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ABSTRACT

Despite the unique advantages of natural fibers as a reinforcement in polymer

composites, they have high natural variability in their mechanical properties,

resulting in significant uncertainties in the properties of natural fiber compos-

ites. This study aims to propose a multilevel framework based on the

Approximate Bayesian Computation (ABC) to analyze the uncertainty of fitting

the Weibull distribution to the strength data of date palm fibers. Two compu-

tationally efficient algorithms of the ABC, namely the Metropolis–Hasting as a

family of Markov Chain Monte Carlo and the Sequential Monte Carlo (SMC),

are employed for estimating the highest density interval of the fitting parame-

ters of the modified 3-parameter Weibull distribution, and their performances

are evaluated. Moreover, appropriate probability distributions that best fit the

estimated parameters are determined based on the goodness of fit to describe

their characteristics. It is found that the SMC algorithm leads to a higher scatter

in the posterior predictive distribution of the fitting parameters. The results

suggest that the uncertainty of the fitting parameters should be considered to

have a reliable model for the probability of natural fiber failure.
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GRAPHICAL ABSTRACT

Introduction

Natural (plant) fibers are promising reinforcements

to replace synthetic glass fibers in many nonstruc-

tural and semi-structural applications thanks to their

desirable properties such as high specific strength

and stiffness, good acoustic insulation, vibration

damping, and lower environmental impacts [1–4]. As

a result, the use of these natural reinforcements in

polymer composite materials has recently gained

substantial attention. However, unlike synthetic

fibers, the properties of natural fibers have a rela-

tively large uncertainty that arises from their natural

variabilities, extraction, and processing. These

uncertainty sources are generally hard or impossible

to control due to their stochastic nature. Therefore, it

is necessary to consider the variation of properties,

such as fiber strength, when modeling or predicting

the behavior of natural fiber-reinforced composites.

Weibull statistics is a popular data processing tool

for interpreting life data such as time to failure and

strength. Weibull distribution parameters can be

adjusted to fit many life distributions that are com-

patible with the weakest link theory or have a sudden

failure characteristic. For example, the Weibull dis-

tribution has been widely used to process the

strength data of brittle materials, such as glass and

carbon fibers, in which the most severe flaw controls

the strength [2, 5, 6]. It has also been successfully

applied to a variety of natural fibers such as hemp,

flax, sisal, agave, and bamboo fibers [7–14], as natural

fiber failure follows the ‘‘brittleness’’ and ‘‘weakest

link’’ assumptions of the Weibull distribution [15].

Although the basic version of the Weibull distri-

bution is the 2-parameter model, it usually is not

capable of accurately describing the strength distri-

bution of technical natural fibers [8, 15]. Many efforts

have been made to improve the accuracy of the

Weibull distribution by considering the influential

factors of the failure mechanism in the distribution

model [4, 16–18]. The modified 3-parameter Weibull

distribution is an improved version in which the

third parameter is introduced such that the effect of

defect density is considered as a function of fiber

geometry. For instance, E. Trujillo et al. [15] applied

the 3-parameter Weibull model to the strength data of

bamboo fibers tested at different gauge lengths and

showed that the model can predict the strength of

fibers against their length with an acceptable degree

of accuracy. According to the modified 3-parameter

Weibull distribution, the probability of failure of a

fiber with a volume V at stress less than or equal to r
is given by [15]:

F rjr0; b;mð Þ ¼ 1� exp � V

V0

� �b r
r0

� �m
 !

ð1Þ

where m is the shape parameter, r0 is the scale

parameter, and b is the geometry sensitivity. In

Eq. (1),V is the fiber volume, and V0 is the reference

volume, which is an arbitrary parameter used to

normalize the effect of the fiber volume. Interpreta-

tions of values of the distribution parameters are

available in [14, 15]. There are several classical

methods for estimating the Weibull distribution

parameters from the experimentally measured data-

set, such as Linear Regression (LR), Maximum
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Likelihood (ML), and Method of Moments (MM).

However, depending on the scatter of the experi-

mental data and the corresponding confidence

interval, these methods may result in different values

for the distribution parameters. This divergence in

the estimated parameters becomes more pronounced

for the natural fibers due to the high variation in their

strength. Therefore, the classical methods to estimate

the Weibull parameters are not reliable approaches

for finding the best fitting distribution to the

observed strength data.

Unlike the classical methods, the Bayesian approach

is a comprehensive alternative for parameter estima-

tion and model calibration, which has gained a lot of

attention in recent years. The Bayesian approach is not

only able to avoid over-fitting but also provides a

credible interval for the fitting parameters, which is a

valuable quantity for evaluating the uncertainty of the

unknown parameters [19]. The latter is the main

advantage of the Bayesian estimator when the scatter

of the experimental data is high. In fact, the Bayesian

estimator can describe the uncertainty of the estimated

parameters through the posterior predictive distribu-

tion. Using the Bayesian inference, the posterior dis-

tribution is obtained based on our prior beliefs about

the parameters and the assessment of their fit to the

experimental data [20, 21].

Almongy et al. [22] recently brought up a Bayesian

approach to estimate the credible intervals of gener-

alized Weibull distribution parameters in the case of

type-II censored data. They applied their model to

carbon fiber strength data. Chako et al. [23] have used

a Bayesian estimator to obtain the parameters of the

Weibull distribution for analyzing competing risk

data with binomial removals, which is applicable to

specific failure data sets. Ducros et al. [24] proposed a

Bayesian restoration maximization approach for a set

of heterogeneous data to fit a mixture of 2-parameter

Weibull distributions.

Using the Bayesian approach, we are interested in

the posterior distribution of the estimated parame-

ters. The posterior probability according to the

Bayesian inference is given by:

p hjxð Þ ¼ fðxjhÞp hð Þ
r fðxjhÞp hð Þ ð2Þ

where x is the observed data and h h � Rq; q� 1ð Þ is

the parameters vector, p hð Þ denotes the prior distri-

bution, and fðxjhÞ is the likelihood function that is

derived from a statistical model for the observed

data. The prior probability is subjectively determined

in advance; however, computing the likelihood

function in closed-form is not possible in most cases

[24–27]. The term r fðxjhÞp hð Þ is the normalization

constant. As a result, the posterior distribution is

always directly proportional to the product of the

likelihood function and the prior distribution.

Approximation Bayesian Computation (ABC) is a

computational method based on the Bayesian infer-

ence, seeking to estimate the posterior distributions

of model parameters computationally rather than

analytically. The ABC approach is one of the popular

methods for assessing statistical models, particularly

for analyzing complex problems. This approach

facilitates the estimation of the posterior distribution

by bypassing the evaluation of the likelihood func-

tion of the conventional Bayesian inference. As a

result, various methods have been introduced under

this scheme over the last years [28–32]. However, it

has been shown that the application of the direct

Monte Carlo to implement the ABC is not computa-

tionally efficient, particularly for models with high

dimensions. Hence, various algorithms have been

proposed to enhance the efficiency of the ABC [33].

One way is to take advantage of the Markov Chain

Monte Carlo (MCMC) sampling. Another way is to

apply sequential importance sampling with some

variations called Sequential Monte Carlo (SMC) [34].

In this study, for the first time, we applied the ABC

approach to fit a modified 3-parameter Weibull dis-

tribution to the experimentally measured strengths of

date palm fibers and determined the highest poste-

rior density intervals for the non-deterministic dis-

tribution parameters. The Metropolis–Hasting (MH),

as a class of MCMC sampling, and an SMC algorithm

were employed to obtain the posterior distributions

of the parameters. This study provides a reliable

method for predicting the fiber strength, considering

fiber dimensions.

Estimation of modified weibull
distribution using ABC

In order to estimate the modified 3-parameter Wei-

bull distribution parameters, the ABC algorithm is

applied to the strength data of date palm fibers

measured at seven different gauge lengths. Here, the

uncertainty of the distribution parameters (i.e., pos-

terior distribution) is modeled by fitting the most

J Mater Sci (2022) 57:2731–2743 2733



appropriate statistical distribution based on the chi-

square goodness of fit test. The general idea of the

ABC algorithm can be described as follows:

• Generate a family of random parameters from

prior distribution (previous belief)

• Simulate data according to generative model

using generated parameters

• Compare the simulated data and data observation

(update our belief)

• Repeat this process till the posterior parameters

converge to stationary distributions

The prior distributions are chosen to be exponen-

tial with parameters k1, k2, k3 for r0, b, and m,

respectively. The likelihood of the modified Weibull

distribution, considering the model independence,

can be written as:

f xjhð Þ ¼ f x1jhð Þf x2jhð Þ. . .f xnjhð Þ ð3Þ

thus

f xjhð Þ ¼
Yn
i¼1

m

rm0

Vi

V0

� �b

rið Þm�1

" #
exp

Xn
i¼1

� Vi

V0

� �b ri
r0

� �m
 !

ð4Þ

where n represents the number of the observed data

and vector x ¼ x1; x2; . . .; xnð ÞT is our data observa-

tion. In order to compare the simulated and real data,

we calculate the norm of the difference vector and

compare it with a threshold e. The threshold value

depends on the level of accuracy. Although various

methods based on quantiles have been suggested in

the literature to determine optimal e, they do not

apply to all sorts of models [35, 36]. The comparison

process is carried out as follows:

where ||.|| is the norm of the vector. This process

is repeated until N particles are accepted, and the

posterior distribution is converged to a stationary

distribution. In the following, we explore different

approaches, such as MCMC and SMC, to improve the

computational efficiency of the process.

Approximation bayesian computation using
markov chain monte carlo (ABC MCMC)

MCMC sampling is a promising method for smartly

generating a family of random variables from a

population. This method uses the Markov process to

produce a new random variable (i.e., new state) cor-

responding to the previous one (i.e., old state). From

the Ergodic theorem, which is the central limit theo-

rem (CLT) in the Markov process, and the rule of big

numbers, it can be assured that this process will

converge to a stationary distribution [37]. As a result,

the MCMC sampling is used extensively in the ABC

algorithm to facilitate the process.

Several MCMC-based algorithms have been pro-

posed in the literature that apply to various statistical

models. Among them, Metropolis–Hasting (MH),

Gibbs Sampling, and Hamiltonian Monte Carlo are

the most frequently used algorithms [38–40]. In this

study, we aim to use the Metropolis–Hasting algo-

rithm to efficiently generate random numbers in

order to reduce computational costs.

The Metropolis–Hasting algorithm comprises two-

part: generating random variables and evaluating the

generated numbers. In the first part, we need to

define a new distribution called proposal distribu-

tion. There have been many proposal distributions

brought up by previous studies [41–43]. Here, the

gamma distribution is used as the proposal distri-

bution due to the positivity of the Weibull parame-

ters. The gamma distribution is generally described

by two parameters; the shape parameter a and the

scale parameter b. The scale parameter is defined in

terms of the precision parameter s as:

b ¼ 1

s
ð5Þ

Considering that the mean value of the gamma

distribution is obtained by l = ab, the proposal dis-

tribution can be stated as:

fðxjl; sÞ ¼ gamma ls;
1

s

� �
ð6Þ

This simple substitution facilitates generating the

Weibull parameters by proposing parameters with

the precision sð Þ and the mean value lð Þ instead of

the shape and scale parameters.
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In the second part of the MH algorithm, a judg-

ment is performed on the proposed value. The algo-

rithm is implemented by accepting/rejecting

particles component-wisely. In other words, for each

parameter, a value is proposed, and then, the judg-

ment is made. For initiating the Markov process, we

need to guess an initial value for the parameters and

choose a fixed value for the precision s. This process

is repeated till t\N, where N is the total number of

iterations that the chain is run, and t is the specific

iteration that the chain runs through it. The iteration

is continued until the required convergence is

achieved. The error ellipse and parameters distribu-

tion are visualized in the next section for different

numbers of iterations. Figure 1 shows the entire

process of the ABC MCMC-MH algorithm, including

the judgment process.

Approximation bayesian computation using
sequential monte carlo (ABC SMC)

The idea of the SMC algorithm is based on the pop-

ulation Monte Carlo and the importance sampling.

The application of different types of SMC samplers in

the ABC framework has been investigated by several

researchers [44, 45]. The ABC SMC algorithm pro-

duces random particles within some measurable

common spaces using particle distribution

PetðhjxÞf g1� t�T. The ABC algorithm is applied to the

particles with decreasing thresholds etf g1� t�T in

each time step t.

For t� 2, the parameters are sampled from the set

of accepted particles at the previous sequence and

perturbed according to a suitable perturbation kernel

instead of sampling from the prior distribution. Each

of these particles is associated with a weight

h i;t�1ð Þ;w i;t�1ð Þ
n o

1� i�N
at each time, which is propa-

gated corresponding to a kernel

Kt h i;tð Þjh j;t�1ð Þ
� �n o

1� t�T
for any particles h i;tð Þ and

Figure 1 Flowchart of the

ABC MCMC using

Metropolis–Hasting algorithm.
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h j;t�1ð Þ. Note that only the first sequence particles are

sampled from the prior distribution. Thus, the choice

of the kernel is so influential on the acceptance rate

and the efficiency of the ABC SMC.

Here, the uniform kernel is employed for per-

turbing the particles [34]. In this kernel, each com-

ponent hj, j 2 1; 2; . . .df g of the parameter vector

h ¼ h1; . . .hdð Þ is perturbed independently within

hj � r tð Þ
j ; hj þ r tð Þ

j

h i
with a density of 1

2r tð Þ
j

, in which r tð Þ
j

is the kernel width and defined as:

r tð Þ
j ¼ 1

2
max

1� k�N
h k;t�1ð Þ
j

n o
� min

1� k�N
h k;t�1ð Þ
j

n o� �
ð7Þ

This sequence is repeated until t ¼ T, when the

measurable common space of particles converges to a

stationary distribution. Another influential factor in

ABC SMC efficiency is the sequence of decreasing

thresholds, etf g1� t�T. Various methods have been

proposed in the literature for determining the

thresholds. However, they have limitations that make

them not applicable to all models [35, 46]. In this

study, the thresholds are determined by trial and

error. Figure 2 illustrates the implementation

flowchart of the ABC SMC algorithm.

These two methods are implemented using

MATLAB and applied to the experimentally mea-

sured strength of the date palm fibers to determine

the fitting parameters of the modified 3-parameter

Weibull distribution. The performance of these

methods and their computational efficiency are

compared in the next section.

Results and discussion

Fiber strength data

The tensile strength of the technical date palm fibers,

extracted from leaf sheath, was measured through

the single fiber tensile test as per ASTM C1557-20.

The fibers were tested at seven different gauge

lengths; 10 mm, 15 mm, 20 mm, 25 mm, 30 mm,

40 mm, and 50 mm. The mean diameter (d) of an

individual fiber was obtained by measuring the

width of the fiber in six different locations along the

fiber length using optical microscopy. Then, the cor-

responding cross-sectional area (A) of the fibers was

calculated, assuming a circular cross section for

fibers. Moreover, the volume of fibers was calculated

by multiplying the cross-sectional area by the fiber

length. At least twenty fibers were tested at each

gauge length, resulting in at least 140 data points in

total.

Figure 3 shows the distributions of fiber diameters

of all tested fibers and their corresponding strengths.

The range of fiber diameters was from 0.107 to

0.361 mm. To assure an unbiased comparison, a one-

way ANOVA was carried out at a confidence level of

95% (a ¼ 0:05).Table 1 reports the mean value and

standard deviation of the fiber diameters for different

gauge lengths and the p value of the ANOVA test. It

can be seen that the calculated P value is greater than

0.05, meaning there is no statistically significant

Figure 2 Flowchart of the ABC SMC algorithm.
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difference in fiber diameters between the groups of

different gauge lengths.

Estimation of modified 3-parameter weibull
distribution parameters

The ABC MCMC and ABC SMC algorithms were

applied to the strength data of the date palm fibers to

estimate the fitting parameters of the modified Wei-

bull distribution of Eq. (1), and results were pre-

sented. Their performances were also compared and

evaluated.

Figure 4 illustrates the error ellipses of estimated

parameters for both the ABC MCMC and ABC SMC

methods with 10,000 iterations. Error ellipses are a

useful graphical tool to show the pair-wise correla-

tion between the computed values. Here, we used a

95% confidence interval to plot the error ellipses,

meaning 95% of the population of each parameter

falls within the ellipse. Comparing the orientation of

the error ellipses, both the methods resulted in a

relatively similar pair-wise correlation between the

parameters. In addition, it can be seen that all the

error ellipses of the ABC SMC method are larger than

that of the ABC MCMC method. The larger error

ellipse is an indication of the higher scatter of the

posterior distribution of the parameters. Therefore,

we can conclude that the use of the ABC SMC algo-

rithm results in higher standard deviations in the

estimated parameters.

The traces of the ABC MCMC estimations of the

parameters r0, b, and m against the number of iter-

ations are given in Fig. 5. The results show that, after

a few iterations, the generated parameters fall within

a stable range, which results in a stationary

distribution.

Figure 6 visualizes the population of the parame-

ters of the modified Weibull distribution,

h ¼ r0; b;mð Þ, at different sequences of the ABC SMC

simulation. We can clearly see that the parameter

space rapidly shrinks as the sequence advances,

meaning that the simulation converges to the poste-

rior distribution of the parameters.

To provide a better understanding of each algo-

rithm’s efficiency, the ABC was implemented using

the direct Monte Carlo to estimate the model

parameters. Figure 7 compares the acceptance rate of

the ABC MCMC, ABC SMC, and ABC (direct Monte

Carlo). The results indicate that the acceptance rate of

the ABC and ABC MCMC have the lowest and

highest acceptance rate, respectively. Moreover, the

acceptance rate of the ABC is significantly lower than

the two other algorithms. Besides, it can be seen that

the ABC MCMC has a higher acceptance rate com-

pared to the ABC SMC. This result is consistent with

the error ellipses of these two models shown in Fig. 4.

The histograms of the marginal posterior distribu-

tion of the estimated fitting parameters obtained from

the ABC (direct Monte Carlo), ABC MCMC, and the

ABC SMC after reaching the convergence are

Data
Mean

Figure 3 Scatterplot of fiber diameter versus strength with their

corresponding marginal distributions.

Table 1 ANOVA analysis for

different gauge lengths of

fibers

Group no. Gauge length (mm) Mean fiber diameter (mm) Standard deviation

(mm)

P value

1 10 0.191 0.043 0.393

2 15 0.185 0.039

3 20 0.203 0.046

4 25 0.184 0.046

5 30 0.209 0.049

6 40 0.210 0.033

7 50 0.197 0.046
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compared in Fig. 8. The ABC MCMC and ABC SMC

were found to converge to stationary distributions for

all the parameters after 50,000 iterations, whereas the

ABC required at least 2 million iterations to converge.

As can be seen, all the posterior distributions of the

parameters have the central tendency and are uni-

modal. This enables us to model the estimated

parameters characterization by finding the best fitting

probability distributions. However, there are some

differences in the spread and mode of the estimated

distribution of the parameters between the algo-

rithms. The results obtained from the ABC SMC are

very close to the ABC. Both are more scattered and

have different peaks compared to those of the ABC

MCMC. The larger scatter of the ABC SMC results is

consistent with its bigger error ellipses shown in
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Figure 4 Error ellipses of the

estimated parameters with

respect to each other for

a ABC MCMC (MH) and

b ABC SMC algorithms.
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Figure 5 Trace of the generated fitting parameters r0; b; and m.

against the iteration of the ABC MCMC algorithm.

Figure 6 Population of the

parameters of the modified

Weibull distributions in

different sequences of the

ABC SMC simulation:

a sequence 2, b sequence 6,

c sequence 12.

ABC ABC MCMC (MH)ABC SMC

Figure 7 Acceptance rate of ABC MCMC, ABC SMC, and

ABC-direct Monte Carlo.
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Fig. 4. This difference is associated with the sampling

algorithm of the ABC SMC, where instead of the

prior distribution, the parameters are sampled from

the set of accepted particles at the previous stage and

perturbed according to the uniform kernel. The

higher scatter in the estimated parameters means

higher uncertainty in the fiber strength predicted by

the modified Weibull distribution. This is discussed

later in the next section.

Parameters distribution

In order to characterize the uncertainty of the fitting

parameters of the modified Weibull distribution, we

fit probability distributions to the posterior data of

the parameters r0; b; and m. The chi-squared (v2)
goodness of fit test was used to find the distributions

that best fit the estimated parameters. The test is

based on the null hypothesis (H0) that the estimated

data follow a specific distribution. The p value

greater than 0.05 indicates that the null hypothesis is

not rejected at the 5% significance level. The sum-

mary of the distribution fitting the posterior data of

the Weibull parameters estimated by the ABC (direct

Monte Carlo), ABC SMC, and ABC MCMC, as well as

their associated p values with respect to different

numbers of iterations, are given in Tables 2, 3, and 4,

respectively. This information is useful because it can

be used to describe and compare the uncertainty of

the estimated parameters of the modified Weibull

distribution.

The estimated highest density interval (HDI) of the

Weibull distribution parameters with a 95% credible

interval indicated on their probability density func-

tions is shown in Fig. 9. When comparing the HDIs of

the corresponding parameters from both algorithms,

it is clearly seen that the HDIs of the ABC SMC

consist of a wider range compared to the ABC

MCMC. This difference in the estimated HDIs is

associated with the higher scattering of the posterior

distributions estimated by the ABC SMC algorithm

(Fig. 8).

Therefore, it can be said that a higher level of

uncertainty is predicted when the ABC SMC algo-

rithm is employed to fit the Weibull distribution to

the experimental observations. This is illustrated in

Fig. 10, in which the uncertainty in the Cumulative

Distribution Function (CDF) of the fiber strength was

compared with the empirical CDF and the modified

Weibull distribution fitted by the ML method.

Moreover, the upper and lower bounds of the

empirical CDF are given for comparison purposes.

ABC SMCABC MCMC (MH) ABC

Figure 8 Histograms of the

fitting parameters r0; b; and m.

Table 2 Statistical

distribution fitting to estimated

parameters by ABC (direct

Monte Carlo) with

corresponding chi-squared

goodness of fit

No. of iterations r0 b m

Lognormal Weibull Lognormal

v2

p value

l r v2

p value

a b v2

p value

l r

200 K� 0.296 5.151 0.042 0.037 0.689 1.971 0.008 1.958 0.187

500 K 0.905 5.450 0.037 0.080 0.614 1.736 0.651 1.861 0.171

1 M 0.916 5.453 0.036 0.051 0.625 1.744 0.103 1.759 0.164

2 M 0.159 5.453 0.037 0.123 0.621 1.745 0.392 1.763 0.169
�‘k’ stands for thousand and ‘M’ for million
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The advantage of this illustration is that we can

evaluate the uncertainty of the corresponding failure

probability using a probability distribution for any

value of the fiber strength. Also, the difference

between the deterministic estimation of fitting

parameters and the ABC method can be visualized.

Despite the differences in the Bayesian estimation

algorithms, both led to conservative results compared

to the ML. For example, the probability of failure at

r ¼ 170MPa estimated by the modified Weibull dis-

tribution with deterministic parameters is 0.157,

whereas the mean probability value by the ABC

MCMC and ABC SMC is 0.161 and 0.131, respec-

tively. As a result, neglecting the uncertainty effects

of the parameters can lead to an overestimation of the

strength value of the fibers.

Table 3 Statistical

distribution fitting to estimated

parameters by ABC SMC with

corresponding chi-squared

goodness of fit

No. of iterations r0 b m

Lognormal Weibull Lognormal

v2

p value

l r v2

p value

a b v2

p value

l r

5 K 0.199 5.451 0.037 0.199 0.608 2.206 0.872 1.719 0.151

10 K 0.347 5.453 0.036 0.440 0.656 2.141 0.225 1.736 0.178

20 K 0.643 5.451 0.038 0.054 0.649 1.903 0.142 1.738 0.161

50 K 0.370 5.452 0.038 0.126 0.637 1.860 0.158 1.754 0.172

Table 4 Statistical

distribution fitting to estimated

parameters by ABC MCMC

with corresponding chi-

squared goodness of fit

No. of iterations r0 b m

Lognormal Normal Lognormal

v2

p value

l r v2

p value

l r v2

p value

l r

5 K 0.501 5.432 0.019 0.151 0.767 0.131 0.149 1.608 0.063

10 K 0.061 5.433 0.019 0.176 0.770 0.128 0.002 1.613 0.061

20 K 0.252 5.433 0.018 0.105 0.765 0.127 0.183 1.612 0.061

50 K 0.347 5.433 0.018 0.202 0.768 0.125 0.205 1.613 0.060
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Figure 9 Highest density

interval (HDI) for parameters

r0; b;m estimated by a ABC

MCMC (MH) and b ABC

SMC algorithms.
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Conclusion

In this paper, the application of the ABC framework

was brought up for estimating the parameters of the

modified 3-parameter Weibull distribution to model

the strength of the date palm fibers. Two computa-

tionally efficient methods, namely MCMC and SMC,

were employed, and their performances in fitting the

distribution to the strength data were investigated.

The Metropolis–Hastings algorithm was imple-

mented for sampling from the probability distribu-

tion in the ABC MCMC method. Conversely, the

sampling in the ABC SMC was conducted from the

set of previously accepted particles and perturbed

according to the uniform perturbation kernel. The

marginal posterior distributions of the fitting

parameters were modeled by the best-fit probability

distributions, and their corresponding HDIs were

with a 95% credible interval were computed.

It is found that the posterior distributions of the

parameters obtained by the ABC SMC algorithm

were more spread compared to that of the ABC

MCMC. Therefore, the latter resulted in smaller HDIs

for the fitting parameters. The results of this study

suggest that the uncertainties in the estimation of the

Weibull distribution parameters should be assessed

when there is high variability in the experimental

data, like natural fiber strength. Consequently, the

consideration of these uncertainties is significant to

have a reliable and accurate predictive model for the

failure probability of date palm fibers.
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