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ABSTRACT

A rational structural strategy to design rambutan-like NiFe-LDH nanocluster

arrays electrode via a buffer-salt-assisted hydrothermal method was reported.

For our developed electrode, large stable current density of 100 and

200 mA cm-2 at overpotential of only 283 and 300 mV in oxygen evolution

reaction in alkaline electrolyte was obtained, which is dramatically lower than

many previous reported overpotentials. It also exhibits low Tafel slope at cur-

rent range from 10 to 25 mA cm-2 (56.47 mV dec-1). Further analysis demon-

strates the key role of higher carriers of the rambutan-like NiFe-LDH

nanocluster arrays electrode in boosting the water-splitting performance of the

resulting system. Benefiting from the fine geometry shape of the self-supported

nanocluster nanoarrays electrode, the transfer process of the reactants and

oxygen/hydrogen bubbles is accelerated. In addition, a 19-time enhancement of

carrier concentration for our developed rambutan-like NiFe-LDH nanoclusters

(2.9 9 1029 m-3) is obtained. Notably, the resultant rambutan-like NiFe-LDH

nanocluster arrays electrode exhibits enhanced stability (in high and low current

density) for the full water splitting in 1 M KOH, remaining nearly 100% of the

original current density after continued testing for 20 h. This finding may pro-

vide new insight on rational structural design LDH nanostructures with high

performance for electrocatalysis.
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GRAPHIC ABSTRACT

A highly hydrophilic NiFe-LDH nanocluster arrays electrode is developed for

efficient full water splitting. Large and stable current density of 200 mA cm-2 is

obtained at overpotential of 300 mV. Besides, the faraday efficiency is nearly

100%.

Introduction

Highly efficient electrocatalysts composed of earth-

abundant elements are desired for water splitting to

produce clean energy. Recently, attention has been

distracted to non-noble metals such as first-row

transition metal hydroxides/oxides compound, and

it can catalyze the water splitting efficiently when

compounded with other metals in the row [1–9]. In

recent years, NiFe-layered double hydroxides (LDHs)

consisting of positively charged layers and interlayer

anions as 2D materials have showed the best OER

catalytic activity in alkaline solution, which have

attracted great attention [10–14]. The main challenges

in designing LDH-based electrocatalysts for practical

full water splitting primarily derive from the rigorous

requirement of electron/holes transfer efficiency at

large current densities. In recent years, many effec-

tive strategies have been reported to further enhance

the water-splitting performance of NiFe-based elec-

trocatalysts, such as optimizing the composition of

Ni/Fe, introducing conductive components to

enhance electron transfer ability [15–17], and

designing special morphologies to expose more

active sites. Specifically, it is highly desired to realize

the effect of two birds with one stone by rationally

designing the geometry/shape of the layered struc-

ture, and this kind of electrode not only has high

electron transfer efficiency but also can expose many

active sites.

In general, ultrathin nanosheets structure is bene-

ficial to expose massive catalytically active sites [18].

In addition, a fine nanoarray structure is demon-

strated to facilitate bubble release and ion transfer

because of its great reduction of the contact area

between bubbles and the electrode [19–24]. Hence,

we rationally design and synthesize a rambutan-like

NiFe-LDH nanocluster arrays electrode via a buffer-

salt-assisted hydrothermal method for enhancing

water-splitting performance. The prominent struc-

tural feature of the as-obtained catalysts lies in the

presence of ultrathin NiFe-LDH nanosheet nanos-

tructures, endowing with the merits of not only

facilitating the transmission of electrons but also

exposing massive catalytically active edge sites.

Meantime, the nanocluster array geometry structure

can absorb liquid-phase electrolyte onto the electrode
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surface due to its special capillary forces, which

boosts the processes of mass transfer and electrolyte

penetration [25, 26]. Also, the NiFe nanoalloy

nanoparticles decorated at nanosheets increase the

roughness of the catalysts, which is important for the

access of reactants and the release of oxygen bubbles

[27, 28]. Such material requires only overpotential (g)
of 300 mV to achieve a geometrical current density of

200 mA cm-2 in 1 M KOH solution and a *19 times

enhancement of carrier concentration for the as-pre-

pared NiFe-LDH nanocluster arrays (2.9 9 1029 m-3)

are obtained.

Experimental section

Materials

All chemicals were used directly without further

purification. Cobalt (II) nitrate hexahydrate (AR,

99%), FeCl3 (AR, 98%), urea (AR, 99%), NH4F (AR,

98%), sodium citrate (98%), potassium hydroxide

(AR, 90%) were purchased from Aladdin (Shanghai,

China). Ultrapure water (18.5 MX cm-1) was used

throughout the whole experiment.

Synthesis of rambutan-like NiFe-LDH
microspheres/NF samples

Typically, nickel foams (NF, 1 cm 9 1 cm) were

degreased by sonication immersed in ethanol, ace-

tone, and isopropanol for 10 min, respectively. Then

rinse with deionized water. Finally, the samples were

dried in an oven at 60 �C for 12 h. The rambutan-like

NiFe-LDH nanoclusters arrays were obtained by a

one-step buffer-salt-assisted hydrothermal method.

Specifically, 4 mmol Ni (NO3)2, 1 mmol FeCl3,

7.5 mmol NH4F, 16 mmol uric, and 0.75 mmol

sodium citrate (abbreviated as SCT) were dissolved

in 40 ml ultrapure water completely by ultrasound

for 15 min, then transferred 30 mL of the above

solution to 50 mL Teflon-lined stainless-steel auto-

clave. Sodium citrate acts as a buffer-salt. To perform

chemical deposition of rambutan-like NiFe-LDH

nanocluster array on NFs formation, the cleaned NF

is placed vertically into a Teflon-lined stainless-steel

autoclave and heated at 120 �C for 12 h. The precip-

itate was washed with water and ethanol three times

and then dried in an oven at 60 �C for 24 h. For

comparison, we synthesis the NiFe-LDH/NF

samples under the same conditions except for the

addition of SCT.

Characterizations

The as-synthesized samples were examined by

powder X-ray diffraction (PXRD, BRUKER AXS D8

Advance, radiation source Cu Ka) at a 2h range of

5–90�with scan speed 5��min-1. The morphology was

observed on field emission scanning electron micro-

scope (FESEM, ZEISS Gemini SEM 300) and trans-

mission electron microscopy (TEM, JEOL JEM-2100).

The construction and binding energies of the samples

were studied by X-ray photoelectron spectroscopy

(XPS).

Electrochemical measurements

All electrochemical tests were carried out on a tra-

ditional three-electrode system by electrochemical

workstation (CHI 660E) at room temperature. Ag/

AgCl (saturated KCl) was used as reference elec-

trode, carbon rod as counter electrode, and as-pre-

pared 1 cm 9 1 cm NF-based electrodes as working

electrode. Linear sweep voltammetry (LSV) curves

toward OER were measured at a scan rate of

2 mV s-1 after 100 cyclic voltammetry (CV) scans.

For the CV experiments, we first stand the electrode

in the electrolyte for 5–10 min to obtain the OCP) as

activation in 1 M KOH (pH = 14.0). All the initial

data were corrected for 80% iR loss and the potentials

were transferred to a reversible hydrogen electrode

(RHE) according to the formula of Evs.RHE = Evs.Ag/

AgCl ? 0.197 V ? 0.059 9 pH. Electrochemical impe-

dance spectroscopy (EIS) was operated on the same

three electrodes and 1 M KOH electrolyte, and the

frequency range was from 0.01 to 105 Hz, and the

amplitude was 10 mV. The electrochemical surface

area (ECSA) was calculated by CVs in different scan

rates from 20 to 60 mV s-1. Amperometry i–t curve

was carried out in 1 M KOH to test the samples’

stability. Mott–Schottky (M-S) curve used a three-

electrode system with an applied frequency of 1 kHz

and a potential amplitude of 10 mV/s. We obtain the

Mott–Schottky (MS) relationship of the semiconduc-

tor space charge layer capacitance (CSC) by the Mott–

Schottky (MS) equation [29]:
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using the slope of the Mott–Schottky curve [30]:
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EFB is the flat band potential, e = 1.6 9 10-19 C,

e0 = 8.85 9 10-14 F/cm, e is the permittivity of NiO

(30).

The overall water-splitting performances were

performed in a two-electrode system, and the pre-

pared NiFe-LDH nanocluster arrays samples were

worked as cathode and anode, respectively. The

produced H2 and O2 were collected using a drainage

method via a two-electrode water-splitting setting in

1200 s of test at 100 mA s-1. In detail, the theoretical

O2 and H2 yields were calculated by formula of n

(O2) = Q/n*F according to previous literature [31].

Results and discussion

The hydrophilic NiFe-LDH nanocluster arrays were

prepared by a facile buffer-salt-assisted hydrother-

mal strategy, and the detailed synthesis methods are

shown in the experiment section. The morphology of

the as-prepared rambutan-like NiFe-LDH nanoclus-

ter arrays was characterized by SEM. In Fig. 1a and b,

SEM images reveal that the resulting samples possess

a 3D hierarchical structure, which self-assembled by

numerous nanosheets to nanoclusters with diameters

*900 nm and the nanoclusters connected like a

rosary to form nanocluster arrays. Such a nanoarray

structure with strong capillary forces is beneficial to

absorb electrolyte onto the electrode [32]. At the same

time, the edges of the nanosheets are curled due to

their ultrathin structure. The detailed microstructure

of the as-prepared NiFe-LDH nanosheets was further

determined by TEM (Fig. 1c). High-resolution TEM

(HRTEM) was further performed to reveal the crystal

structures of as-prepared NiFe-LDH nanocluster

arrays. As shown in Fig. 1d, NiFe3 alloy nanoparti-

cles with a d-spacing of 0.201 nm (111) were dis-

tributed on the nanosheets. The detailed composition

information was obtained by EDX and elemental

mapping images (Fig. S1). Furthermore, PXRD mea-

surements were conducted to determine the crystal

structure of NiFe-LDH nanocluster arrays and tradi-

tional NiFe-LDH. As shown in Fig. 1e, both two

samples showed typical diffraction peaks at reflec-

tions of NiFe-LDH phase with rhombohedral struc-

ture (JCPDS# 04-0188). Compared with the NiFe-

LDH pattern, NiFe-LDH nanocluster arrays shown

broader peak width and these patterns show typical

sawtooth-shaped diffraction lines, with a sharp rise

on the left side and asymmetry slop in the right. From

the PXRD results, it is concluded that the SCT results

in disordered stacking and the sufficient interlayer

expansion of NiFe-LDH layers [33]. Two character-

istic diffraction peaks located at 44.1� and 51.6� can be

observed in the as-prepared rambutan-like NiFe-

LDH nanoclusters which are indexed to NiFe

nanoalloy (JCPDS#04-0850). PXRD patterns were

further demonstrated that the SCT makes great

influence on the crystal phase of NiFe-LDH micro-

spheres (Fig. S2). The detailed information and dis-

cussion were shown in Supporting information

section.

The elemental composition and electronic state of

as-prepared samples were investigated by X-ray

Figure 1 a, b SEM images of rambutan-like NiFe-LDH

nanoclusters. c, d TEM and HRTEM images of rambutan-like

NiFe-LDH nanoclusters. e, f The PXRD patterns and XPS spectra

of NiFe-LDH and rambutan-like NiFe-LDH nanoclusters.
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photoelectron spectroscopy (XPS). As shown in

Fig. 1f, the survey spectra revealed the presence of C,

O, Fe, and Ni elements in both NiFe-LDH and NiFe-

LDH nanocluster arrays, which demonstrated that

the SCT makes no impact on the composition of the

final product. The XPS results also demonstrated the

existence of metallic state of Fe and Ni in the as-de-

veloped rambutan-like NiFe-LDH nanocluster

(Fig. S3). The detailed information and discussion are

shown in Supporting information section.

For comparison, we synthesized NiFe-LDH with-

out SCT, as shown in Fig. 2a and b, the thickness of

nanosheets was *20 nm, and there are no nan-

oclusters generated. Meanwhile, SEM images for

NiFe-LDH (0.075 mM SCT) show traditional sheet

structure and the rambutan-like structure disap-

peared (Fig. 2c and d). To explore the potential

growth mechanism of NiFe-LDH nanocluster arrays,

pH values of the precursor solution of samples with

and without SCT are shown in Fig. S4. For as-pre-

pared NiFe-LDH nanocluster arrays, the pH value of

precursor solution was 4.27, which was lower than

the other samples. Therefore, the slow hydrolysis of

SCT plays a great role in synthesizing rambutan-like

NiFe-LDH nanocluster arrays. We use NiFe-LDH

nanocluster arrays with 0.05 mM SCT for the fol-

lowing experiment. The as-prepared NiFe-LDH

nanocluster arrays catalyst is also highly hydrophilic,

as shown in Fig. S5, which is conducive to the

transportation to the catalysts and gas diffusion for

maintaining a continuous water supply for water

splitting.

To examine the highly hydrophilic NiFe-LDH

nanocluster arrays on the electrocatalytic water-

splitting performance, electrochemical characteriza-

tions were carried out by a three-electrode system.

Herein, the electrochemically active surface area

(ECSA) was obtained from the formula ECSA = Cdl/

Cs according to previously reported literature [34], in

which, a specific capacitance (Cs = 0.040 mF cm-2 in

1 M KOH solution) is used to calculate the ECSA

based on the previous report by McCrory et al. [35]

At the same time, Cdl denotes the electrochemical

double-layer capacitance, which is measured using

cyclic voltammetry (CV) curves at various scan rates

(Fig. S6). As shown in Fig. 3a, the as-prepared NiFe-

LDH nanocluster arrays exhibit high Cdl, and the

ECSA values of NiFe-LDH and NiFe-LDH nan-

ocluster arrays were calculated to be 47.5 cm2 and

99.5 cm2, respectively. The higher ECSA of NiFe-LDH

nanocluster arrays may attribute to the peculiar

nanocluster array structure, facilitating exposing

more active sites [36–39]. Polarization curves for the

pure NF, NiFe-LDH, and NiFe-LDH nanocluster

Figure 2 a, b SEM images of NiFe-LDH. c, d SEM images of

NiFe-LDH which synthesized with assisting of 0.075 mM SCT.

Figure 3 OER: a Plots of the capacitive current densities versus

scan rate of NiFe-LDH and NiFe-LDH nanoclusters electrodes.

b Linear sweep voltammetry curves of pure NF, NiFe-LDH and

NiFe-LDH nanoclusters electrodes in 1 M KOH. c Tafel plots of

NiFe-LDH and NiFe-LDH nanoclusters. d EIS plots for NiFe-

LDH and NiFe-LDH nanoclusters electrodes at g = 280 mV in

1 M KOH. e Multi-step current process obtained for the NiFe-

LDH and NiFe-LDH nanocluster arrays electrodes. f Time-

dependent current density curves for the NiFe-LDH nanocluster

arrays electrode at 200 mA cm-2 for 50 h.
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arrays electrode at a scan rate of 2 mV s-1 are shown

in Fig. 3b. The NiFe-LDH nanocluster arrays elec-

trode showed higher current density and lower onset

potential compared to NiFe-LDH electrode. Further-

more, the Tafel plots of NiFe-LDH and NiFe-LDH

nanocluster arrays electrode with the linear regions

are fitted with the Tafel equation. It also exhibits

excellent reaction kinetics with low Tafel slope of

56.47 mV dec-1 at current density range from 10 to

25 mA cm-2, which is much lower than that of NiFe-

LDH electrode (86.65 mV dec-1) (Fig. 3c). This elec-

trochemical performance is higher than many previ-

ously reported NiFe-LDH electrocatalysts (Table S1).

In order to further understand the rational structure

strategy on the kinetics of OER, electrical impedance

spectroscopy (EIS) was performed at the overpoten-

tial of 280 mV (Fig. 3d). Compared to the NiFe-LDH

electrode, the NiFe-LDH nanoclusters array electrode

exhibited lower charge transfer resistance in the low-

frequency region in the Nyquist plot, which indicated

favorable charge transport kinetics. At the same time,

the stability and lower potential in the multi-step

chronopotentiometry curve for the NiFe-LDH and

NiFe-LDH nanocluster arrays electrode (Fig. 3e) and

i–t curves for the NiFe-LDH nanocluster arrays elec-

trode at 200 mA cm-2 for 50 h (Fig. 3f) reflecting

excellent mass transport and electrical conductivity,

as well as the mechanical robustness of the electrode

[40].

We also tested the hydrogen generation perfor-

mance of the as-prepared electrode. Figure 4a exhi-

bits the polarization curves of NiFe-LDH and NiFe-

LDH nanocluster arrays electrodes in 1 M KOH

solution at a scan rate of 2 mV s-1. Notably, the as-

obtained NiFe-LDH nanocluster arrays electrode

showed a significantly higher current density over

the whole potential range and a lower g = 137 mV at

the current density of 20 mA cm-2 than NiFe-LDH.

Meanwhile, as shown in Fig. 4b, the NiFe-LDH nan-

ocluster arrays electrode showed a lower Tafel slope

of 110 mV dec-1 in the region of g = 40–50 mV,

which further manifests the enhanced kinetics in this

hybrid nanosystem. The water-splitting performance

based on ECSA also demonstrated the superiority of

as-prepared NiFe-LDH nanocluster arrays electrodes

in both OER and HER processes (Fig. 4c and d). As

shown in Fig. 5, the as-prepared NiFe-LDH nan-

ocluster arrays electrode exhibited a fairly excellent

OER and HER performance compared with NiFe-

LDH electrode and other previous reported

electrodes.

The Mott–Schottky (M-S) analysis on as-prepared

electrodes was also determined in Fig. S7, all samples

exhibited a typical p-typed nature in their M-S curves

with negative slopes. Importantly, the NiFe-LDH

nanocluster arrays electrode showed substantially

Figure 4 HER: a Polarization curves and corresponding b Tafel

plot of the NiFe-LDH and NiFe-LDH nanocluster arrays

electrodes at a scan rate of 2 mV s-1. c OER and d HER

performance based on ECSA for NiFe-LDH and Nike-LDH

nanocluster arrays, respectively.

Figure 5 a, c OER and HER overpotentials of NiFe-LDH

nanocluster arrays, NiFe-LDH, and nickel foam electrode at

various current densities. b, d OER and HER overpotentials at

current densities of 10 mA cm-2 for our prepared NiFe-LDH

nanocluster arrays electrode and other previous reported electrodes

[41–57].
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smaller slopes in the M-S plot compared to the NiFe-

LDH electrode. Meantime, based on the M-S analysis

[30], the electrode carries of NiFe-LDH nanocluster

arrays were calculated to be 2.9 9 1029 m-3, which is

19 times higher than the NiFe-LDH electrode

(1.58 9 1028 m-3). Meanwhile, the obtained NiFe-

LDH nanocluster arrays electrode showed higher

overall water-splitting performance than the NiFe-

LDH electrode (Fig. 6a). Inspired by the good cat-

alytic activities in both OER and HER, the NiFe-LDH

nanocluster arrays catalyst was simultaneously

employed as the anode and cathode to further

assemble an electrolyze for overall water splitting in

1 M KOH aqueous solution. As shown in Fig. 6b and

Video S1, the two same electrodes were connected to

the cathode and anode of a single 1.5 V battery,

respectively, and it was found that it can be used as a

bifunctional catalyst to electrolyze water and gener-

ate numerous bubbles even at low potential. As

shown in Fig. S8, only H2 and O2 gases with a molar

ratio close to 2:1 are detected, and the Faradaic effi-

ciency is determined to be 99.6% during water

electrolysis, demonstrating that water is completely

decomposed into oxygen and hydrogen. Meanwhile,

we also tested the long-term stability of the system

for 60000 s in 1.0 M KOH solution. As shown in

Fig. 6c, the potential showed slight changes, which

indicating the NiFe-LDH nanocluster arrays elec-

trode had superior stability in the long-term electro-

chemical process. To further explore the stability of

catalytic materials at low and high current density,

the catalytic materials were placed in 1 M KOH and

tested by an i–t curve at a constant overpotential of

235 mV and 295 mV, the electrode retained current

density * 100% after continued 20 h testing

(Fig. 6d). The remarkable features of high activity,

favorable kinetics, and strong durability suggest that

the as-prepared rambutan-like NiFe-LDH nanoclus-

ter arrays electrode is a promising candidate to cat-

alyze water splitting.

Conclusion

Summarily, a highly hydrophilic NiFe-LDH nan-

ocluster arrays electrode was developed for highly

efficient full water splitting. Benefiting from the fine

geometry structure, the as-obtained NiFe-LDH nan-

ocluster arrays electrode was improved in the prop-

erties of charge carries transfer and kinetics of

catalytic reactions. The as-obtained electrocatalyst

exhibits excellent catalytic activity with the overpo-

tential of 283 and 300 mV at 100 and 200 mA cm-2,

and a *19 times enhancement of carrier concentra-

tion, as well as good durability. It also exhibits

excellent reaction kinetics with a low Tafel slope of

56.47 mV dec-1 at current density range from 10 to

25 mA cm-2. Therefore, the simple buffer-salt-as-

sisted structure designing strategies may open a new

avenue to design heterogeneous nanostructures with

high performance for electrocatalysis.
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