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ABSTRACT

The phase equilibria and diffusivity of Co–Fe–Mn system were investigated

using alloy equilibrium and the diffusion couple technique. Furthermore,

thermodynamic properties and diffusion mobilities were assessed using the

CALPHAD approach. Isothermal sections of the ternary phase diagrams of the

Co–Fe–Mn alloy at 800, 900, and 1000 �C were obtained. The phase boundaries

between face-centered cubic (fcc)/A13 were experimentally determined for the

first time, whereas those between fcc/body-centered cubic were similar to those

reported in previous studies. The thermodynamic parameters of the A13 phase

were assessed based on these results. The phase diagrams obtained using the

thermodynamic interaction parameters in this study are in accordance with the

experimental results. The diffusion paths of the fcc Co–Fe–Mn ternary systems

at 900, 1000, and 1100 �C were experimentally determined, and the interdiffu-

sivities were evaluated from the composition-penetration profiles using the

Whittle–Green method. The interdiffusion coefficients and penetration profiles

were calculated using the assessed atomic mobility parameters. The calculated

interdiffusion coefficients and penetration profiles agreed with the experimental

ones, validating the values of the optimized atomic mobility parameters.
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GRAPHICAL ABSTRACT

Introduction

Most alloys used in daily or industrial applications

comprise a solvent metallic element and various

constituent elements that tailor the properties of the

materials [1]. In 1995, the concept of high-entropy

alloys (HEAs) was introduced by Yeh et al. [2]. HEAs

can be defined as alloys with five or more elements,

each with an atomic percentage ranging from 5 to

35% and an equiatomic size [3, 4]. Although HEAs

possess excellent properties, such as continuous

steady strain hardening at low temperatures [5], high

strength and ductility [6–8], excellent thermal stabil-

ity [8], and high oxidation and corrosion resistance

[9, 10], disadvantages like lack of bulk castability

owing to the presence of multiple phases and that of

experimental data on processing techniques like

melting, homogenization, and thermomechanical

processing limit the industrial application of HEAs

[11, 12]. The time consumed by the trial and error

method performed with various compositions of

constituent elements to obtain stable HEAs for

industrial applications can be reduced by predicting

the thermodynamic properties and phase diagrams

using the CALPHAD method [13]. Among the four

core effects of HEAs, viz. high configurational

entropy, severe lattice distortion, cocktail effect, and

sluggish diffusion [14], ‘‘high configurational

entropy’’ favors the formation of single-phase HEAs;

however, it has been proven to be insufficient for

overcoming the high enthalpy effect due to the strong

interactions between the elements [4, 15]. In contrast,

‘‘sluggish diffusion’’ has garnered increasing atten-

tion in recent years because it contributes to high

hardness and strength [16], excellent corrosion resis-

tance, and outstanding thermal stability [8]. Sluggish

diffusion is an effect of reduced diffusion kinetics

compared with those observed for conventional

alloys and pure metals. Pickering et al. [17] reported

that there remains a lack of clear evidence of sluggish

diffusion, and that the existence of the core effect

‘‘sluggish diffusion’’ in HEAs is doubtful. The ther-

modynamic properties and atomic mobility parame-

ters of HEAs are essential for understanding their

phase stabilities and diffusion kinetics.

Accurate information on the thermodynamic and

kinetic parameters of suballoys plays a crucial role in

predicting the properties of HEAs [18]. There is a lack

of experimental information to determine the accu-

rate thermodynamic and kinetic parameters of the

Co–Fe–Mn system. The main objective of our study is

to create an atomic mobility database for HEAs. This

study mainly focused on (1) obtaining accurate
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thermodynamic parameters by determining the

ternary phase diagrams at 800, 900, and 1000 �C,

which facilitates diffusion mobility assessment, and

(2) determining the ternary atomic mobility parame-

ters in the Co–Fe–Mn system by optimizing the

composition-penetration curves of the diffusion cou-

ples in the fcc phase region.

Literature review

Co–Mn system

A comprehensive phase diagram was compiled in

[19], and a CALPHAD-type assessment of the system

was performed by Kaufman et al. [20]. Hasebe et al.

[21] assessed this system by considering the magnetic

contributions to the Gibbs energy and predicted a

two-phase separation in the fcc phase at approxi-

mately the Curie temperature. Huang et al. [22] pre-

sented a new thermodynamic analysis using the

Hillert and Jarl’s modification [23] of the Inden model

[24] to determine the magnetic contribution. The

thermodynamic parameters assessed by Huang et al.

[22] were used in this study.

Ijima [25] and Neumeier et al. [26] performed

experimental evaluations to determine the interdif-

fusivities of Co–Mn alloys using the diffusion couple

method. Diffusion couples with concentrations Co/

Co-30.28 at.% Mn and Co/Co-51.76 at.% Mn were

used to determine the interdiffusivities at tempera-

tures ranging from 860 to 1150 �C. Iijima et al. [27]

determined the impurity diffusion coefficients of

Mn54 in Co-5.22 at.% Mn and Co-10.24 at.% Mn

alloys. Later, Liu et al. [28] fabricated two diffusion

couples Co/Co-43.8 at.% Mn annealed at 800 �C for

336 h and Co/Co-49.2 at.% Mn annealed at 1000 �C
for 60 h, to verify the existence of a miscibility gap in

the Co–Mn phase diagram described by Huang et al.

[22]. The interdiffusivities calculated by Liu et al. [28]

at 1000 �C and others [26, 27] were used to determine

the optimized mobility parameters.

Fe–Mn system

The CALPHAD-type thermodynamic assessment of

the Fe–Mn system was performed by several

researchers [29–31], and experimental information for

the phase diagram was compiled in their studies. The

thermodynamic parameters assessed by Huang et al.

[29] are used in this study as they produce better

optimized mobility parameters.

Liu et al. [32] used the empirical expression pro-

posed by Vignes et al. [33] to verify the reliability of

diffusivity values. The tracer diffusion coefficients of

Fe reported by Million et al. [34] increase with the

concentration of Mn ðxCo) when xCo [ 0:1. Because

the diffusivity of Mn is higher than that of Fe, the

interdiffusivities obtained using the tracer diffusion

coefficients are higher than those of the experimen-

tally determined values when xCo [ 0:1. Liu et al. [32]

determined the binary mobility parameters in an Fe–

Mn system by considering the tracer diffusion coef-

ficients of Fe for xCo\0:1 obtained by Million et al.

[33], and all diffusivity values reported by Nohara

and Hirano et al. [35].

Co–Fe system

Phase diagrams were experimentally determined,

and thermodynamic parameters were assessed by

several authors [36–38]. The reasons for the further

improvement in the phase diagram are described in

[39]. The latest thermodynamic parameters assessed

by Wang et al. [39] were used in this study. The

atomic mobility parameters determined by Gong

et al. [40] were validated by comparing the calculated

results with experimental data from several sources

including [41, 42] and are thus suitable for use in this

study.

Co–Fe–Mn system

The experimental phase diagrams were reported only

by Köster and Speidel et al. [43]. They determined the

phase boundaries of the fcc/body-centered cubic

(bcc) two-phase region at 600, 700, and 800 �C by

observing the microstructure. However, the experi-

mental data are limited to the Co–Fe side. Huang

et al. [44] assessed the thermodynamics of the system

based on experimental data obtained by Köster and

Speidel et al. [43]. There is no experimental phase

diagram information for the entire region, thereby

questioning the reliability of the existing thermody-

namic parameters. The experimental information and

CALPHAD-type assessment of the diffusion mobili-

ties of this system have not been reported thus far.
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Experimental procedure

Phase diagram

The alloy compositions listed in Table 1 were used for

phase diagram investigation. The raw materials, viz.

Co, Fe, and Mn, used to prepare the alloys were 99.9

wt% pure. The alloys were prepared using an arc

equipped with two Cu–W electrode bars in a water-

cooled Cu hearth under Ar atmosphere. The alloys

were remelted more than five times in the hearth to

ensure their homogeneity. Alloys with high Mn

content were melted in an induction furnace under

an Ar atmosphere to suppress the evaporation of Mn.

The ingots were cut into blocks with dimensions of

5 9 5 9 8 mm using a disk cutter and sealed in

quartz capsules that were evacuated and introduced

into an Ar atmosphere. The specimens in the quartz

capsules were heat-treated at 800 �C for 1080 h,

900 �C for 576 h, and 1000 �C for 480 h, followed by

quenching in ice water. The equilibrium composition

of each specimen was measured using an energy-

dispersive spectrometer (EDS) after polishing the

Table 1 Equilibrium compositions of the Co–Fe–Mn ternary alloys

T (�C)/Annealed time (h) Alloy composition (at.%) (EDS) Phases identified Composition (at.%)

Phase 1 Phase 2

Co Fe Mn Co Fe Mn

800/1080 Co75.9Fe21.4Mn2.7 bcc/fcc 70.9 27.9 1.2 76.6 20.4 3.0

Co52.0Fe42.5Mn3.5 bcc/fcc 45.8 50.9 3.3 44.4 42.3 13.3

Co62.4Fe32.7Mn4.9 bcc/fcc 64.0 33.8 2.2 66.1 25.9 8.0

Co46.6Fe48.9Mn4.5 bcc/fcc 45.8 50.9 3.3 44.4 42.3 13.3

Co84.0Fe8.7Mn7.3 fcc 84.0 8.7 7.3

Co40.7Fe4.7Mn54.6 fcc/A13 41.5 5.1 53.4 38.6 4.2 57.2

Co23.8Fe18.7Mn57.5 fcc/A13 23.1 19.6 57.3 22.1 16.4 61.5

Co16.1Fe24.3Mn59.6 fcc/A13 16.1 25.1 58.8 15.4 21.5 63.1

Co7.0Fe30.1Mn62.9 fcc/A13 6.2 34.1 59.7 5.7 28.4 65.9

900/576 Co54.2Fe42.0Mn3.8 bcc/fcc 54.8 43.5 1.7 54.4 40.8 4.8

Co26.4Fe69.7Mn3.9 bcc/fcc 28.4 69.2 2.4 25.7 70.0 4.3

Co34.9Fe60.8Mn4.3 bcc/fcc 37.9 60.0 2.1 33.8 60.9 5.3

Co45.6Fe49.3Mn5.1 bcc/fcc 45.9 51.5 2.6 45.3 48.4 6.3

Co33.5Fe34.1Mn32.4 fcc 33.5 34.1 32.4

Co41.6Fe20.6Mn37.8 fcc 41.6 20.6 37.8

Co49.1Fe4.4Mn46.5 fcc 49.1 4.4 46.5

Co39.0Fe9.1Mn51.9 fcc 39.0 9.1 51.9

Co23.7Fe19.0Mn57.3 fcc/A13 17.8 25.3 56.9 17.9 20.3 61.8

Co14.8Fe24.4Mn60.8 fcc/A13 22.4 18.9 58.7 22.0 15.4 62.6

Co6.5Fe28.9Mn64.6 fcc/A13 7.1 31.4 61.5 6.4 27.6 66.0

1000/480 Co64.3Fe32.7Mn3.0 fcc 64.3 32.7 3.0

Co29.9Fe69.4Mn3.7 fcc 29.9 69.4 3.7

Co34.8Fe61.3Mn3.9 fcc 34.8 61.3 3.9

Co54.1Fe41.7Mn4.2 fcc 54.1 41.7 4.2

Co61.9Fe33.1Mn5.0 fcc 61.9 33.1 5.0

Co35.3Fe35.0Mn29.7 fcc 35.3 35.0 29.7

Co33.8Fe12.7Mn53.5 fcc 33.8 12.7 53.5

Co40.7Fe5.7Mn53.6 fcc 40.7 5.7 53.6

Co24.1Fe19.2Mn56.7 fcc 24.1 19.2 56.7

Co15.8Fe24.4Mn59.8 fcc 15.8 24.4 59.8

Co6.8Fe30.3Mn62.9 fcc 6.8 30.3 62.9

Co11.5Fe24.0Mn64.5 fcc/A13 12.6 25.0 62.4 12.1 21.5 66.4
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surface. The microstructures were observed using

field-emission scanning electron microscopy.

Diffusion couple

The alloys used for the diffusion couples listed in

Table 2 were cast using an induction furnace.

Thereafter, the ingots were cut into cylindrical sam-

ples with dimensions of u16 9 5 mm using a disk

cutter. Subsequently, the alloys were polished using

SiC sandpaper from 80# to 2000# and 0.3 lm dia-

mond particles. A clean surface ensures sound atomic

diffusion in the diffusion couple and straight diffu-

sion interface. Diffusion couples were made by

compressing the samples with mirror-finished sur-

faces facing each other at the same temperature as

heat-treatment temperature and a ‘zero’ force for

approximately 6000 s using Thermecmastor-Z (a

dynamic thermomechanical simulation testing

machine). Diffusion couples sealed in quartz tubes

under an Ar atmosphere were heat-treated at 900 �C
for 336 h, 1000 �C for 170 h, and 1100 �C for 72 h. The

compositions of the diffusion couples were selected

such that their penetration profiles along the diffu-

sion direction, measured by an electron probe

microanalyzer (EPMA, JXA-8530F, JEOL), were in the

fcc single-phase region and intersected the isothermal

sections of the ternary phase diagram.

Model description

Thermodynamic model

Thermo-Calc software [45] was used to perform all

thermodynamic calculations and optimizations in

this study. The thermodynamic data of the pure ele-

ments Co, Fe, and Mn were adopted from the Sci-

entific Group Thermodata Europe (SGTE) data for

pure elements [46]. The phases present in the Co–Fe–

Mn system in the range of 800–1000 �C were fcc, bcc,

and A13. According to the sub-regular solution

model, the molar Gibbs energies of the fcc, bcc, and

A13 phases are expressed as follows:

G/
m ¼

X

i¼Co;Fe;Mn

Xi
0G/

i þ RT
X

i¼Co;Fe;Mn

Xi ln Xið Þ

þ exG/
m;

ð1Þ

where Xi denotes the molar fraction of the element ‘i’,

R is the gas constant, and T is the temperature. The

term 0G/
i denotes the molar Gibbs free energy of the

pure element ‘i’ in the ‘/’ phase. The term exG/
m rep-

resents the molar Gibbs excess energy contributed by

the nonideal interactions between the elements, and

it can be expanded as follows:

exG/
m ¼

X

i

X

j[ i

XiXj

X

r

rL/i;j Xi � Xj

� �r
; ð2Þ

where rL/i;j denotes the binary thermodynamic inter-

action parameter.

Mobility and diffusivity

In a ternary system with 1, 2 and 3 as components,

the flux of element ‘i’ (i ¼ 1; 2) can be computed using

Onsager’s derivation of Fick’s second law, as follows

[47]:

Ji ¼ �D3
i1

oC1

ox
�D3

i2

oC2

ox
; ð3Þ

where Ji denotes the flux of element i. Terms

D3
11and D3

22 represent the main components, whereas

D3
12andD3

21 represent the cross-interdiffusivities of the

ternary interdiffusivity matrix. Here, 3 is considered

as the dependent concentration variable [48]. The

term Ci denotes the molar concentration of element i;

and the units are mol/m3. The term x denotes the

diffusion distance. Assuming that the partial molar

volumes of the elements in the fcc phase are constant

[49, 50], the relationship between the interdiffusion

coefficient (D3
ij) and mobility can be expressed as

follows:

Table 2 List of the alloy

compositions and annealing

temperatures for the fcc Co–

Fe–Mn diffusion couples

Diffusion couples Composition (at.%) Temperature (�C)

DC1 Co-0 Fe-32 Mn/Co-70 Fe-30 Mn 900, 1000, 1100

DC2 Co-80 Fe-20 Mn/Co-9.2 Fe-7.0 Mn 900, 1000, 1100

DC3 Co-21 Fe-3 Mn/Co-52.6 Fe-47.4 Mn 900, 1000

DC4 Co-90 Fe-10 Mn/Co-0 Fe-50 Mn 1100

J Mater Sci (2022) 57:15999–16015 16003



D3
ij ¼

X

p

dpi � Xi

� �
XpMp

olp
oXj

�
olp
oX3

� �

þ s

�
Mi � X1M1 � X2M2 � X3M3ð Þ

2Xi
P

m XmMm
olm
oXj

� olm
oX3

� �

A0

P
m XmMm

3
5;

ð4Þ

where dpi denotes the Kronecker delta (dpi ¼ 1 when

p = i; otherwise, dpi ¼ 0), Xi and li are the mole

fraction and chemical potential of element i (i = 1, 2,

3), respectively, and
olp
oXj

is the partial derivative of the

chemical potential of element i with respect to the

molar fraction of element j (j = 1, 2, 3), which can be

easily computed [51] from the thermodynamic data

of the system. The second term in Eq. (4) represents

the vacancy-wind effect [52]: s = (0, 1). When s = 1,

the vacancy-wind effect was considered, whereas

when s = 0, the effect was ignored. The value of A0

depends on the crystal structure and is equal to 7.15

for fcc crystal structures [53]. The vacancy-wind

effect was considered in this study at all tempera-

tures while optimizing the mobility interaction

parameters. The term Mi represents the mobility of

element i, and according to the absolute rate theory, it

can be expressed as follows:

Mi ¼
M0

i

RT
exp

Qi

RT

� �
¼ 1

RT
exp

ui

RT

� �
; ð5Þ

where M0
i represents the effect of the atomic jump

distance and frequency, which are assumed to

depend exponentially on the composition; R is the

gas constant, and T is the temperature. The term Qi

represents the diffusion activation energy of compo-

nent i. The temperature and concentration-dependent

ui values are given by ui ¼ Qi � RT lnM0
i . The direct

relationship between the tracer diffusivity (D�
i ) and

mobility (Mi) is expressed as follows:

D�
i ¼ RTMi: ð6Þ

Ågren et al. [54–56] expressed the composition and

temperature dependence of ui using the Redlich–

Kister polynomial in Eq. (7) as follows [57]:

ui ¼
X

l

Xlu
l
i þ

X

p

X

q[ p

XpXq

Xn

r¼0

rup;q
i Xp � Xq

� �r
; ð7Þ

where ul
iand rup;q

i denote the mobility parameters,

which exhibit a notable linear relationship with

temperature.

The mobility parameters can be determined by

minimizing the error between the calculated and

experimentally obtained diffusion data, such as

interdiffusivities, tracer diffusivities, and composi-

tion profiles. In this study, the atomic mobility

parameters in a ternary Co–Fe–Mn system were

determined by minimizing the variance between the

experimental and calculated fluxes.

The experimental interdiffusion flux can be

obtained from the experimental data and the Whittle–

Green relation as follows [58]:

Jexpi ¼ 1

2t
Cþ
i �C�

i

� �
1�Yið Þ

Zx

�1

YidxþYi

Zþ1

x

1�Yið Þdx

2
4

3
5;

ð8Þ

where Jexpi denotes the experimental interdiffusion

flux of element i at position x obtained from the

experimental diffusion profiles. The term t represents

the diffusion time, whereas Cþ
i and C�

i denote the

molar concentrations of element i at the right and left

ends of the semi-infinite diffusion couple, respec-

tively. Whittle and Green et al. [58] introduced a

normalized concentration variable (Yi), as expressed

in Eq. (9), to reduce or avoid errors caused by using

the position of the Matano plane in the Boltzmann–

Matano method:

Yi ¼
Ci � C�

i

Cþ
i � C�

i

: ð9Þ

The four interdiffusivities

(DMn
CoCo;D

Mn
CoFe;D

Mn
FeFe; andDMn

FeCo) at the cross-point of

the composition profiles of the ternary isothermal

section of the Co–Fe–Mn system were determined

using the Whittle–Green method [58]. The following

two equations can be solved for two intersecting

diffusion couples to obtain the values of the four

interdiffusion coefficients:

1

2t

dx

dYCo

� �
1 � YCoð Þ

Zx

�1

YCodxþ YCo

Zþ1

x

1 � YCoð Þdx

2

4

3

5

¼ DMn
CoCo þDMn

CoFe

dCFe

dCCo

ð10Þ
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1

2t

dx

dYFe

� �
1 � YFeð Þ

Zx

�1

YFedxþ YFe

Zþ1

x

1 � YFeð Þdx

2
4

3
5

¼ DMn
FeFe þDMn

FeCo

dCCo

dCFe

:

ð11Þ

Results and discussion

Microstructure observation
and thermodynamic assessment of the Co–
Fe–Mn system

The equilibrium compositions of the annealed alloys

and their respective phases are summarized in

Table 1. The backscattered electron (BSE) images of

the Co7.0Fe30.1Mn62.9, and Co46.6Fe48.9Mn4.5 alloys

annealed at 800 �C for 1080 h are shown in Fig. 1 as

typical microstructures of two-phase alloys in the

Co–Fe–Mn system. EDS analysis indicated that the

light gray, dark gray, and black regions in Fig. 1a

represent the A13, fcc, and oxide phases, respectively.

The oxides were due to the high Mn content in the fcc

and A13 two-phase regions. These oxides have no

influence on the equilibrium of the phases because

the solubilities of oxygen in the fcc and A13 phases

are almost zero according to the Mn–O phase dia-

gram [59]. In Fig. 1b, the darker and lighter regions

are identified as the bcc and fcc phases, respectively,

from the EDS analysis. The white regions along the

boundaries of the fcc region also correspond to the fcc

phases with different orientations. Figure 2 shows

the isothermal cross sections of the ternary phase

diagram at 800, 900, and 1000 �C. The dashed lines in

Fig. 2 indicate the phase boundaries obtained by

using the selected binary assessments [22, 29, 39] in

Thermo-Calc. In the Mn-rich corner, the calculated

phase boundaries of fcc/A13 deviated from the

experimental data, whereas those of fcc/bcc were

consistent with the experimental data. According to

these results, the thermodynamic parameters of the

bcc and fcc phases do not require new ternary

parameters; only those of A13 were assessed.

The optimized parameters are listed in Table 3. The

thermodynamic interaction parameters of the binary

subsystems Co–Fe, Co–Mn, and Fe–Mn were

acquired from previous studies by Wang [39] and

Huang et al. [22, 29]. The effect of the ternary inter-

actions between Co, Fe, and Mn is considered negli-

gible because these three elements are adjacent to

each other on the periodic table and exhibit almost

equal atomic sizes. Huang et al. [44] estimated the

binary interaction parameter between Co and Fe in

the A13 phase as - 10 kJ/mol. However, this inter-

action parameter could not reproduce the experi-

mental results. Thus, using the experimental results

of this study, the thermodynamic interaction

parameter of Co–Fe in the A13 phase was modified as
0LA13

CoFe ¼ �13365 þ 5T to adjust the equilibrium region

in the Mn-rich region. The calculated phase diagrams

obtained after modifying the binary interaction

parameter (0LA13
CoFe) are represented by solid lines in

Fig. 2. The excellent agreement between the results of

this study and the experimental data validates the

values of the thermodynamic parameters of the

ternary Co–Fe–Mn system.

Figure 1 Typical equilibrium

microstructures (BSE images)

of; (a) Co7.0Fe30.1Mn62.9 alloy

with A13 and fcc phases, and

(b) Co46.6Fe48.9Mn4.5 alloy

with bcc and fcc phases at

800 �C.

J Mater Sci (2022) 57:15999–16015 16005



Figure 2 Isothermal sections

of the ternary phase diagram of

the Co–Fe–Mn system at (a)

800, (b) 900, and (c) 1000 �C.
Dashed lines represent the

phase boundaries that were

obtained from the selected

binary thermodynamic

assessments [22, 29, 39],

whereas phase boundaries in

black that can be observed

agreeing with the experimental

data were calculated with the

optimized thermodynamic

parameter as
0LA13

Co;Fe ¼ �13365 þ 5 T.

Table 3 Thermodynamic

parameters in Co–Fe–Mn

system in equilibrium phases

at 800, 900, and 1000 �C

Parameter References

Parameters in fcc phase
0LfccCoFe = � 9112 þ 3.3 T [39]
2LfccCoFe = þ 1667 [39]
0LfccCoMn = � 23,756 [22]
1LfccCoMn = � 2343 [22]
0LfccFeMn = � 7762 þ 3.86 T [29]
1LfccFeMn = � 259 [29]

Parameters in bcc phase
0LbccCoFe = �20205 þ 14:8 T þ 0:98 T ln Tð Þ � 0:0076T2 [39]
2LbccCoFe = ? 1316 [39]
0LbccFeMn = � 2759 þ 1.24 T [29]
1LbccFeMn = þ 123 [29]

Parameters in A13 phase
0LA13

CoFe = �13365 þ 5 T This work
0LA13

CoMn = � 23,945 [22]
1LA13

CoMn = � 2759 þ 1.237 T [22]
0LA13

FeMn = þ 123 [29]

16006 J Mater Sci (2022) 57:15999–16015



Results of diffusion couples and discussion
on the atomic mobility assessments

Interdiffusivities obtained from experimental concentration

profiles.

The interdiffusivities were evaluated from the

experimental concentration profiles measured by

EPMA. Fitting the experimental concentration pro-

files before determining the interdiffusivities ensures

accurate determination of the slope [60] in Eqs. (10,

11). The measured experimental composition profiles

of the diffusion couples are shown in Fig. 7. These

were fitted using a cubic spline function [61–64].

After fitting, four interdiffusivities were calculated

using the Whittle–Green method, as described in

‘‘Mobility and diffusivity’’ section, at the intersection

points of the composition profiles at three different

temperatures. The obtained interdiffusivities are lis-

ted in Table 4. According to Kirkaldy [65], the values

of the four interdiffusivities in a ternary system can

be validated using the three thermodynamic con-

straints mentioned in Eqs. (12–14).

DMn
CoCo þDMn

FeFe [ 0 ð12Þ

DMn
CoCoD

Mn
FeFe �DMn

CoFeD
Mn
FeCo � 0 ð13Þ

DMn
CoCo �DMn

FeFe

� �2�4DMn
CoFeD

Mn
FeCo � 0 ð14Þ

It was observed that all the ternary interdiffusivi-

ties calculated in this study satisfied these three

constraints.

Assessment method of mobility parameters

The self-atomic mobility parameters of fcc Co, Fe, and

Mn determined by Zhang [66], Jönsson [67], and Liu

et al. [32], respectively, were adopted in this study.

The impurity atomic mobility parameters of Co in

fcc-Fe [68], Co in fcc-Mn [28], Fe in fcc-Co [40], Fe in

fcc-Mn [32], Mn in fcc-Co [28], and Mn in fcc-Fe [32]

obtained from previous studies were also utilized in

this study to determine the interaction parameters of

mobility in fcc Co–Fe–Mn ternary systems. In this

study, ternary uFe;Mn
Co ;uCo;Mn

Fe ; and uCo;Fe
Mn mobility

parameters were determined to provide excellent

agreement between the ternary Co–Fe–Mn experi-

mental and calculated concentration profiles. The

binary uCo;Mn
Co and uMn;Co

Mn parameters were also

evaluated because the parameters in [28] could not

reasonably reproduce the ternary concentration pro-

files. We used only flux to evaluate the mobility

parameters. A customized Python program was

developed to optimize the mobility parameters. The

optimized atomic mobilities in the fcc Co–Fe–Mn

system were obtained by minimizing the error of the

flux, that is, the sum of the square of the differences

between the experimental (JexpÞ and calculated Jcalcð Þ
fluxes at each point along the diffusion distance, as

expressed in the following equation:

error ¼
X

Jexp � Jcalc
� �		 		2 ð15Þ

where Jexp is calculated using Eq. (8). The term Jcalc
was calculated using Eqs. (3–7), where the composi-

tion gradients were obtained from the diffusion

profiles and the chemical potential was calculated

using the parameters listed in Table 3. Other than

flux, interdiffusion coefficients [69] or calculated

concentration profiles are usually used to determine

the mobility parameters [52]. One of the advantages

of solving this optimization problem is that the flux at

each point of the experimental diffusion profiles can

be used for optimization, unlike interdiffusion coef-

ficients, which use only the data at the intersection

points of the experimental concentration profiles.

Also, concentration profiles measured by EPMA were

scattered and did not provide reliable values of cal-

culated interdiffusion coefficients. Integral of the

Table 4 Ternary interdiffusion coefficients in fcc Co–Fe–Mn alloys obtained using the Whittle–Green method

Temperature (�C) Composition (at.%) Diffusion coefficients (m2=sÞ

Fe Mn DMn
FeFe DMn

FeCo DMn
CoCO DMn

CoFe

900 33.8 28.5 5.57 �10�17 2.75 �10�18 2.99 �10�16 1.54 �10�16

1000 35.7 27.4 8.20 �10�16 2.02 �10�16 1.66 �10�15 7.91 �10�16

1100 61.2 26.7 5.00 �10�16 � 4.89 �10�16 2.99 �10�15 1.72 �10�15

J Mater Sci (2022) 57:15999–16015 16007



concentration profile, which is used to calculate flux,

is less scattered than the slope. Another advantage is

that the time required for this optimization is shorter

than that required to fit the calculated diffusion

profiles. The availability of abundant experimental

data increased the accuracy of the optimized

parameters. Hence, the flux values were selected to

solve the optimization problem using the Nelder–

Mead method [70, 71]. The optimized mobility

interaction parameters were established by adjusting

the initial simplex, considering the error function

values after minimization, and comparing the calcu-

lated diffusion profiles with experimental composi-

tion curves.

Assessment results: atomic mobility parameters

The optimized mobility parameters of the fcc Co–Fe–

Mn ternary system are listed in Table 5. It is observed

from Table 5 that previously reported values of bin-

ary uCo;Mn
Co and uMn;Co

Mn mobility parameters were

modified, whereas the ternary

uFe;Mn
Co ;uCo;Mn

Fe ; anduCo;Fe
Mn mobility parameters were

determined in this study. The modified binary

uCo;Mn
Co and uMn;Co

Mn mobility parameters listed in

Table 5 were verified by comparing the experimental

Co–Mn diffusion profiles [28] with the concentration

profiles calculated by DICTRA using the modified

parameters, as shown in Fig. 3. The modified

parameters accurately reproduced concentration

profiles. Figure 4 illustrates a comparison between

the calculated interdiffusivities in a binary Co–Mn

system and the experimental results obtained by

Iijima et al. [25]. It is observed that at low Mn con-

tents, there is excellent agreement between the

experimental and calculated results. With an increase

in Mn content, there was a slight deviation from the

experimental data. uMn
Fe was empirically calculated by

Liu et al. and uMn
Mn was assumed to be equal with uMn

Fe

[32]. Considering the fact that Mn diffuses faster than

Fe at Mn concentration around 0.38 [32], the

assumption is not valid and uMn
Mn should be higher

than reported value around Mn concentration of 0.38.

Since fcc-Mn is metastable, self and impurity diffu-

sion in fcc-Mn are not yet reported clearly. The

deviations in Fig. 4 around and above Mn concen-

tration of 0.3 might be due to the lower estimated

value of uMn
Mn. But our assessed parameters are still

valid at Mn concentration lower than 0.3. In Fig. 5,

the experimentally determined tracer diffusivities

[27] are compared with the calculated tracer diffu-

sivities obtained in this study and a previous study

[27]. The tracer diffusivities calculated using the

values from the previous study significantly deviated

from the experimental data, whereas those calculated

using the present study agreed with the experimental

data. Liu et al. [28] determined the binary

uCo;Mn
Co and uMn;Co

Mn mobility parameters using the val-

ues of interdiffusivities [25–27] in the PARROT

module of the DICTRA software package. A linear

relationship between the atomic mobility parameters

uMn;Co
Mn and temperature was considered, whereas

uCo;Mn
Co ’s was not [28]. As mentioned earlier, the

interdiffusivities depend on the slopes of the

Table 5 Values of optimized mobility parameters in fcc Co–Fe–

Mn ternary system

Mobility parameter Value (J/mol) References

Parameter of Co

uCo
Co

- 296542.90 - 74.48 T [66]

uFe
Co

- 301900 - 76.57 T [68]

uMn
Co

- 212755.90 - 98.07 T [28]
0uCoFe

Co
? 370000 - 255.08 T [40]

0uCoMn
Co

- 24350.71 - 11.84 T This work
1uCoMn

Co
? 259007.11 This work

0uFeMn
Co

? 2857.3 - 39.34 T This work
1uFeMn

Co
? 190274.32 This work

Parameter of Fe

uFe
Fe

- 286000 - 79.55 T [67]

uCo
Fe

- 259074 - 91.76 T [40]

uMn
Fe

- 212755.85 - 98.0 T [32]
0uCoFe

Fe
- 61000 ? 48.96 T [40]

0uFeMn
Fe

- 10711.05 - 26.32 T [32]
1uFeMn

Fe ? 16312.22 [32]
0uCoMn

Fe
- 53716.8 - 11.53 T This work

1uCoMn
Fe

- 172186.40 This work

Parameter of Mn

uMn
Mn

- 212755.85 - 98.07 T [32]

uCo
Mn

- 272355.80 - 82.20 T [28]

uFe
Mn

- 246512.70 - 104.56 T [32]
0uCoMn

Mn
? 170366.89 - 191.2 T This work

1uCoMn
Mn

? 73511.21 This work
0uFeMn

Mn
- 24655.58 ? 25.32 T [32]

1uFeMn
Mn

- 32017.56 [32]
0uCoFe

Mn
- 244983.37 ? 209.8 T This work

1uCoFe
Mn

- 46984.27 This work
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composition curves at the point of interest, and the

slopes are related to the annealing time. The analysis

of more binary fcc Co–Mn diffusion couples with

longer heat-treatment times is expected to provide

accurate temperature-dependent atomic mobility

parameters. Considering that the experimental com-

position profiles in this study were analyzed at three

temperatures with considerable heat-treatment peri-

ods, and the composition profiles of the Co–Mn bin-

ary diffusion couples were reproduced well using the

mobility parameters obtained in this study, the val-

ues of the binary uCo;Mn
Co and uMn;Co

Mn mobility param-

eters obtained in this study are thus acceptable.

The values of the ternary uFe;Mn
Co ; uCo;Mn

Fe ; and uCo;Fe
Mn

mobility parameters listed in Table 5 can be validated

by comparing the numerically simulated concentra-

tion profiles with the experimental concentration

profiles and diffusion paths on the ternary Co–Fe–Mn

diffusion couples. All the ternary calculated profiles

in this study were determined by solving the partial

differential equations (PDEs) in Eq. (3), that is,

Onsager’s formula in a customized Python program.

This method of calculating the concentration profile

across the diffusion distance by solving PDEs is

known as forward method [51]. Figure 6 shows the

comparison of composition profiles calculated by

considering and not considering vacancy-wind effect

with the experimental profiles. Solid black lines and

dashed black lines indicated the calculated concen-

tration profiles with and without considering

vacancy-wind, respectively. Comparison between

concentration profiles calculated by with and without

considering vacancy-wind effect is shown in Fig. 6 to

explain the notable deviation between the

Figure 3 Comparison

between model-calculated

concentration profiles and

experimental data [28] in

diffusion couples with varying

concentrations; (a) Co/Co-43.8

Mn (at.%) annealed at 800 �C
for 336 h, and (b) Co/Co-49.2

Mn (at.%) annealed at

1000 �C for 60 h.

Figure 4 Comparison between the experimentally determined

interdiffusivities [25] in binary Co–Mn alloy and calculated

interdiffusivities using modified Co–Mn binary mobility

interaction parameters of this study.

Figure 5 Comparison between experimentally determined tracer

diffusivities [27] of Mn in fcc-Co and the calculated tracer

diffusivities using Co–Mn mobility interaction parameters from

[28] and this study.
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experimental and simulated results for the Fe–Mn

side. In particular, as shown in Fig. 6c, the diffusion

couples DC2 and DC4 deviate significantly from the

experimental data on the Fe–Mn side of the isother-

mal section of the phase diagram at 1100 �C. The

experimental diffusion paths sharply curved after

following the Fe–Mn edge, in relation to the calcu-

lated lines. These results suggest that the diffusivity

of Mn in the Fe–Mn alloy was significantly higher

than the evaluated value. Nohara and Hirano et al.

[34] reported the interdiffusivities and self-diffusivi-

ties of the Fe–Mn system. The interdiffusivities

obtained from the diffusion couple were higher than

those estimated from Darken equations [72] using

self-diffusivities. They concluded that the origin of

the difference was the vacancy-wind effect from an

analysis using Manning’s equation [53]. The diffu-

sivity parameters reported by Liu et al. [32] for the

Fe–Mn system adopted in this study were deter-

mined from the self-diffusivity data reported by

Nohara and Hirano [35]. Although the vacancy-wind

effect was considered in our study to determine the

mobility parameters, calculated profiles cannot fit

well with the experimental profiles on the Fe–Mn

side. This is due to the lower number of experimental

data on the Fe–Mn side available for optimization. As

can be seen from Fig. 6a, b, deviation between the

two calculated profiles increase with increase in ‘Mn’

content in the diffusion couple. By considering the

vacancy-wind effect in the ternary Co–Fe–Mn system,

the agreement between the experimental and calcu-

lated concentration profiles has considerably

increased at 900 and 1000 �C. In Fig. 6c, the calcu-

lated concentration profiles with and without con-

sidering vacancy-wind effect are almost overlapping.

Therefore, to increase the alignment with experi-

mental data on the Fe–Mn side of the Co–Fe–Mn

ternary phase diagram in Fig. 6c, further investiga-

tion of the kinetics of the binary Fe–Mn system is

required.

Excellent agreement between the experimental and

numerically simulated concentration penetration

profiles at three temperature levels (900, 1000, and

1100 �C) across the diffusion distance is observed in

Fig. 7, supporting the reliability of the atomic

mobility parameter values obtained in this study.

Figure 6 Comparison

between the concentration

profiles obtained by solving

the forward problem with and

without considering vacancy-

wind effect and the

experimental diffusion profiles

(obtained in this study) on

isothermal sections of the

ternary Co–Fe–Mn phase

diagram at (a) 900, (b) 1000,

and (c) 1100 �C.
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Furthermore, the interdiffusivities determined by

Eq. (4), using the optimized mobility parameters,

were compared with the interdiffusivities obtained

by the Whittle–Green method using the experimental

diffusion profiles shown in Fig. 8. All the values were

Figure 7 Comparison between the concentration profiles obtained

by solving the forward problem and the experimental diffusion

profiles (obtained in this study) in (a) DC1, (b) DC2, and (c) DC3

annealed at 900 �C for 336 h, (d) DC1, (e) DC2, and (f) DC3

annealed at 1000 �C for 170 h, and (g) DC1, (h) DC2, and

(i) DC4 annealed at 1100 �C for 72 h. Black lines indicate the

calculated concentration profiles, whereas the colored scatter plot

represents the experimental data obtained in this study.
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close to the x = y line, indicating the validity of the

obtained parameters.

Conclusions

(a) The phase equilibria of the Co–Fe–Mn system

at 800, 900, and 1000 �C were experimentally

determined through EDS analysis of the equi-

librated two-phase alloys. The Mn-rich corner is

experimentally verified for the first time. The

obtained experimental phase diagrams were

different for the Mn-rich corner compared with

the calculated phase diagram using the

parameters reported by Huang et al. [44].

(b) The thermodynamic parameters of the ternary

Co–Fe–Mn system were assessed using the

experimental data. The phase diagram obtained

using the new set of parameters is consistent

with the experimental data.

(c) The interdiffusivities and diffusion paths at 900,

1000, and 1100 �C in the fcc single-phase region

of the Co–Fe–Mn system were determined

using the diffusion couple technique for the

first time. Furthermore, atomic mobility assess-

ment of the ternary Co–Fe–Mn system was

performed using the diffusion flux determined

from the experimental concentration profiles

across the diffusion interface. The atomic

mobility parameters obtained in this study

were verified by comparing calculated and

experimental concentration profiles. The con-

centration profiles of the binary Co–Mn system

were well reproduced using the modified

mobility parameters adopted in this study.

The interdiffusivities in the ternary Co–Fe–Mn

system were obtained using the diffusion cou-

ple and Whittle–Green methods, and they

agreed well with the calculated interdiffusivi-

ties using the assessed mobility parameters,

which also indicated the reliability of the

assessed parameters.

The thermodynamic and kinetic assessments in this

study will facilitate the development of thermody-

namic and kinetic databases for HEAs.
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stellung im Dreistoffsystem Eisen-Kobalt-Mangan. Arch Für
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