

us again consider the model system shown in Fig. 1

that consists of a specific grain (size R, grain bound-

ary energy c, and mobility M) and its surrounding

matrix grains (average size hRi , grain boundary

energy hci , and mobility hMi). Here, grain sizes

R and hRi are defined as the circle-equivalent radii

for 2D and sphere-equivalent radii for 3D. Note that

this ‘‘specific grain’’ can be interpreted as a kind of a

statistical outlier. That is, the sizes of grains in actual

materials have a distribution, where a minority of

very large grains typically have a size around 2.5–3

times larger the average grain size [1]. Similarly, the

orientations of grains are also distributed. A few

grains whose orientations are significantly different

from the preferred orientation of other grains will

exhibit unique grain boundary properties. Such

grains with statistically significant differences from

other grains correspond to ‘‘specific’’ ones.

In the mean-field theory, the following assump-

tions for grain boundary properties are used for

simplification:

(1) Grain boundary energy and mobility are

dependent solely on the boundary misorienta-

tion angle (i.e., inclination dependencies are

omitted, which is because the misorientation is

typically significantly more dominant on the

variations in the boundary properties [63, 64]).

(2) Grain boundaries constituting the specific grain

take a uniform misorientation angle, h. Simi-

larly, the boundaries between the matrix grains

also take a uniform misorientation, hhi . In

actual materials, of course, h and hhi have
distributions, but the mean-field theory simpli-

fies the situation by using the average values as

the representative values.

(3) Grain boundary energy and mobility of the

specific grain, c and M, and those between the

matrix grains, hci and hMi , which depend on

the misorientation angles, are also constant for

the specific grain boundaries and for the matrix

grain boundaries, respectively.

Therefore, the explicit parameters to describe the

thermodynamic conditions of a system are c, hci ,
M, hMi . Using this modeling, the abnormal growth
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conditions for the specific grain can be expressed as a

function of the grain size ratio q = R/hRi , boundary
energy ratio C = c/hci , and mobility ratio l = M/

hMi , as demonstrated below.

With the assumption that the grain growth is dri-

ven only by grain boundary curvatures, the deriva-

tion of the Humphreys theory is done using two basic

equations for describing curvature-driven kinetics.

One is the mean-field approximation for individual

grain growth kinetics, through which the growth rate

of the specific grain, dR/dt, is determined by its size

R relative to the average (mean) size hRi of the

matrix grains:

dR

dt
¼ aM

hci
hRi �

c
R

� �
, R

dR

dt
¼ aMhci q� Cð Þ; ð1Þ

where a is a geometrical constant that takes a value of

0.5 for 2D and 1 for 3D systems. Equation (1) can be

regarded as an intuitive expansion of Hillert’s mean-

field equation [6], dR/dt = aMc (1/hRi-1/R), to the

case of nonuniform grain boundary energy (c =

hci). The other basic equation is that describing the

growth rate of the average size of the matrix grains,

which is given by the well-known parabolic law [6]:

dhRi
dt

¼ a
4

hMihci
hRi , dhRi2

dt
¼ a

2
hMihci: ð2Þ

The growth rate of the specific grain relative to that

of the matrix grains, dq/dt, can be expressed as:

dq
dt

¼ d

dt

R

hRi

� �
¼ 1

hRi2
hRidR

dt
� R

dhRi
dt

� �
: ð3Þ

By substituting Eqs. (1)–(2) to Eq. (3) and re-ar-

ranging it, dq/dt reduces to:

dq
dt

¼ ahMihci
RhRi � 1

4

R

hRi

� �2

þ M

hMi
R

hRi �
M

hMi
c
hci

" #

¼ ahMihci
RhRi � 1

4
q2 þ lq� lC

� � ð4Þ

As first shown by Thompson et al. [65], when dq/
dt[ 0, the specific grain will grow faster than the

normally growing matrix grains and lead to the

occurrence of abnormal grain growth. Hence, the

abnormal growth condition for the specific grain is:

X � � 1

4
q2 þ lq� lC [ 0: ð5Þ

Furthermore, the two roots of X = 0 determine the

lower and upper bounds of the abnormal growth:

qmin ¼ 2l� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l� Cð Þ

p
; ð6Þ

qmax ¼ 2lþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l� Cð Þ

p
: ð7Þ

The condition for abnormal grain growth therefore

depends on q = R/hRi , C = c/hci , and l = M/hMi .
This relation can be illustrated as a diagram shown in

Fig. 2. As shown in Fig. 2, if the specific grain has a

relative size q larger than the lower bound of a solid

curve (i.e., minimum size ratio qmin), it will undergo

the abnormal growth and grow to the upper bound of

the curve (i.e., maximum size ratio qmax). When the

abnormal grain attains the maximum size ratio qmax,

it continues to grow, but the ratio q remains constant.

For the conditions where l\ C, as confirmed from

Eqs. (6)–(7), qmin and qmax do not have real number

values and the specific grain always shrinks for any q
value.

When analyzing abnormal grain growth using the

mean-field theory, the grain boundary energies and

mobilities are often expressed as functions of misori-

entations using the Read–Shockley relation and the

sigmoidal model, respectively, as Humphreys himself

did in his original paper. However, many studies have

reported that, in real materials, these boundary prop-

erties frequently deviate from the description of the

existing models such as the Read–Shockley and

Figure 2 Abnormal growth conditions of the specific grain

shown in Fig. 1 as a function of the grain size ratio q = R/hRi ,
boundary energy ratio C = c/hci , and mobility ratio l = M/hMi .
If the specific grain has a relative size q larger than the lower

bound of a solid curve (i.e., minimum size ratio qmin given by

Eq. (6)), it will undergo the abnormal growth and grow to the

upper bound of the curve (i.e., maximum size ratio qmax given by

Eq. (7)). For the conditions where l\ C, qmin and qmax do not

have real number values and the specific grain always shrinks for

any q value.
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sigmoidal ones [66–68], and conclusive models are not

yet established. Therefore, in the rest of this paper, the

grain boundary properties are not expressed by

specific functions, but are treated as independent

parameters that can be set arbitrarily.

Simulation methodology

Multi-phase-field model

The MPF model proposed by Steinbach and Pezzolla

[48] is employed for grain growth simulations,

because it can effectively and accurately handle grain

boundary migration under nonuniform boundary

energy and mobility [54]. This model represents a

polycrystalline system including N grains through N

phase-field variables /i (i = 1, 2, …, N), which take a

value of 1 in the ith grain, 0 in the other grains, and

0\ /i\ 1 at the grain boundaries. The sum of the

phase-field variables at any spatial point in the sys-

tem should be conserved as:

XN
i¼1

/i ¼ 1 : ð8Þ

When considering pure curvature-driven grain

growth, the total free energy of the system, G, is

expressed as:

G ¼
Z
V

XN
i¼1

XN
j¼iþ1

Wij/i/j �
a2ij
2
r/i � r/j

 !
dV; ð9Þ

where Wij and aij denote the barrier height and gra-

dient coefficient of the boundary between the ith and

jth grains, respectively. The migration of grain

boundaries is reproduced by calculating the time

evolution of /i at each spatial point under the con-

straint of the minimization of G. The time evolution

equation satisfying Eq. (8) is given as:

o/i

ot
¼ � 2

n

Xn
j¼1

M/
ij

Xn
k¼1

Wik�Wjk

� �
/kþ

1

2
a2ik�a2jk

	 

r2/k

� �
;

ð10Þ

where n denotes the number of coexisting grains at

the spatial point and M/
ij denotes the phase-field

mobility of the boundary between the ith and jth

grains. In the simulations that follow, the n value was

evaluated using the iterative algorithm of Takaki

et al. [69], which allows for accurate and stable MPF

computation of grain growth with nonuniform grain

boundary properties [54].

The parameters M/
ij, Wij, and aij included in

Eq. (10) are related to the thickness (d), energy (cij),
and mobility (Mij) of the grain boundary through the

following equations:

M/
ij ¼

p2

8 d
Mij; Wij ¼

4cij
d

; aij ¼
2

p

ffiffiffiffiffiffiffiffiffiffi
2dcij

q
: ð11Þ

In the simulations that follow, for the grain

boundaries constituting the specific grain (Fig. 1), cij
and Mij are set to uniform values of c and M,

respectively. On the other hand, for the grain

boundaries between the matrix grains, constant val-

ues of hci and hMi are used for cij and Mij,

respectively.

The boundary thickness d must be large enough to

resolve the boundary regions. Here, we set d to six

times the grid spacing, which has been reported as a

good compromise between computational accuracy

and cost [50]. The time evolution equation (Eq. (10))

was numerically solved using the first-order forward

difference scheme and second-order central differ-

ence scheme for time and space, respectively.

Computational systems and parameters

To elucidate the validity of the mean-field theory of

abnormal grain growth, a series of large-scale MPF

simulations were performed and compared to the

theory. Since, as shown later (Sect. 4), it is difficult to

analyze the long-term behaviors of 3D abnormal

growth even using the current high-performance

computing technique, we mainly focused on 2D grain

growth and thoroughly examined the phenomenon

via systematic simulations. However, a few simula-

tions were also performed on 3D grain growth for the

basic evaluation of the mean-field theory for 3D

cases. The computational conditions we employed

for the 2D and 3D simulations are summarized

below. Note that the units for time, length, grain

boundary energy, and mobility are all nondimen-

sionalized with typical scales of 1 s, 10–6 m, J/m2,

and 10–12 m4/(Js), respectively.

J Mater Sci (2022) 57:16690–16709 16695



Conditions for abnormal grain growth simulations

Figure 3 depicts the computational systems for sim-

ulating 2D/3D abnormal grain growth, which consist

of a circular/spherical specific grain of size R and

approximately 300,000 (2D) or 200,000 (3D) matrix

grains with an average size of hRi . The 2D and 3D

domains with periodic boundaries were divided into

12,2882 and 12803 grid points, respectively, using

regular square grids of size Dx = 1.

To examine the effects of the initial size ratio qinit-
= (R/hRi)init, boundary energy ratio C = c/hci , and
mobility ratio l = M/hMi on the abnormal growth

behavior of the specific grain, systematic simulations

were carried out while varying these parameters.

Here, the initial average size hRi init, boundary

energy hci , and mobility hMi of the matrix grains

were set to hRi init = 12.2 (2D) or 12.5 (3D), hci = 1,

and hMi = 1, whereas those of the specific grain

were varied. Note that when C\ 0.5 for 2D and

C\
ffiffiffi
3

p
� 0:6 for 3D, the specific grain infinitely

grows due to the occurrence of solid-state wetting

[70]; therefore, we limited C to range C 0.75. In

addition, as grain boundary mobilities in actual

materials generally exhibit stronger nonuniformity

than boundary energies [67, 71], the mobility ratio l
was set within a wider range than energy ratio, as

follows: l = 0.75–10 and C = 0.75–4 for 2D, and

l = 0.75–4 and C = 0.75–2 for 3D. Here, for 3D sim-

ulations that are computationally much more

expensive than 2D simulations, we limited the C and

l values to relatively narrow ranges. This is because,

as stated below (Eq. (12)), the time increment Dt for
the simulations must decrease with increasing C and

l values, and accordingly, the computational cost of

3D simulations with large C and l is tremendously

high. Note that within the range of nonuniformity in

the grain boundary properties employed here, the

MPF model can accurately reproduce the grain

boundary migration rate (with errors less than sev-

eral percent), as shown in a previous study [54]. As

mentioned in Sect. 2, when l\C, abnormal growth

is not expected to occur for any q value. In such cases,

the initial size ratio qinit was set to 4. By contrast, for

cases where l[C, the following three conditions

were used for the qinit value.

• qinit = 0.67 9 qmin: the specific grain is initially

smaller than the minimum relative size, qmin,

given by Eq. (6) and is expected to shrink.

• qinit = 1.33 9 qmin: the specific grain is initially

larger than qmin, expected to grow abnormally to

the maximum relative size, qmax, given by Eq. (7).

In this case, for most C and l values, the specific

grain has an initial size of 1–3 times the average

size of the matrix grains, which is within the

typical range of the maximum grain size observed

in actual materials [1]. Only for C = 4 with l = 10,

the initial relative size of the specific grain (R & 6

hRi) is outside the typical range.

• qinit = 1.33 9 qmax: the specific grain is initially

larger than qmax, expected to grow, but decrease

its relative size to qmax.

The above-described conditions for qinit and l are

schematically illustrated in Fig. 4 and compared to

the abnormal grain growth diagram shown in Fig. 2.

Here, as an example, we set the C value to 1. The

simulations started with the conditions shown in

Fig. 4.

The time increment, Dt, of the simulations was

determined from the stability condition for the

explicit schema, as follows:

Dt ¼ 0:75
Dx2

bMmaxcmax

; ð12Þ

where b is a parameter that takes a value of 4 for 2D

cases and 6 for 3D cases. cmax = max{c, hci} and

Mmax = max{M, hMi} are the maximum values of the

boundary energies and mobilities in the system,

respectively. The Dt value is hence dependent on the

conditions of the boundary property ratios, C and l.
For each simulation, the initial polycrystalline

structures were created as follows: First, a polycrys-

talline structure with 600,000 (2D) or 685,000 (3D)

matrix grains was prepared in the computational

domain by growing randomly distributed nuclei

under a constant driving force. The resultant struc-

ture is equivalent to that obtained by the Voronoi

tessellation. Then, to avoid an artificial effect coming

from the use of the Voronoi structure, a normal grain

growth simulation was conducted for 2000 time

steps, after which 284,728 (2D) or 190,960 (3D) grains

remained in the system. Finally, a specific grain with

a circular/spherical shape was embedded in the

center of the computational domain. The initial

structures for each simulation were the same, except

for the initial size of the specific grain.

As summarized here, the initial size advantage of

the specific grain was arbitrarily set in the
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simulations. However, it should be noted that the

methods to obtain this size advantage are of great

interest in metallurgy. Although several formation

mechanisms of the initial large grains have been

suggested (e.g., the rapid growth of a few nuclei

formed at very early stages during phase transfor-

mation [72], dissolution of second-phase particles

and the resulting unpinning of particular grains [73],

and coalescence of subgrains in deformed materials

[1, 74]), the details of their formation are still debated.

The formation mechanisms of potentially abnormal

grains will be addressed elsewhere. In addition,

according to the simple Humphreys model, the pre-

sent simulations account for only two types of grain

ingredients (specific/matrix grains) without inclina-

tion-dependent boundary properties, which results in

nearly circular or spherical abnormally growing

grains (see Fig. 5 in Sect. 4). By contrast, abnormal

grains observed in actual samples frequently exhibit

more anisotropic and irregular shapes [4, 16, 44, 75].

To elucidate the formation mechanism of such

irregularly shaped abnormal grains, multiple com-

plex factors need to be considered, including more

than two types of grain ingredients and strong ani-

sotropy of the grain boundary properties [41, 76, 77].

The simple system addressed in this study is expec-

ted to be helpful for such endeavors because it

establishes a benchmark for quantifying the effect of

complex factors.

Computational environment

To perform the large-scale simulations which enable

the detailed comparison of the simulations and the

mean-field theory, we utilized our own CUDA C

code [60, 78] that was developed for parallel GPU

computation of the MPF model. The code decom-

poses an entire computational domain into small

subdomains, each of which is assigned to one GPU.

The connection of the boundary data of the GPUs is

performed via their host CPUs [55], while the

internode communication is implemented using the

Figure 3 Polycrystalline systems used for simulating 2D and 3D

abnormal grain growth. a 2D system with 12,2882 grid points,

which consists of a circular specific grain (size R, boundary energy

c, boundary mobility M) and approximately 300,000 matrix grains

(average size hRi , boundary energy hci , boundary mobility

hMi). b 3D system with 12803 grid points, which consists of a

spherical specific grain and approximately 200,000 matrix grains.

In all panels, grains are distinguished by different colors according

to the IDs assigned to each grain. In panel (b), the matrix grains

are visualized only for the region with X-coordinate\ 640 to

make the specific grain visible.

Figure 4 Schematic of the computational conditions (qinit and l)
used in the abnormal grain growth simulations for C = 1. The

dashed line indicates the abnormal growth condition of the

specific grain predicted by Humphreys theory.
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message-passing interface (MPI). To reduce the

memory requirements, the APT algorithm [50–52] of

Kim et al. [50] was employed, storing only nonzero

phase-field variables; the maximum number of stored

variables at each grid point was set to seven. All the

simulations were carried out on the GPU-rich

supercomputer TSUBAME3.0 at the Tokyo Institute

of Technology, using 16 GPUs (NVIDIA Tesla P100)

for the 2D simulations and 64 GPUs for the 3D

simulations.

Results and discussion

Using the above-mentioned computational condi-

tions, we performed many of the 2D abnormal grain

growth simulations for a period of 2,200,000 time

steps, within which the grain size ratios, q = R/hRi ,
were observed to reach almost constant (limiting)

values. For the conditions where the boundary

energy ratio, C = c/hci , and mobility ratio, l = M/

hMi , are larger than unity, simulations were contin-

ued for longer durations (4,000,000–12,000,000 steps),

because the time increment Dt must be set to rela-

tively small values for these conditions (see

Sect. 3.2.1). 3D simulations were conducted until

250,000 time steps; by this time, the specific grain

reached the boundaries of the computational domain

in many of the simulations, and therefore, correct

analyses on the abnormal growth behaviors of the

specific grain became difficult. The performed simu-

lations are more than ten times larger in time and

space (the number of grids and initial grains) than the

previously largest 2D and 3D abnormal grain growth

simulations [13, 39, 41, 76].

As examples of the evolved microstructures

obtained from the simulations, Fig. 5 depicts the

microstructures for the conditions of C = 0.75, 2 with

l = 4, as obtained in (a) 2D simulations at dimen-

sionless time t = 92,750 (2,000,000Dt for C = 0.75;

4,000,000Dt for C = 2) and (b) 3D simulations at

t = 3906.25 (125,000Dt for C = 0.75; 250,000Dt for

Figure 5 Evolved

microstructures for the

conditions of C = 0.75, 2 with

l = 4.0, as obtained in a 2D

simulations at dimensionless

time t = 92,750

(2,000,000Dt for C = 0.75;

4,000,000Dt for C = 2) and

b 3D simulations at

t = 3906.25 (125,000Dt for
C = 0.75; 250,000Dt for
C = 2). The initial structures

for the simulations are those

shown in Fig. 3 with the initial

relative size qini = 1.33qmin or

1.67qmin. In all panels, grains

are distinguished by different

colors according to the IDs

assigned to each grain. In

panel (b), the matrix grains are

visualized only for the region

with X-coordinate\ 640 to

make the specific grain visible.
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C = 2). The initial structures are those shown in

Fig. 3. In both the panels of Fig. 5, we can see that the

matrix grains are coarsened in a uniform manner and

generally exhibit equiaxed shapes, into which the

abnormally growing specific grains encroach. Over-

all, the simulated microstructural evolutions exhibit a

typical picture of abnormal grain growth. In addition,

in contrast with the case of C = 2, large local curva-

tures in each boundary face shared by the specific

grain and its neighboring matrix grains are observed

for C = 0.75. Further, the boundary faces form rela-

tively sharp contact angles at the triple junctions. This

indicates that the grain boundaries migrated such

that mechanical balance was maintained at their

junctions in accordance with Young’s law; hence, the

nonuniformity in the grain boundary properties was

reflected in the current MPF simulations. In the fol-

lowing, based on the calculated results, we present

quantitative comparisons between the simulations

and mean-field theory of abnormal grain growth,

focusing particularly on the limiting relative sizes

that the specific grain reached and whether the

abnormal growth occurs or not.

Comparison of the theoretical
and simulation results

This section investigates the 2D and 3D abnormal

grain growth behaviors using systematic simulation

results. First, we focused on the temporal variations

and limiting values of the grain size ratio, q = R/hRi ,
between the specific grain and matrix grains. Figure 6

shows, as typical examples, the simulated temporal

variations in q for the (a) 2D system with energy ratio

C = 2 and mobility ratios l = 4–10 and (b) 3D system

with C = 2 and l = 4, where the simulations started

from different initial q values (qinit = 1.33qmin and

1.33qmax). The limiting values of q (i.e., qmax) pre-

dicted from the theory are also shown in Fig. 6 as

dashed lines. Note that the cross mark in panel

(b) indicates the termination of the simulation

because the specific grain reached the boundaries of

the computational domain. The mean-field theory

predicts that abnormal growth of a specific grain

occurs (i.e., dq/dt[ 0) for qinit = 1.33qmin and does

not occur (dq/dt\ 0) for qinit = 1.33qmax, in both of

which q approaches its limiting value, qmax. In Fig. 6,

as expected, q gradually converges to a constant

value near the theoretically predicted qmax values in

most of the simulations, although relatively large

deviations from the theory are observed for qinit-
= 1.33qmin compared to the case of qinit = 1.33qmax

(the reason for this is discussed in the next section).

The exceptions are the results for the condition of

qinit = 1.33qmin with l = 4 in 2D (left-hand panel of

Fig. 6) and 3D (Fig. 6b), where the specific grains do

not abnormally grow, but shrink and eventually

disappear, in contrast to the theoretical predictions.

For these cases, we performed additional simulations

using a slightly larger initial relative size of qinit-
= 1.67qmin. The additional simulations showed that,

as exhibited in Fig. 6, qinit = 1.67qmin results in

abnormal grain growth, consistent with the mean-

field theory, with the q value converging to the the-

oretically predicted qmax.

As shown in Fig. 6, the degree of convergence of

the q versus time curves varies depending on the

conditions. For instance, in the right-hand panel of

Fig. 6a (2D system with C = 2 and l = 10), while the

result for qinit = 1.33qmax almost perfectly converges

to a constant value after some duration, the conver-

gence of the result for qinit = 1.33qmin appears to be

relatively incomplete, despite the large spatiotempo-

ral scale of the current simulations. The incomplete

convergence of q is more pronounced in the 3D

simulation results shown in Fig. 6b. To quantitatively

determine the completeness and incompleteness of

the convergence of q, we defined the following sim-

ple criteria:

Dqrelðt; tendÞ ¼
qðtÞ � qðtendÞ

qðtendÞ
; ð13Þ

min Dq t; tendð Þ j t\tcf g \e : complete convengence ;
� e : incomplete convergence ;

�

ð14Þ

where Dqrel (t, tend) denotes the relative change in q
between time t and end time tend of the simulation, tc
denotes a certain time sufficiently distant from tend,

and e denotes the tolerance for convergence. Thus, if

a q value very close to q (tend) is observed at a time

t far from tend, the result is regarded as converged.

Here, we set tc to 4/5 of the entire simulation period,

and e to 0.01 (1%). As examples for the determination

of the convergence of q, Fig. 7 shows the temporal

variations in Dqrel (t, tend) compared to those in q
with different initial size ratios qinit, as obtained for

the 2D simulation results at C = 2 and l = 10 shown

in the right-hand panel of Fig. 6a. As shown in

Fig. 7a, for the case of qinit = 1.33qmin, Dqrel (t, tend)
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values smaller than e = 0.01 are observed only near

tend (i.e., t[ tc). Hence, the results were judged to

converge incompletely. By contrast, for the case of

qinit = 1.33qmax (Fig. 7b), Dqrel (t, tend) becomes

smaller than e = 0.01 at around t = 2 9 106 time

steps, which is in the period t\ tc. Subsequently, the

temporal variation in q is rather stable, and therefore,

the result can be considered to have converged

completely. Hereafter, incompletely converged

results are noted accordingly in the main text and

figures.

Next, we compared the simulation and theoretical

results in greater detail by plotting the simulated

temporal variations in q onto the theoretical diagram

of abnormal grain growth conditions (Fig. 2) for all

conditions of qinit, C, and l that are summarized in

Sect. 3.2.1 and schematically illustrated in Fig. 4. The

results for 2D and 3D simulations are shown in

Figs. 8 and 9, respectively. An increase in the q value

from the initial value (i.e., dq/dt[ 0: abnormal grain

growth occurs) is indicated by the upward arrows

near the plots, whereas a decrease in the q value (i.e.,

dq/dt\ 0: no abnormal growth occurs) is indicated

by the downward arrows. Furthermore, among the

results corresponding to the growth or abnormal

growth of a specific grain, the incompletely con-

verged results, as determined from Eqs. (13)–(14), are

denoted by asterisks near the upward/downward

arrows.

The 2D simulation results (Fig. 8) show good

agreement with the mean-field theory on the occur-

rence of abnormal growth. For the conditions where

no abnormal growth is expected (qinit = 0.67qmin for

C \ l and qinit = 4 for C[ l), the specific grains in

Figure 6 Temporal variations in size ratio q for a 2D system with

energy ratio C = 2 and mobility ratios l = 4–10 and b 3D system

with C = 2 and l = 4, as obtained for different initial size ratios,

qinit = 1.33qmin and 1.33qmax. For comparison, the limiting values

of q (i.e., qmax) predicted from the mean-field theory [17] are also

given. The cross mark in (b) indicates the termination of the

simulation because the specific grain reached the boundaries of the

computational domain. In (b) and the left-hand panel of (a), in

contrast to the theoretical prediction, the specific grains shrink and

disappear for qinit = 1.33qmin; for these cases, additional

simulations using a slightly larger initial size, qinit = 1.67qmin,

were performed.

Figure 7 Temporal variations in size ratio q and relative change Dqrel (t, tend), as obtained for 2D abnormal grain growth at C = 2, l = 10

and different initial size ratios: a qinit = 1.33qmin and b qinit = 1.33qmax.
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the simulations decrease in their relative sizes. Fur-

thermore, for the conditions of growth (qinit-
= 1.33qmax) and abnormal growth (qinit = 1.33qmin),

most simulations show that the q value of the specific

grain approaches the limiting value predicted by the

mean-field theory (upper bounds of the theoretical

curves), although a few results do not completely

converge. At C = 2 with l = 4 (Fig. 8c) and C = 4

with l = 10 (Fig. 8d), the specific grain with an initial

size of qinit = 1.33qmin does not undergo abnormal

growth, but shrinks, which contradicts the theory.

However, at a slightly larger value of qinit = 1.67qmin,

the specific grains grow abnormally to the theoretical

qmax value. In addition, in some cases, q converges to

somewhat smaller values than those predicted theo-

retically (e.g., the results for C = 1 with l = 2, 4 and

C = 2 with l = 4); this is particularly evident in the

cases where the initial size ratio is smaller than the

limiting size (i.e., qinit = 1.33qmin or 1.67qmin). How-

ever, the magnitudes of the relative errors for the

limiting q values between the simulation and theo-

retical results are all less than 30%.

In the 3D simulation results in Fig. 9, although the

temporal variation in q does not fully converge in

several cases, there is a clear indication that the

simulation and theoretical predictions are in good

Figure 8 Temporal variations in size ratio q as functions of qinit
and l for 2D abnormal grain growth compared to the theoretical

diagram shown in Fig. 2: a C = 0.75, b C = 1, c C = 2, and

d C = 4. The increase in the q value from the initial value (i.e., dq/
dt[ 0: abnormal grain growth occurs) is indicated by upward

arrows near the plots, whereas the decrease in the q value (i.e., dq/
dt\ 0: no abnormal growth occurs) is indicated by downward

arrows. Incompletely converged results, as determined from

Eqs. (13)–(14), are denoted with asterisks near the arrows. In

some results shown in the panels (c) and (d), in contrast to the

theoretical prediction, the specific grain does not abnormally grow,

but shrinks and disappears for the condition of qinit = 1.33qmin; for

these cases, additional simulations using slightly larger initial

relative size, qinit = 1.67qmin, were performed.
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agreement in terms of the occurrence of abnormal

growth and limiting size attained by the abnormally

growing grains. That is, for the conditions where

abnormal growth is not expected to occur (qinit-
= 0.67qmin for C\ l and qinit = 4 for C[ l), the

simulated q values decrease. For the conditions of

growth (qinit = 1.33qmax) and abnormal growth (qinit-
= 1.33qmin), most of the simulated q values approach

the theoretical values, with the only exception being

the result for C = 2,l = 4, and qinit = 1.33qmin previ-

ously shown in Fig. 6b.

The results summarized above demonstrated that

the mean-field theory generally describes the simu-

lated abnormal grain growth for both 2D and 3D

systems well. The small deviations between the

simulation and theoretical results can be partially

attributed to the incomplete convergence of q in some

cases, particularly for the 3D cases. However, even in

the current 2D simulations where the temporal vari-

ations in q at later stages were very small (relative

changes in q values were all smaller than 3% during

the last 106 steps of the simulations), slight deviations

were still observed. Therefore, physical factors must

cause the deviations that are more dominant than the

incomplete convergence of q. The possible reasons for
these deviations are discussed below.

Possible sources of the deviations
between theoretical and simulation results

This section examines the causes of the small dis-

crepancies between the simulation and mean-field

theoretical results, which were observed for C C 2

and for the simulations starting from the initial size

Figure 9 Temporal variations in size ratio q as functions of qinit and l for 3D abnormal grain growth compared to the theoretical diagram

shown in Fig. 2: a C = 0.75, b C = 1, and c C = 2. The meanings of the symbols are the same as those in Fig. 8.
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ratio smaller than qmax (i.e., qinit = 1.33qmin or

1.67qmin). The major source of the slight deviations is

probably the inaccuracies of the basic equations used

in the derivation of the mean-field theory. As men-

tioned in Sect. 2, the theory was derived using

parabolic law (Eq. 2) for the growth kinetics of the

matrix grains, and the mean-field equation (Eq. 1) for

specific grain kinetics. In the former, the squared

average size of the matrix, hRi2, increases linearly

with time at a slope of 0.5ahMihci (a = 0.5: geomet-

rical constant), whereas the latter predicts that the

growth rate, RdR/dt, of a specific grain is a linear

function of its relative size q with a slope of aMhci.
Herein, we tested the accuracies of these equations by

comparing them with simulations. We used the 2D

simulation results because the convergence of the

abnormal growth kinetics was better in the 2D sim-

ulations than in the 3D simulations, as confirmed in

the previous section.

In Fig. 10, we plotted the hRi2 vs. time and RdR/

dt vs. q curves from a 2D simulation, comparing their

slopes with the theoretical ones. Here, as the simu-

lated results, those for the condition of C = 2 and

l = 4 shown in Fig. 8c were used; this is because, as

described above, relatively large deviations between

the simulation and theory were observed for this

condition. Plots with different colors indicate the

simulations starting from different initial size ratios,

qinit = 1.67qmin and qinit = 1.33qmax. From Fig. 10a,

we can see that hRi2 linearly increases with time as

predicted by Eq. (2), exhibiting almost identical

results for qinit = 1.67qmin and 1.33qmax. However, the

slopes of the linear fit curves, 0.271 and 0.275, are

somewhat larger than that of the parabolic law, 0.5a
hMihci = 0.5 9 0.5 9 1 9 1 = 0.25, with the relative

error being 8–10%. Note that the slope larger than the

theoretical value of the parabolic law has been fre-

quently reported from the previous simulations for

normal grain growth using various numerical models

(e.g., Monte Carlo model [79, 80], cellular automaton

model [81, 82], vertex model [83, 84], etc.), and

therefore, this disagreement between the simulation

and theory comes from the inaccuracy in the theory,

not in the simulation.

As shown in Fig. 10b, although the RdR/dt vs. q
curves exhibit large scatters, a linear tendency is

observed for both qinit = 1.67qmin and 1.33qmax in

accordance with the mean-field equation (Eq. 1). The

slopes of the fitted curves are 1.760 for qinit = 1.67qmin

and 1.985 for qinit = 1.33qmax. While the latter case

(the specific grain initially larger than the limiting

size qmax) shows quite a good agreement with the

assumed value of aMhci = 0.5 9 4 9 1 = 2 in Eq. (1),

the former case (the specific grain initially smaller

than qmax) yields a relatively large error of * 12%.

This implies that the mean-field equation is less valid

for the conditions where the specific grain size is

relatively small, which resulted in the visible devia-

tions between the simulation and theory observed for

qinit = 1.33qmin or 1.67qmin (see Figs. 6 and 8). What

causes this inaccuracy of the mean-field equation for

a small grain size is probably the assumption used in

Figure 10 a Temporal variation in the squared average size hRi2
of the matrix grains and b growth rate RdR/dt of the specific grain

as a function of size ratio q = R/hRi , as calculated from the 2D

simulations with C = 2 and l = 4 starting from qinit = 1.67qmin

and qinit = 1.33qmax, which correspond to the results shown in

Fig. 8c.
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the equation. That is, the mean-field equation

assumes that the growth rate of a given grain is

determined by the interaction between its own field

(its size, R) and the mean field (average size of matrix

grains, hRi). However, as Kim et al. [50] pointed out,

the growth rate of a given grain is in fact governed by

its own field and local field (average size of its

neighboring grains), rather than the mean field.

Therefore, the applicability of the mean-field equa-

tion depends on how accurately the mean field

approximates the local field. The approximation will

be improper for relatively small grains with a small

number of neighbors, because with decreasing

neighboring grains the local field statistically deviates

from the mean field. In the current simulations for

C = 2 and l = 4, the number of neighboring grains of

the specific grain was observed to converge with time

to around 45 in the case of qinit = 1.33qmax and

around 30 in the case of qinit = 1.67qmin. Therefore,

for the condition of qinit = 1.67qmin, the abnormal

growth behavior of the specific grain would be

inherently difficult to approach that of the mean-field

theory, compared to the case of qinit = 1.33qmax.

The above results conclude that the basic equations

actually include some errors particularly when the

initial relative size qinit of the specific grain is smaller

than the limiting value qmax (i.e., qinit = 1.33qmin or

1.67qmin). The deviations between the simulation and

mean-field theory of abnormal growth are

attributable to the basic equations. Hence, the pre-

diction accuracy of the abnormal grain growth could

be improved by reformulating the mean-field theory

using more sophisticated basic equations for indi-

vidual and average grain growth kinetics, such as

those proposed in Refs. [85, 86] capable of accounting

for the local field as well as the mean field. However,

given the notable simplicity of the current mean-field

theory, its overall prediction accuracy would be

acceptable and sufficiently high.

Conclusions

This study was conducted to elucidate the validity of

the mean-field theory of abnormal grain growth via

very large-scale 2D and 3D phase-field simulations.

Utilizing the MPF model and parallel GPU comput-

ing, a series of large-scale simulations with several

hundreds of thousands of grains were performed

while varying the size ratio q = R/hRi , boundary

energy ratio C = c/hci , and mobility ratio l = M/

hMi between the specific grain and matrix grains,

through which the simulated results and theoretical

predictions on the abnormal grain growth behaviors

were compared in detail. The comparisons showed

that the mean-field theory generally agrees well with

the simulated results for both 2D and 3D systems, in

terms of whether the abnormal growth of the specific

grain occurs or not as well as the limiting size that the

abnormally growing grain reaches. Relatively large

deviations between the simulation and theory were

observed for the conditions with energy ratio C[ 1

and initially small relative size q, which is mainly

attributable to inaccuracies of the two basic equations

(Eqs. 1 and 2) used in the derivation of the mean-field

theory. However, the magnitude of relative error for

the limiting grain size is at most less than 30%, and

given the notable simplicity of the current mean-field

theory, its overall prediction accuracy would be

acceptably high.

In the previous studies so far, the validation of the

mean-field theory has been done only for limited

samples in a qualitative or semiquantitative manner.

The systematic, large-scale MPF simulations pre-

sented here first clarified the accuracy of the mean-

field theory for various conditions of grain size and

grain boundary properties, providing quantitative

evidence that the theory is a versatile and fairly

accurate framework for abnormal grain growth pre-

diction despite its notable simplicity. Moreover, the

accuracy of the mean-field theory is expected to be

further improved if necessary by modifying its basic

equations. These findings will provide a useful plat-

form for analytically modeling abnormal grain

growth and for interpreting actual experimental

results based on the analytical approach.

Finally, we discuss some remarks on future work.

In this study, even using the present large-scale

computations, it was found difficult to determine the

conclusive values for the limiting size of abnormal

grains in 3D systems. This problem could be resolved

by the S-PFM model developed in the recent work of

Dimokrati et al. [87]; this model can simulate grain

growth accurately using very coarse grid spacing

and, therefore, has a potential to drastically enlarge

computational scales. In addition, the current work

did not consider the misorientation (and inclination)

dependencies of grain boundary energy and mobility

due to the lack of accurate models for the anisotropic

boundary properties. Our ongoing project is
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attempting to solve this problem based on data

assimilation technique [88–90], which will allow for

extracting large datasets of grain boundary properties

via the integration of observation data of grain

growth (experiments or atomistic calculations) into

phase-field simulations and thereby constructing

accurate models for misorientation-dependent

boundary properties. Thus, using these cutting-edge

techniques, our future work will study the effects of

nonuniform boundary properties on abnormal grain

growth for further enlarged 3D systems with more

realistic conditions of grain boundary properties. We

believe that the findings presented here will also hold

for such more realistic and enlarged systems.
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