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ABSTRACT

Due to the development of industries, environmental problems attract much

attention, and photocatalyst degradation of dye materials has been considered

an effective way to solve the problems. Herein, the strategy that decorates Ag

and Co3O4 nanoparticles on the black TiO2-x nanotube arrays substrate (Ag/

Co3O4/TiO2-x@Ti) is constructed to enhance the photodegradation properties of

the catalyst under visible light irradiation. The composite Ag/Co3O4/TiO2-x@Ti

demonstrates enhanced visible light absorption due to the local surface plasmon

resonance (LSPR) of Ag nanoparticles as well as the formation of oxygen

vacancy and Ti3? in black TiO2-x nanotube arrays substrate. Moreover, the Ag/

Co3O4/TiO2-x@Ti exhibit enhanced degradation performance compared to the

single Ag/TiO2-x@Ti system, the photocatalytic efficiency of Ag/Co3O4/TiO2-x

@Ti in degradation MB was 1.2 times higher. Furthermore, the photocatalyst

performance of Ag/Co3O4/TiO2-x@Ti in the degradation of MB is 1.5 and 5.2

times higher than that of black TiO2-x nanotube arrays and white TiO2 nanotube

arrays, respectively. The improved photocatalytic activities can be attributed to

the effect of the strong absorption under visible light, the effective separation of

electrons and holes during the reaction, and the decreased bandgap due to the

black TiO2-x.
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GRAPHICAL ABSTRACT

Introduction

The dyes as an industrial pollutant have caused

serious environmental and health issues [1–4]. There

are around 10–15% of dye left after the dyeing pro-

cess and released into nature water from wasted

industrial solution [5, 6]. Synthesized dye materials

are usually hard to be degraded in a natural envi-

ronment due to their stable chemical state [7–10].

Therefore, it is urgent to find better methods to

eliminate synthesized dye materials from wasted

water.

Semiconductor-based catalysts have widely been

used as photocatalyst materials to degrade organic

dyes under UV or visible light energy due to the non-

toxic and use friendly [11–13]. TiO2 is one of the most

popular photocatalysts because of its high stability

and low cost [9, 14]. However, TiO2 photocatalysts

suffer from the fast recombination of light excited

electrons and holes [15–17]. In addition, the visible

light absorption and conductivity of the noble metal-

based TiO2 photocatalysts are still rather low.

Several methods, including structure design [18],

doping with metal and nonmetal atoms [19, 20],

surface photosensitization [21], and a combination of

other semiconductors [22–25] have been attempted to

improve the photocatalytic performance of TiO2.

Heterojunctions between TiO2 and other semicon-

ductors have been recognized as an effective way to

separate electrons and holes, which can increase the

photocatalytic performance of the catalyst. Co3O4 is a

kind of p-type transition metal oxide semiconductor

material with a low bandgap (1.2–2.1 eV), which can

be excited by visible light during photocatalytic

reactions [26–28]. In addition, the excellent chemical

stability and sensitive response of light irradiation

make Co3O4 much attractive to researchers [29]. The

combination of Co3O4 and TiO2 also produces a

Z scheme heterojunction, which prevents the elec-

tron–hole recombination and boosts the photoin-

duced carriers transfer [30]. Furthermore, the effect of

LSPR by noble metals such as Ag and Au can play the

role of electron trap center to separate the electrons

and holes [31]. Due to the strong absorption of visible

light of noble metal, the metal particles combine with

TiO2 to achieve high photocatalyst activity.

The black TiO2-x has been synthesized by the

hydrogen annealing process [32]. The formation of

oxygen vacancy and Ti3? in the black TiO2-x signifi-

cantly decreases the bandgap and increases the visi-

ble light absorption. Due to these advantages, black
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TiO2-x can be used to substitute for pure TiO2 as a

photocatalyst. Reports indicated that black-TiO2/

CoTiO3 nanocomposite exhibits a good degradation

efficiency to remove 99% of rhodamine B (RhB),

methylene blue, and methyl orange (MO) [33]. A

nano-photocatalyst consisting of reduced graphene

oxide (RGO), black TiO2-x nanosheet, and 2-D ZIF-8

sheet (2D-ZIF-8) showed high adsorption, rapid

charge separation, and high efficiency of pollutions’

degradation due to the formation of oxygen vacancy

and double heterogeneous interface [30].

In this work, a novel nanocomposite photocatalyst

Ag/Co3O4/TiO2-x@Ti was prepared through two-

step anodization, electrochemical doping, and

impregnating–deposition–decomposition process.

Notably, the combination of Ag nanoparticles and

Co3O4 nanoparticles with black TiO2-x nanotube

arrays can accept the electrons from Ag nanoparticles

and transfer holes to Co3O4 nanoparticles, thus

effectively separating electrons and holes. At the

same time, the reduced bandgap of black TiO2-x and

LSPR effect of Ag nanoparticles can increase the light

absorption from the VU range to the visible range.

Ag/Co3O4@TiO2-x nanocomposite, therefore, shows

much-improved photocatalyst performance with 87%

degradation of MB solution in 300 min, which is 5.2

times higher than that of pure TiO2 nanotube arrays.

Experimental

Preparation of TiO2 nanotube arrays
substrate

The highly organized TiO2 nanotube arrays were

prepared by a two-step electrochemical anodization

on Ti foil (99.96%, 40 9 25 9 0.2 mm3). The Ti foil

was washed with milli-Q water, acetone, and ethanol,

separately. In the first anodization process, metallic

Ti foil was used as the anode, and Ti mesh was

applied as the cathode. Both anode and cathode were

put in 250 ml electrolyte, which contains 0.25 wt%

NH4F and 2% milli-Q water in the ethylene glycol

solution. The first anodization was carried out under

60 V for 24 h. After that, the formed thin TiO2 nan-

otube film was removed by ultrasonication in etha-

nol. The second anodization was applied under 60 V

for 3 h, and the TiO2 nanotube arrays were washed in

ethanol and milli-Q water. After cleaning, the

prepared sample was soaked in ethanol for 48 h to

release the internal stress.

Preparation of Ag doped TiO2 nanotube
arrays substrate

Ag nanoparticles (NPs) were deposited onto TiO2

nanotubes via electrochemical deposition. 0.1 g

AgNO3 was dissolved in 100 mL DI water labeled as

solution A, prepared TiO2 nanotube arrays substrate

played as cathode, and Ti mesh was used as the

anode, and both cathode and anode substrate were

soaked in solution A. The electrochemical deposition

was performed for 1 min under the voltages of 5, 10,

30, and 60 V. After electrochemical deposition, the

sample was washed with milli-Q water and dried in

an oven for 24 h under 60 8C. Then the dried sample

was put in a tube furnace annealing in an atmosphere

containing 5% H2/95% N2 at 550 8C for 2 h. The

prepared sample was labeled as Ag/TiO2-x@Ti.

Preparation of Ag, Co3O4, co-doped TiO2-x

nanotube arrays substrate

The deposition of Co3O4 nanoparticles was carried

out by the impregnating–deposition–decomposition

method. 8.7 g Co(NO3)2 was dissolved in 100 mL

milli-Q water which was labeled as solution B. 0.12 g

NaOH was dissolved in 100 mL milli-Q water which

was labeled as solution C. The precursor Co(OH)2
NPs were deposited on the annealed Ag/TiO2-x@Ti

by immersing the Ag/TiO2-x@Ti substrate for 20 min

in solution B and C separately (Co(OH)2/Ag/TiO2-x

@Ti). After repeating the immersion procedure 3

times, Co(OH)2/Ag/TiO2-x@Ti samples were dried

and annealed in Ar at 220 8C for 6 h until Co(OH)2
completely decomposed into Co3O4 NPs.

Photocatalytic property measurement

The photocatalytic activity of Ag/Co3O4/TiO2-x@Ti

nanotube arrays was tested via the adsorption and

decomposition of methylene blue (MB) under visible

light. The catalyst films were immersed into a

50 mL MB solution (5 ppm MB), followed by stirring

in the dark for 1 h to get equilibrium of adsorption/

desorption of solution. A F300-W xenon lamp

(BBZM-I, 380–800 nm) was applied to the solution for

4 h. The absorption spectra of the MB solution were
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tested by a UV–VIS spectrophotometer with a

wavelength ranging from 200 to 800 nm.

Materials characterization

The phase structure of TiO2-x@Ti, Ag/TiO2-x@Ti, and

Ag/Co3O4/TiO2-x@Ti was analyzed by X-ray powder

diffraction (XRD, Bruker D2-Phaser) with Cu Ka1

radiation (k = 1.5406 Å) over 2h ranging 20�-80�. The
morphology and lattice structure of Ag/Co3O4@TiO2-x

were characterized by high-resolution transmission

electron microscopy (HRTEM, FEI Tecnai G2 F20,

200 kV). The light absorption of thin films was

determined with a UV–Visible Spectrometer (Shi-

nadzu UV-2550). The chemical state of Ag/Co3O4/

TiO2-x@Ti was examined by X-ray photoelectron

spectroscopy (XPS, PHI Quantera-II SXM).

Replicate syntheses

Ag/Co3O4/TiO2-x@Ti was synthesized 3 times

through the same methods (repeat 1, repeat 2, and

repeat 3), and the photodegradation properties of

three repeat syntheses samples have been tested as

the methods mentioned above.

Results and discussion

Morphology and phase structure

The preparation of Ag/Co3O4/TiO2-x@Ti is illustrated

in Scheme 1. Figure 1a, b shows the powder XRD pat-

tern of as-synthesized Ag/Co3O4/TiO2-x@Ti, Ag/TiO2-

x@Ti, and TiO2-x@Ti. For the black TiO2-x nanotube

arrays, all peaks are well indexed to the anatase

(PDF#21–1272), rutile (PDF#89–0555), and Ti

(PDF#44–1294) phases. Compared to the black TiO2-x

nanotube arrays, XRDpattern ofAg/TiO2-x@Ti does not

show any extra diffraction peaks, suggesting that only a

small amount of Ag nanoparticles is loaded on the

surface of the black TiO2-x substrate, and the size of Ag

nanoparticles is small [34, 35]. Higher doping voltages

10 V, 30 V, and 60 V were applied for Ag deposition.

With increasing electrodeposition voltage, Ag peaks

start to appear, as shown in Figure S1. This confirms the

successful deposition of Ag NPs on the substrate.

The impregnating–deposition–decomposition and

annealing methods were conducted to deposit Co3O4

nanoparticles on the black TiO2-x nanotube arrays.

Figure 1b shows the close-up XRD patterns. There are

four major diffraction peaks at 31.28, 38.88, 59.38, and
65.28, corresponding to (220), (311), (511), and (440)

crystal planes of Co3O4 (PDF#73–1701), suggesting the

formation of Co3O4 on the black TiO2-x substrate.

The morphology of as prepared black TiO2-x nan-

otube arrays is shown in Fig. 2a. It can be seen that

the nanotubes are highly ordered, and after 5 V Ag

electro-doping, a small number of nanoparticles are

anchored on the surface of black TiO2-x surface

(Fig. 2b). With increasing doping voltage from 5 to

60 V, the number of particles increases, and the size

of particles increases from less than 20 nm to around

100 nm, indicating the doped particles aggregated

with the increasing doping voltage (Figure S2), cor-

responding with the XRD results. Figure 2c shows

the decoration of Co3O4 nanoparticles on the surface

of black TiO2-x nanotube arrays, exhibiting nanosh-

eets structure. After impregnating–deposition–de-

composition Co3O4 on the Ag particles which

decorated on black TiO2-x nanotube substrate, small

nanoparticles change to larger nanotube structure,

Scheme 1 Preparation process

of Ag/Co3O4/TiO2-x@Ti.
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indicating the nucleation of Co3O4 beside the formed

Ag nanoparticles (Fig. 2d).

Bright field (BF) TEM images in Figs. 3a, b, c exhibit

the nanostructure of black TiO2-x nanotube arrays and

Ag/Co3O4/TiO2-x@Ti, respectively. HR-TEM lattice

images in Figs. 3d–e were acquired to further analyze

the structure of the anchored nanoparticles. The lattice

fringes of 0.35 nm correspond to the crystal plane of

anatase TiO2 (101). The interlayer spacing about

0.204 nm and 0.243 nm indicates the formation of Ag

(200) and Co3O4 (311), respectively. The HR-TEM

images suggest that the Ag and Co3O4 nanoparticles

both anchored on the black TiO2-x successfully. The

SAED pattern (Fig. 3f) presents the polycrystalline

structure of Ag/Co3O4/TiO2-x@Ti, and the ring

diffraction pattern matches well with TiO2 and Co3O4

phases, which agrees with the XRD results.

Figure 4 shows the XPS spectra of Ag/Co3O4/TiO2-x

@Ti. Figure 4a shows thehigh-resolutionXPS spectra of

Co 2p from Ag/Co3O4/TiO2-x@Ti sample, indicating

Co 2p1/2 and Co 2p3/2 peaks at 796.7 eV and 783.6 eV,

separately. The Co 2p spectra can be fitted into six

Figure 1 a XRD patterns and b close-up XRD patterns of black TiO2-x nanotube arrays, Ag/TiO2-x@Ti and Ag/Co3O4/TiO2-x@Ti.

Figure 2 SEM top view:

a black TiO2-x nanotube arrays

of black TiO2-x, b Ag/TiO2-x

@Ti, and c Co3O4/TiO2-x@Ti,

d Ag/Co3O4/TiO2-x@Ti.
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peaks, including satellite peaks located at 786.8 and

803.0 eV, and two pairs of peaks from Co3? and Co2?.

The energy peaks located at 780.3 eV and 794.0 eV stem

from the Co3? in Co 2p3/2 and Co 2p1/2, while the

energy lower andhigher peaks at 782.9 eVand797.0 eV

could be ascribed to Co2? [36]. The existence of Co2?

and Co3? indicates the formation of Co3O4 in Ag/

Co3O4/TiO2-x@Ti and agreeswellwith the XRD results.

Figure 4b shows Ag peaks centered at 368.1 and

374.1 eV corresponding to Ag 3d2/3 and Ag 3d5/2

[37]. The separation of two peaks is 6 eV indicating

the metallic nature of silver. The peaks located at

458.9 and 464.6 eV represent the 2p3/2 and 2p1/2

electronic states of normal Ti–O species, indicating

the existence of Ti4?. The peaks at 457.8 and 463.6 eV

represent Ti–OH species, evidence of Ti3? in Ag/

Co3O4/TiO2-x@Ti (Fig. 4c). In the O 1 s XPS spectra

(Fig. 4d), three peaks centered at 530.0, 530.6, and

532.2 eV represent the Ti–O bond in TiO2, –OH

absorption on the surface, and oxygen vacancy (Ov)

neighboring Ti3?, respectively [38–40].

Photocatalytic properties

UV–Vis absorbance spectra of Ag/Co3O4/TiO2-x@Ti

nanotubes are shown in Fig. 5. After annealed in H2,

black TiO2-x exhibits a high absorbance ability of

light, which almost covers the entire visible light

region of 400–800 nm. The high visible light absorp-

tion is due to the formation of oxygen vacancy and

Ti3? species in black TiO2-x [41–43]. Absorptions of

Ag/Co3O4/TiO2-x@Ti are high in the visible light

region but drop slightly after 500 nm, which may be

due to the light reflection of Ag and Co3O4

nanoparticles on black TiO2-x surface. The broad

absorption peak centered around 500 nm can be

attributed to the LSPR effect of Ag nanoparticles

anchored on black TiO2-x substrate. Compared with

the sharp Ag absorption peak, the formation of a

broad absorption peak is caused by the inhomoge-

neous particle size distribution.

The light absorption abilities of black TiO2-x, Ag/

TiO2-x@Ti, and Ag/Co3O4/TiO2-x@Ti are much

improved compared with the white TiO2 substrate,

indicating the high efficiency of light utilization,

which could improve the photocatalyst performance

of catalysts. The band gaps of these three composites

are calculated by Kubelka-Munk Function (Fig. 5b).

After introducing Ag and Co3O4, the bandgap of Ag/

Co3O4/TiO2-x@Ti decreased from 3.08 to 2.57 eV,

indicating that the co-deposition of Ag and Co3O4

Figure 3 TEM images of a black TiO2-x, b and c Ag/Co3O4/TiO2-x@Ti, d and e high-resolution TEM image of Ag/Co3O4/TiO2-x@Ti,

and f SAED pattern of Ag/Co3O4/TiO2-x@Ti.
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improves the optical properties of the TiO2-x@Ti

substrate.

Furthermore, the PL spectra for the black TiO2-x,

Ag/TiO2-x, and Ag/Co3O4/TiO2-x@Ti were plotted

as revealed (Fig. 5c). The Ag doped black TiO2-x

exhibits high charge transfer properties which result

in low PL intensity compared with that of black

TiO2-x. The Ag/Co3O4/TiO2-x@Ti presents the lowest

PL intensity compared to the black TiO2-x, Ag/TiO2-x,

which indicates the highest charge separation and

migration properties of Ag/Co3O4/TiO2-x@Ti [44].

The EIS Nyquist arc radius of Ag/Co3O4/TiO2-x@Ti

is smaller than that of black TiO2-x and Ag/TiO2-x

(Fig. 5d), the smallest radius indicates the higher

charge separation efficiency of Ag/Co3O4/TiO2-x@Ti

[45]. The above results further demonstrate the

remarkable charge separation and migration of pre-

pared Ag/Co3O4/TiO2-x@Ti.

Photocatalytic degradation of MB of Ag/
Co3O4/TiO2-x@Ti nanocomposites

The photocatalytic activity of the Ag/Co3O4/TiO2-x

@Ti nanocomposites was tested by the degradation of

methylene blue (MB) in a water solution under sim-

ulated visible light irritation. For comparison pur-

poses, photocatalytic measurements were taken on

white TiO2, black TiO2-x, and Ag/TiO2-x@Ti samples

under the same testing condition. As shown in

Fig. 6a, after 60 min dark adsorption and 240 min

visible irradiation, white TiO2 substrate presented a

low photocatalyst property at 17% compared to the

black TiO2-x nanotubes at 58%. Deposition of Ag

nanoparticles on the black TiO2-x substrate increases

the photocatalytic property to 74%, and Ag/Co3O4/

TiO2-x@Ti exhibits the highest photocatalyst perfor-

mance with 87% MB degraded in the solution after

Figure 4 a XPS spectrum of Ag/Co3O4/TiO2-x@Ti, with the corresponding high-resolution XPS spectra of b Co 2p, c Ag 3d, d Ti 2p and

e O 1 s.
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Figure 5 a UV–Vis absorbance spectra of black TiO2-x, Ag/TiO2-

x and Ag/Co3O4/TiO2-x@Ti, and b plots (F(R)*hv)1/2 versus hm for
band gap energies of black TiO2-x, Ag/TiO2-x@Ti and Ag/Co3O4/

TiO2-x@Ti. c PL spectra of black TiO2-x, Ag/TiO2-x and Ag/

Co3O4/TiO2-x@Ti; d EIS spectra of black TiO2-x, Ag/TiO2-x and

Ag/Co3O4/TiO2-x@Ti.

Figure 6 a Photocatalytic degradation of MB using a different catalyst, and b Langmuir–Hinshelwood model fittings of MB degradation

kinetics.
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dark adsorption and visible light irradiation. It is

obvious that Ag and Co3O4 doping on black TiO2-x

nanotube arrays has a great effect on improving the

catalytic performance. However, the photodegrada-

tion properties of the catalyst decrease with the

increment of the Ag size (Figure S3). It can be

explained that the superfluous Ag shielded the sur-

face of black TiO2-x substrate and reduced the num-

ber of photons reaching the inner of the nanotube.

Also, more Ag content could be detrimental to pho-

tonic efficiency [46–49]. To further prove the photo-

catalytic properties of Ag/Co3O4/TiO2-x@Ti, the

catalyst has been replicated synthesized 3 times, and

the repeated samples exhibit almost the same pho-

tocatalytic dye degradation performance as shown in

figure S4, Figure S5.

Figure 6b shows the Langmuir–Hinshelwood

kinetic fitting results, which fit well with experi-

mental data. The regression coefficients (R2) are

higher than 0.95 with 0.957 for Ag/Co3O4/TiO2-x@Ti,

0.980 for Ag/TiO2-x@Ti, 0.985 for black TiO2-x, and

0.952 for white TiO2. At the same reaction tempera-

ture, the degradation performance of Ag/Co3O4/

TiO2-x@Ti is 16 times higher than bare TiO2. The

degradation abilities and Langmuir–Hinshelwood

kinetic models of different Ag doped samples are

shown in Fig. S3. With increasing Ag nanoparticle

size, the degradation performance decreases proba-

bly due to the larger Ag nanoparticles can act as the

electrons–holes recombination sites [50], thus

decreasing the amount of electrons and holes and

prohibiting the photocatalyst ability during the

reaction.

The structural stability and reusability of Ag/

Co3O4/TiO2-x@Ti have been analyzed by the recy-

cling, XRD, and XPS experiments. The Ag/Co3O4/

TiO2-x@Ti present the unchanged photocatalyst

properties after three cycles (Figure S6). The XRD

spectrum of Ag/Co3O4/TiO2-x@Ti exhibits the same

peaks compared with the sample before reaction,

proving the crystal structure stability of Ag/Co3O4/

TiO2-x@Ti (Figure S7). The XPS spectrum has been

tested to verify the phase composition and elements

valence of Ag/Co3O4/TiO2-x@Ti after photodegra-

dation. After the reaction, XPS peaks of Co, Ag, Ti,

and O present no obvious change, which indicates

the structural stability of Ag/Co3O4/TiO2-x@Ti

(Figure S8).

The mechanism of enhanced photocatalytic per-

formance of Ag/Co3O4/TiO2-x@Ti is proposed in

Fig. 7. The introduction of Ti3? and oxygen vacancy

into black TiO2-x can generate a new energy level

under the conduction band of material, thus nar-

rowing the bandgap of black TiO2-x and extending

the light absorption region from UV light to visible

light [51]. In this study, the formation of heterojunc-

tions among Ag, Co3O4, and black TiO2-x is a factor

that improves the photocatalytic efficiency of black

TiO2-x, because the heterojunctions can act as bridges

to transfer electrons and prevent the recombination of

electrons and holes. Once the heterojunctions are

formed, Ag particles on the surface can generate a

large amount of ‘‘hot electrons’’ under visible-light

irradiation by the unique LSPR [52]. In addition, the

LSPR that comes from Ag nanoparticles is further

enhanced by black TiO2-x nanotubes as Ag particles

doped in the black TiO2-x nanotubes can absorb more

scattered light [53] [54]. In this way, schottky barrier

forms at the interface between Ag and black TiO2-x,

and hot electrons on Ag surface can migrate to the

surface of black TiO2-x and react with dye [55].

Co3O4 is a typical hole collector for oxidizing dye

molecules, and the p–n junction can form at the

interface between Co3O4 and black TiO2-x, facilitating

the transfer of holes from black TiO2-x to Co3O4 and

oxidizing the organic dye on the surface of Co3O4

[56]. Similarly, heterojunctions can be built up

between Ag and Co3O4, providing electrons on the

conduction band of Co3O4, which is then transferred

to Ag nanoparticles and eventually to the black

TiO2-x. In the context of this p–n junction, organic

compounds can be oxidized on Co3O4 surface since

Ag/Co3O4/TiO2-x@Ti can use the visible light more

efficiently. More electrons have been generated, and

their recombination with holes is slowed down,

resulting in higher photocatalytic efficiency.

Conclusions

In summary, Ag and Co3O4 nanoparticles were

doped on black TiO2-x nanotube arrays through

electrochemical deposition and impregnating–depo-

sition–decomposition methods. The presence of Ag

nanoparticles, oxygen vacancy, and Ti3? played an

important role in the absorption of visible light dur-

ing the reaction. What’s more, the formation of Ag/

Co3O4/TiO2-x@Ti effectively decreases the electrons

and holes recombination during the reaction. The

improved visible absorption and charge separation
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improve the photocatalyst activity for the degrada-

tion of MB under visible light. Ag/Co3O4/TiO2-x@Ti

presents excellent photocatalytic efficiency, which is

5.1 times higher than that of black TiO2-x under solar

light irradiation. This work proposes a novel method

for designing new black TiO2-x based catalysts with

low electron–hole recombination rate and superior

photocatalytic performance.
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